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Possible JP¢ = (0~ ~ exotic state
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In order to explore the possible existence of the exotic 0~ state, we have constructed the tetraquark
interpolating operators systematically. As a byproduct, we notice the 0"~ tetraquark operators without
derivatives do not exist. The special Lorentz structure of the 0™~ currents forbids the four-quark type of
corrections to the spectral density. Now the gluon condensates are the dominant power corrections. None
of the seven interpolating currents support a resonant signal. Therefore we conclude that the exotic 0™~
state does not exist below 2 GeV, which is consistent with the current experimental observations.
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I. INTRODUCTION

Most of the experimentally observed hadrons can be
interpreted as gg/qqq states and accommodated in the
quark model [1,2]. Up to now there has accumulated
some evidence of the exotic state with J¥¢ = 1~ [3-5].
Such a quantum number is not accessible for a pair of
quark and antiquark. It is sometimes labeled as an exotic
hybrid meson with the particle contents Gg,G,,v"q.
Recently we have investigated the 1~ * state using the
tetraquark currents [6]. The extracted mass and character-
istic decay pattern are quite similar to those expected for
the exotic hybrid meson. Such a result is expected. Since
the gluon field creates a pair of ¢g easily, the hybrid
operator gg,G,,,y"q transforms into a tetraquark interpo-
lating operator with the same exotic quantum number. In
quantum field theory different operators with the same
quantum number mix and tend to couple to the same
physical state.

Using the same tetraquark formalism developed in the
study of the low-lying scalar mesons [7] and the exotic 1~
mesons [6], we study the possible J°¢ = 0™~ states com-
posed of light quarks. For a neutral quark model state ¢g,
we know that J = 0 ensures L = S hence C = (—)L75 =
+1. In other words, states with J?€=0"", 07—, are
strictly forbidden. On the other hand, the gauge invariant
scalar and pseudoscalar operators composed of a pair of the
gluon field are g;GY,G**" and e*"*Pg}GY,, G4, both of
which carry the even C parity.

We construct all the local tetraquark currents with
JP€ =0"". There are two kinds of constructions:
(gq)(q g) and (gq)(Gq). They can be related to each other
by using the Fierz transformation. As usual, we use the first
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set [7]. Their flavor structure can be 3f ®3,6,0® Ef, and
3 [(¢¢9)(@ @)]. With all these independent currents, we
perform the QCD sum rule analysis. As a byproduct, we
notice that there does not exist any tetraquark interpolating
operator without derivative for the J*¢ = 07~ case.

This paper is organized as follows. In Sec. II, we con-
struct the tetraquark currents with J°¢ = 0~ using the
diquark (¢q) and antidiquark (g g ) fields. The tetraquark
currents constructed with the quark-antiquark (gg) pairs
are shown in Appendix. A. We present the spectral density
in Sec. IIT and perform the numerical analysis in Sec. I'V.
For comparison, we present the finite energy sum rule
analysis in the Appendix. B. The last section is a short
summary.

II. TETRAQUARK INTERPOLATING CURRENTS

A. The JP¢ = 0~ tetraquark interpolating currents

In this section, we construct the tetraquark interpolating
currents with JP€ = 07~ using diquark and antidiquark
fields. Such a quantum number can not be accessed by a ¢g
pair. The currents can be similarly constructed by using the
quark-antiquark pairs. However, as shown in Appendix. A,
these two constructions are equivalent as we have shown
several times in our previous studies [6,7].

The pseudoscalar tetraquark currents can be constructed
using five independent diquark fields, which are con-
structed by five independent y matrices

Sabea = (41,Cq26)(G3075Cq4y),

Vabea = (@1,CY5925)(33.Cq4,),

Tuvea = (41,C0 4142530017 v5CGy),
Aupea = (@1,CY 192)(@3.7* ¥5Cdly),
Papca = (41,CY u¥5926)( @37 Cs),

ey

where ¢g,—, represents the up, down, and strange quarks,
and a — d are the color indices.
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To compose a color singlet pseudoscalar tetraquark current, the diquark and antidiquark should have the same color and
spin symmetries. So the color structure of the tetraquark is either 6 ® 6 or 3 ® 3, which is denoted by labels 6 and 3
respectively. Therefore, considering both the color and Lorentz structures, there are altogether ten terms of products

