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In order to explore the possible existence of the exotic 0�� state, we have constructed the tetraquark

interpolating operators systematically. As a byproduct, we notice the 0þ� tetraquark operators without

derivatives do not exist. The special Lorentz structure of the 0�� currents forbids the four-quark type of

corrections to the spectral density. Now the gluon condensates are the dominant power corrections. None

of the seven interpolating currents support a resonant signal. Therefore we conclude that the exotic 0��

state does not exist below 2 GeV, which is consistent with the current experimental observations.
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I. INTRODUCTION

Most of the experimentally observed hadrons can be
interpreted as q �q=qqq states and accommodated in the
quark model [1,2]. Up to now there has accumulated
some evidence of the exotic state with JPC ¼ 1�þ [3–5].
Such a quantum number is not accessible for a pair of
quark and antiquark. It is sometimes labeled as an exotic
hybrid meson with the particle contents �qgsG���

�q.

Recently we have investigated the 1�þ state using the
tetraquark currents [6]. The extracted mass and character-
istic decay pattern are quite similar to those expected for
the exotic hybrid meson. Such a result is expected. Since
the gluon field creates a pair of q �q easily, the hybrid
operator �qgsG���

�q transforms into a tetraquark interpo-

lating operator with the same exotic quantum number. In
quantum field theory different operators with the same
quantum number mix and tend to couple to the same
physical state.

Using the same tetraquark formalism developed in the
study of the low-lying scalar mesons [7] and the exotic 1�þ
mesons [6], we study the possible JPC ¼ 0�� states com-
posed of light quarks. For a neutral quark model state q �q,
we know that J ¼ 0 ensures L ¼ S hence C ¼ ð�ÞLþS ¼
þ1. In other words, states with JPC ¼ 0��, 0þ�, are
strictly forbidden. On the other hand, the gauge invariant
scalar and pseudoscalar operators composed of a pair of the
gluon field are g2sG

a
��G

a�� and �����g2sG
a
��G

a
��, both of

which carry the even C parity.
We construct all the local tetraquark currents with

JPC ¼ 0��. There are two kinds of constructions:
ðqqÞð �q �qÞ and ð �qqÞð �qqÞ. They can be related to each other
by using the Fierz transformation. As usual, we use the first

set [7]. Their flavor structure can be �3f � 3f, 6f � �6f, and
�3 [ðqqÞð �q �qÞ]. With all these independent currents, we
perform the QCD sum rule analysis. As a byproduct, we
notice that there does not exist any tetraquark interpolating
operator without derivative for the JPC ¼ 0þ� case.
This paper is organized as follows. In Sec. II, we con-

struct the tetraquark currents with JPC ¼ 0�� using the
diquark (qq) and antidiquark ( �q �q ) fields. The tetraquark
currents constructed with the quark-antiquark ( �qq) pairs
are shown in Appendix. A. We present the spectral density
in Sec. III and perform the numerical analysis in Sec. IV.
For comparison, we present the finite energy sum rule
analysis in the Appendix. B. The last section is a short
summary.

II. TETRAQUARK INTERPOLATING CURRENTS

A. The JPC ¼ 0�� tetraquark interpolating currents

In this section, we construct the tetraquark interpolating
currents with JPC ¼ 0�� using diquark and antidiquark
fields. Such a quantum number can not be accessed by a q �q
pair. The currents can be similarly constructed by using the
quark-antiquark pairs. However, as shown in Appendix. A,
these two constructions are equivalent as we have shown
several times in our previous studies [6,7].
The pseudoscalar tetraquark currents can be constructed

using five independent diquark fields, which are con-
structed by five independent � matrices

Sabcd ¼ ðqT1aCq2bÞð �q3c�5C �qT4dÞ;
Vabcd ¼ ðqT1aC�5q2bÞð �q3cC �qT4dÞ;
Tabcd ¼ ðqT1aC���q2bÞð �q3c����5C �qT4dÞ;
Aabcd ¼ ðqT1aC��q2bÞð �q3c���5C �qT4dÞ;
Pabcd ¼ ðqT1aC���5q2bÞð �q3c��C �qT4dÞ;

(1)

where q1–4 represents the up, down, and strange quarks,
and a� d are the color indices.
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To compose a color singlet pseudoscalar tetraquark current, the diquark and antidiquark should have the same color and
spin symmetries. So the color structure of the tetraquark is either 6 � �6 or �3 � 3, which is denoted by labels 6 and 3
respectively. Therefore, considering both the color and Lorentz structures, there are altogether ten terms of products

fS � V � T � A � PgLorentz � f3 � 6gColor: (2)

We list them as follows

6F � �6FðSÞ
8><
>:
S6 ¼ qT1aCq2bð �q3a�5C �qT4b þ �q3b�5C �qT4aÞ;
V6 ¼ qT1aC�5q2bð �q3aC �qT4b þ �q3bC �qT4aÞ;
T3 ¼ qT1aC���q2bð �q3a����5C �qT4b � �q3b�

���5C �qT4aÞ;

�3F � 3FðAÞ
8><
>:
S3 ¼ qT1aCq2bð �q3a�5C �qT4b � �q3b�5C �qT4aÞ;
V3 ¼ qT1aC�5q2bð �q3aC �qT4b � �q3bC �qT4aÞ;
T6 ¼ qT1aC���q2bð �q3a����5C �qT4b þ �q3b�

���5C �qT4aÞ;
�3F � �6FðMÞ

�
A6 ¼ qT1aC��q2bð �q3a���5C �qT4b þ �q3b�

��5C �qT4aÞ;
P3 ¼ qT1aC���5q2bð �q3a��C �qT4b � �q3b�

�C �qT4aÞ:

6F � 3FðMÞ
�
P6 ¼ qT1aC���5q2bð �q3a��C �qT4b þ �q3b�

�C �qT4aÞ;
A3 ¼ qT1aC��q2bð �q3a���5C �qT4b � �q3b�

��5C �qT4aÞ:

(3)

In the above expressions, the flavor structure is fixed at the
same time due to the Pauli principle. The currents S6, V6,
T3 belong to the symmetric flavor representation 6F �
�6FðSÞ where both diquark and antidiquark fields have the
symmetric flavor structure. The currents S3, V3, T6 