{S eVeT®A® P}Loremz ® {3 & 6}Color' (2)

We list them as follows

Se = 41,Cq2(G3.v5Caly, + G3pv5Cal,),

65 ® 6,(S)

Ve = 41,Cv592(33.Cq%y, + G3,Cd},),

T3 = q{,C0,q0p(G3,0"" ysCqly, — G350 y5Cal,),

3 ®6,(M)

6 ® 3:(M)

In the above expressions, the flavor structure is fixed at the
same time due to the Pauli principle. The currents S¢, Vi,
T5; belong to the symmetric flavor representation 6 ®
65(S) where both diquark and antidiquark fields have the
symmetric flavor structure. The currents S3, V3, T belong

{S = q1,Cq2(334v5Ca4, — G35 Y5Cq4,)s

Vs = q1,Cv592(33.Cq4, — 33Cq5,), 3)
To = q41,C0 4005 (G3,0"" vsCqyy, + G300 y5Caly),
{Ae = qlacqub(qsﬂ“nCm + G3Y*v5Cqs,),
Py = q1,Cy,v592(G3.v*Caly, — G35 v*Cal,)-
{P 6 = 41.CY Y592 @3aY* Cy, + G3pv* Cdsy),
A3y = q1,CY 000 @3 vsCasy, — G37*¥5Cqly,)-
|
transformation, we get
656671 = V6: (]:A6q:71 = P6: CA3(]:71 = P3,
(]:S:),(Di] = V3, CTﬁCil = Tﬁ, (I:T';(]: 1 =
(5)

to the antisymmetric flavor representation 3p ® 3g(A),
where both diquark and antidiquark fields have the anti-
symmetric flavor structure. Aq, P5 for 3y ® 6x(M) and A,
P for 65 ® 3p(M), where M represents the mixed flavor
symmetry. The isovector states with charges can be ob-
served in the experiments more easily, therefore in this
paper we concentrate on the isovector currents which was
shown in the SU(3) tetraquark weight diagram in Fig. 1 [6].
We have

493 4(S), gsg 5(S) € 6, ® 6,(S),
qsG5(A) € 35 ® 3:(A), 4)
993 G(M), gsg5(M) € 3r ® 6) ® (65 ® 35)(M).

We do not differentiate up and down quarks and denote
them by ¢g. We are only interested in those neutral compo-
nents. The other states do not carry definite C parity. It
turns out that the neutral isovector and isoscalar states have
the same QCD sum rules. Our following discussions are
valid for both of them. Taking the charge-conjugation

FIG. 1.
sate.

Feynman diagrams for the quark gluon mixed conden-

Ts and T5 have even charge-conjugation parity. We con-
clude that the currents with J?¢€ = 0~ are

77(5) =S¢~ Vs
= 41.C92(G3.v5Cqy, + 3375Cq4,)
= 41.Cy592(73.Cq4, + 335Ca4,);
" = Ag — P
= q1,CY u92(G3aY*vsCqyy, + G35 7" v5Cly,)
- %TQCJ’MYsCIzb(‘_Ba)’“CEIIb + g3,y Cqly), ©
(M) = A, —
= 611aC7,4612h(673a7“75C6?Zh — g3y ysCas,)
= q41,CY w592 (3.7 Caly, — G35 v*Cal,),
77(A) =83 —
= 41.Cq2(G3.v5Cqy, — G3075Cas,)
— 41,CY5920(33.Cq4, — 336Ca4,)-

Adding different quauk contents as shown in Eq. (4), there
are altogether seven independent currents as shown:
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(1) For 65 ® 6,(5):
m = S¢(a9q ) — V(993 9)
= uCdy (i, ysCdf + i, ysCdy)
— ul' Cysdy(ii,Cdl + i1, CdY), -
n2 = Se(qsG5) — Vs(qsG5)
= uqCsy (i1, ysCs) + ity ysCs;)
— ulCyssy(1,Cs) + i1, Cslh),
where 7); belongs to the 27y representation and
contains up and down quarks only while 1, belongs
to the 8y representation and contains one s§ quark
pair.
(2) For B3 ®67) ® (65 ® 37)(M):
n3 = As(9q3 §) — Ps(q9q q)
= ulCy, dy(i,y*ysCdl + ity ysCdy)
— uf Cy,ysdy (i y*Cdj + i, y*Cdy),
M4 = As(qsq ) — Pe(qsq3)
= ugCyyuspligy*ysCsy + iy ysC5;)
— uiCY, 58yl Y CS) + iy y* CSp), )
ns = As(qqq §) — P3(qqq q)
= ug Cydylii,y*Cdj — ity y*Cdy)
—ul'Cy, ysdy (i, y*Cdl — ii,y*Cdy),
M6 = As(qs45) — P3(¢sG5)
= ugCy sy (i, y*Cs) — ity y" C5;)

— ugCy,yssplia,y* Csj, — iy y* C5p),
where 715 and 75 belong to the 10g representation
and contain only u, d quarks while 14 and n4 belong
to the 8y representation and contain one s5 quark
pair._

(3) For 3; ® 3(A):
n7 = S3(qsG5) — V3(¢sG5)
= uf Csy(it,ysCsh — ity ysC5y)
— ug, Cyss,(1,C5} — i1, C5y). )]
where 7); belongs to the 8y and contains one s§

quark pair.

It is understood that there exists the other part *[u < d]in
the expressions of 7, 4.¢7-

B. The JP¢ = 0"~ tetraquark currents

Now we move on to the J°€ = 0%~ case. There are also
ten independent scalar tetraquark currents without deriva-
tive:

PHYSICAL REVIEW D 79, 114034 (2009)
St = 41.Cq26(33.C 4, + 335Cq4,),
Ve = 417 uCa(@3.CY* @iy + 33CYH T4,
T, = 41,0 ,,Cq2(33,Co™" G4, + G3,Co"Gh,),
Al = q1,YuY5Ca2(G3.CY*vsqy, + G35 CY*Y5d5,),
Pt = q1,75Cq2(G3.Cy5ahy, + @3CY5q4,)s
S5 = 41.Cq26(33.C a1, — 335Cq4,),
Vi =q1,v.Ca(q:.CY* %), — G3Cy"ql,),
T, = q1,0,,Cq2(33,Co** @y, — 33, Co™ql,),
Ay =41, 7,.v5Cq2(G3,.CY*v5qy, — G35 CY*Ys5ds,),
Py = q1,75Cq25(334C Y54, — @35CV504,)- (10)

The flavor structure is again fixed due to the Pauli princi-
ple. To have a charge-conjugation parity, we fix the quark
contents to be g, = g3 and g, = g4 (or g, = g4 and g, =
q3)- After performing the charge-conjugation transforma-
tion, we find that they all have an even charge-conjugation
parity, for example:

CS.C™! = +5,. (11)

Therefore, the JP€ = 0%~ tetraquark interpolating cur-
rents without derivatives do not exist.

III. THE SPECTRAL DENSITY

We consider the two-point correlation function in the
framework of QCD sum rule [8,9]:

1(g?) = f dxe 0Ty 010),  (12)

where 7 is an interpolating current. We can calculate
I1(g?%) at the quark gluon level using the propagator:

ise = (07[g"(x)g"(0)]10)

— iéab 2 I AZb n 1 JTRZE i
_2772x4x 327 2 ”VF(O- £+ fat?)
511[7 5abx2 m 5ab
- Gq) + ——(g,GoGq) — 55—
3 (Gq) T (8,G0Gq) pp
'6ah ~ '5ab 2/=
4 10Tme(ae) m2q<2qq>fc’ (13)
48 8mx
where £ = y,x*. With the dispersion relation I1(g?) is
related to the observable at the hadron level

(p?) = f”&ds, (14)

0o s—p*—ie

where

p(s) = 8(s — M){OImln)nln'10)

= f%8(s — M%) + continuum. (15)

Here, the usual pole plus continuum parametrization of the
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hadronic spectral density is adopted. Up to dimension 12,
the spectral density p;(s) at the quark and gluon level reads

pi(s) =

pa(s) =

p3(s) =

P4(S) =

s4

m2

9

1536075

19276°

(82GG)m;,

[ 25670

7680

B (3m§<éq>2

2772

1927

N <<gYGG> q<éq>)sz
307275
(83 fGGG)

2474

()9}
(83GGYm(qq)

)

* (gmq@# - %mé@qxgﬁan))S(s),

(16)
st omy
1536070 38475
mg L my(Ss) (83GG)
(64776 4874 30727 )s
(g1fGGG) B
+|: 76870 ( (,ft_) 5)
3<Ss> m3(g*GG)
( 51275 )]s
my(3s)* 2<qq>2 m(3s)g2GG)
+< 1272 2 384 7% )
( wagsmw §ms<§s><5q>2)5(s), (17)

4

2

mg

N
38407° 4870
s [<g 1fGGG)

19275

15367°

(n(z) )

2
E (5<gsGG>

67

5(g:GG)m; ]
1287

m, <qq>>

B (6m§<c‘zrq>2

77.2

64
+ ?mq(q

4

q>3 —

m;

967

4

B 5<g§GG>mq<éq>)

—m§<qq><gsqocq>)a<s>,

(18)

m(ss)

s
384070

5(¢2GG

6>)s2 +

15367

_ 3 s
967r° s (1677'6
[(gﬁf GGG)

1927
5m2(g>GG)

127

()3

B (mf(is) N

27

_ 4mqq)

2567°

)b+

5my(55)Xg:GG)

3772

19274

B <2m?<ﬁu><gs6?0Gq> B

372

32
9

(m%<§s>2

372

)

ms<ss><qq>2)a<s>,

19)
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st mg (g2GG)  mLqq)
= - += + 1 2
ps(s) 2 (153677 127 )s

76807°  967°

[0 () -3) - i)

- (3m§<f1q>2 (g3 GG>mq<qq>)
2 967

32 2
+ (S malaar - Zmitaae.ao60)50)

(20)

pe(s) = S 3+(m? +ms<§S>

76807  19275°  \327°  244%

o) [eon)

m3(5s)  m2(giGG) m3(5s)>?
- + s+
47 2567 672
2mXgq)* | m(5sXg3GG)
- +
372 1927

miau)g,goGq) 16 .
- (MEREAED - i (55ag)? o(s),

21

4 2 4 s
po(s) = s omy +( m +ms(ss>

307207° 76875  \1287° = 9674
3
00N, | [@1000) (31,(5) )

30727 15364° i
3(SS> m2(g>GG) m2(5s)>
( 167* 51270 )]S +< 2472
m{qq)? | my <ss><g‘GG>>
672 3847
o
- (A TCD L, (553002 ) (),

(22)

It is interesting to note several important features of the
above spectral densities:

(i) First the special Lorentz structure of the J¥¢€ =0~
interpolating currents forbids the appearance of the
four-quark type of condensates {(Gq)’, {(gq)
(g,GoGq), and (g,GoGq)*. Usually these terms
play an important role in the multiquark sum rules.
The Feynman diagrams for the dimension 10 con-
densate (g,GoGg)? are shown in Fig. 1.

(ii)) The dominant nonperturbative correction arises
from the gluon condensate, which is destructive
for p,_,(s) and constructive for p;_(s). Moreover
there are corrections from the trigluon condensate
(g3f*<G*G"G*) as shown in Fig. 2. In the above
expressions we use the short-hand notation
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FIG. 2. Feynman diagrams for the trigluon condensate.

(g3 fGGG) to denote the trigluon condensate. There
are three types of Feynman diagrams. The first class
of Feynman diagrams vanishes because of the prod-
uct of the color matrices. The second class is pro-
portional to m, and could be omitted in the chiral
limit. Only the third class leads to a nonvanishing
trigluon correction. In fact the gluon condensates
become the only power corrections in the chiral
limit.

(iii) The second term in each p;(s) is destructive, which

@iv)

renders the spectral density negative when s is
small. This —ms® piece is an artifact of the ex-
pansion of the quark propagator ﬁjm,, in terms of
the quark mass m, perturbatively. Without making
such an expansion, the perturbative contribution to
the spectral density is always positive definite.
Such a destructive term will sometimes produce
an artificial plateau and stability window in the
sum rule analysis, which must be removed.
Although the tree-level four-quark condensate van-
ishes, one may wonder whether the four-quark
condensate g2(gq)> plays a role since the latter is
very important in the ¢g meson sum rules [8,9].
Two types of Feynman diagrams could produce
such a correction. The first class of Feynman dia-
grams is very similar to that in the gg meson case
where a gluon propagator is attached between two-
quark condensates, as Fig. 3 shows. it is easy to
check that they vanish due to the special Lorentz
structure of the correlation function. One of the
second class of diagrams is shown in Fig. 4. In
this case, we use the mesonic type interpolating
currents in Appendix A to simplify the derivation.
After making a Wick contraction to the correlation
function

FIG. 3. One set of Feynman diagrams for the four-quark con-
densate.

PHYSICAL REVIEW D 79, 114034 (2009)

21

2

FIG. 4. Feynman diagrams for the four-quark condensate.

P3O () (T 9o () i1 (1) g1y b1 (21)
X A% (21) 2(22) 81" y" 2(22)A%(20) 2 (y)
X Tyth () a0 3(y),
we get
Tri—TSo(x — ISy — x)]
X Tr=So(x — 22)y"Sp(z2 — )
XT28So(y — 20)¥*So(zy — 0 X g,
X Sg(za = z1)]

where S, is the quark propagator and S is the
gluon propagator. {I"}, I';} could be either {/, ys} or
Wa ¥5Yati So(y — z1) = {Gq). In fact, there would
be three y matrices or three y matrices plus ys left
in the latter trace. Therefore this piece also
vanishes.

IV. NUMERICAL ANALYSIS

In the chiral limit (m; = m, = 0) the spectral density
reads

st (8:GG) ,
— s
153607° 30727
3
+ M@ ln(%) - 5)&
7680 7
s* B 5(g2GG) 2
38407°  15367°
3
+ M@ m(;) ~ 5)&
1927 i’
st (8366 23)
76807° 15367
3
3847 2
st (8iGG) 2
307207° 30727

3
+ MG m(;) _ 5)&
15367° i’

p1a(s) =

p3—4(s) =

ps—(s) =

p(s) =

where & = 1 GeV. Requiring the pole contribution is
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TABLE I. The working region of M% with Ioffe’s and SVZ’s
gluon condensates and s, = 7 GeV?2.

\ [Mrznin’ M?rlax](svz) [M"znin) Mrznax] (IOffe)
pi— 0.77 ~ 1.50 0.90 ~ 1.68
Pis 1.22 ~ 1.90 1.40 ~ 1.65
Ps—6 1.05 ~ 1.77 1.55 ~ 1.74
P 1.10 ~ 1.85 1.50 ~ 1.75

larger than 40%, one gets the upper bound M2, of the
Borel parameter M. The convergence of the operator
expansion product leads to the lower bound M2, of the
Borel parameter. In the present case, we require that the
two-gluon condensate correction be less than one third of
the perturbative term and the trigluon condensate correc-

tion less than one third of the gluon condensate correction.

4.0

Mass[GeV]

1.0 12 14 16 18

Borel Mass [GeV?]

FIG. 5 (color online).
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The working region of M% in the sum rule analysis is
[M2., M2,.], which is dependent on the threshold sj.

In order to study the sensitivity of the sum rule to the
condensate values, we adopt two sets of the gluon conden-
sate values in our numerical analysis. One set is from
Ioffe’s  recent review [10]: (g2GG) = (0.20 +
0.16) GeV*, (g3fGGG) = 0.12 GeVS. We also use the
original Shifman-Vainshtein-Zakharov’s (SVZ) values
[8]: (g2GG) = (0.48 = 0.14) GeV*4, (g3fGGG) =
0.045 GeVS. The working regions of the sum rules with
the above two sets of gluon condensates and sy, = 7 GeV?
are listed in Table I. The working region of the sum rule is
very narrow even with s, = 7 GeV?. The variation of My
with M% and s is shown in Figs. 5-8 for the interpolating
currents 71—, 73—4, 7Ms5—s, 77 respectively using loffe’s
gluon condensate values. The variation of My with M% and
so and SVZ’s gluon condensate values is presented in
Figs. 9-12.

2.0t f 2.0
o ae MpP=1.1
15 Mp=135 ‘ ‘ 15
35 4 5 6 7
50 [GeV?]

(right) for the current 17,—, using loffe’s gluon condensate values.

Mass[GeV]

2.75

5
50 [GeV?]

(right) for the current 71754 using loffe’s gluon condensate values.

Mass[GeV]

1.75

The variation of My with M% (left) and s, (right) for the current 15 using Ioffe’s gluon condensate values.
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FIG. 8 (color online). The variation of My with M% (left) and s, (right) for the current 1, using Ioffe’s gluon condensate values.

3.0

Mass[GeV]
N
W

g
=]

3.0

2.5

2.0

0.6

- - - - - - 1.5
08 10 12 14 16 18 20
Borel Mass [GeVz]

FIG. 9 (color online). The variation of My with M%; (left) and s,

2.5 2.5
— 225} 12.25
>
[}
© 20 20
é’
1.75¢ 11.75
1.5 - - - - 1.5
1 1.2 14 1.6 1.8 2
Borel Mass [GeVz]

4.0 4.0
i
3501 {35
— [ 2
> 1y Mp~=0.8
8300 l 13.0
7] LAY
é 250 25
20l AL 2.0
MBZLI.O MB =0.9
15— ‘ ‘ ‘ 1.5
35 4 5 6 7
s0 [GeV?]

2.5

Mg*=1.6

Mass[GeV]

2.5

50 [GeV?]

FIG. 10 (color online). The variation of My with M% (left) and s, (right) for the current 73—, using SVZ’s gluon condensate values.

FIG. 11 (color online).
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FIG. 12 (color online). The variation of My with M% (left) and s, (right) for the current 7, using SVZ’s gluon condensate values.
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For a genuine hadron state, one expects that the ex-
tracted mass from the sum rule analysis is stable with the
reasonable variation of the Borel parameter and the con-
tinuum threshold. In other words, there should exists dual
stability in M?% and s in the working region of M%. From
all these figures we notice none of the mass curves satisfy
the stability requirement. These interpolating currents do
not support a low-lying resonant signal.

V. CONCLUSION

The exotic state with J¢ = 0~ cannot be composed of
a pair of gluons nor ¢gg. In order to explore the possible
existence of these interesting states, we first construct the
tetraquark type interpolating operators systematically. As a
byproduct, we notice that the J*¢ = 0"~ tetraquark op-
erators without derivatives do not exist. Then we make the
operator product expansion (OPE) and extract the spectral
density. The gluon condensate becomes the dominant
power correction. Usually the four-quark type of conden-
sates (Gq)*, (Gq) (g,§oGq), and {g,GoGq)* are the domi-
nant nonperturbative corrections in the multiquark sum
rules. However these terms vanish because of the special
Lorentz structure imposed by the exotic 07~ quantum
numbers.

Within the framework of the SVZ sum rule, we note that
the absence of the (§g)?, (Gq) {(g,GoGq), and {g,GoGq)*
terms destabilize the sum rule. There does not exist stabil-
ity in either M% or s, in the working region of M3.
Therefore we conclude that none of these independent
interpolating currents support a resonant signal below
2 GeV, which is consistent with the current experimental
measurement [1].
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APPENDIX A: INTERPOLATING CURRENTS IN
(q9)(gq) BASIS

For 67 ® 64(9):

" = (@107 w41 (@2 ¥5@20) + (@107 ¥510)
X (GopY* @) + (G107 1920 @26 Y ¥5915)
+ (G100 Y592) @26 Y q15);

) ® = abAeal(@1aY u@16)(G2c V" V5924)

T (G10Y Y5016 @2a V" 020) + (G10Y wq20)
X (@oeY* Ysq1a) T @10V 0 Y5920) @Y G10)}-

PHYSICAL REVIEW D 79, 114034 (2009)
For 3/ ® 61) ® (65 ® 35)(M):

77(1%)(1) = (71a91)(G26Y5920) — (G1aY591)(G26925);

D0 = Xy Aedl(@10916) (@20 Y5G20) = (G1a¥5q15)
X (G2cq2a)h

77%)(1) = (G1aY 101 @26 Y* V5926) = G107V V5910)
X (G " q21),

"7%)(8) = AabAeal(@1aY 1 016)(Goc Y ¥5924)

= (107 Y5916 @2 Y* G20)}-
For _5)[: ® 3F(A)

1 — _ _
7Y = (G107 w0 01) @2 Y ¥5@2) + (@10 0 V5910)

X (G26Y*q20) = (@1aY 092 @26 Y* V5915)
—(G1aY Y592 @26 Y* q11);
W ® = AabAcal(@10Y w916) (@2 Y* V5 924)
+ (G10Y Y5916 @2a V" 020) — (G1aY uq20)
X (G2eY"¥5q10) = (G1aY Y5926 (G2c Y 010)),

where the indices (1) and (8) represent the color singlet and
octet. Now we get eight mesonic currents. Then we intro-
duce the formula of the interchange of the color indices:

(914926T30920) = 391092035 10)
+ 3 abAcd(q1092030G40): (A1)
AabAcad(1a926G3680) = 12926836 T4a)
= v Aed(@10920T30T4p)-

Next, we perform the Fierz rearrangement in the Lorrentz
indices with the formula

(ab)(ba) = {(aa)(bb) + Yaysa)(bysb)
+ Hay,a)(by*b) — Haysy,a)(bysy*b)
+ %(éa’w,a)(l;a"“’b). (A2)

For example, we have
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The variation of My with sy and n = 0 from the finite energy sum rule. The left and right diagrams

correspond to loffe’s and SVZ’s gluon condensate values, respectively.

(q1,Cq2)(G3.v5CqL,) =

—1(a1,CysCal, ) (G3.92) — Hal,CyuvsCas ) @av*a) — §(a1,CouysCat, ) G300M q2p)

+ 1T, CyuysvsCal ) (@a v  vsaa) — 1(al,CysysCat,) (3. vsqa)
= —1Ga Y5910 @30925) = ¥ v ¥ V591 @30V @20) + §G250 10 Y5010 (@30 577 21

= HqY 101 @30V Y592) — Haap912)( @30V 5920)-

There are only four independent currents among those
eight mesonic currents. Any four currents are independent
and can be expressed by the other four

S)(8 S)(1 8 1 1
77fn)( ) %ngn)( )’ Tl%)( ) _ _%77(1%)( ) _ (ZIZ)( )’

(M)(8) _ (1) _ 2, (M)(1) A)E®) _ _ 8, (A1)
Mo = ~ AN~ 5o s Mm = ~30m

We establish the relations between the diquark currents and
the mesonic currents using the Fierz transformation. For
instance, we can verify the relations

S)(1 2 S M)(1
M)(1 A1

APPENDIX B: FINITE ENERGY SUM RULE

Sometimes the finite energy sum rule is also employed
in the numerical analysis. One first defines the nth moment
using the spectral density

Wi(n, s¢) = [SO p(s)s"ds. (B1)
0
With the quark-hadron duality, we have
W(l’l, SO)lHadron = W(nr sO)lOPE‘ (Bz)

The mass of the ground state can be obtained as

(A3)

W(n + 1, sq)

M3 50) = =6

(B3)

We have plotted the variation of My with s, for all the
seven interpolating currents in Fig. 13. The left and right
diagrams correspond to Ioffe’s and SVZ’s gluon conden-
sate values, respectively. It seems that there exists a mini-
mum of My for each current. However, a reasonable sum
rule requires that the operator product expansion should
converge well. In other words, we require that the two-
gluon power correction be less than one third of the per-
turbative term and the trigluon power correction less than
one third of two-gluon power correction in W(0, s,), which
leads to the working window of this finite energy sum rule
as:

\ 50(SVZ) so(Ioffe)
P12 4.0 7.0
P3—4 42 57
Ps—e 40 70
07 4.9 6.0

Clearly for each current the minimum of the mass curve
lies outside of the working region in both of the figures and
is not a real resonant signal. Starting from 4.0 GeV? each
mass curve grows monotonically with s,. Thus, there does
not exist a resonant signal for every interpolating current.
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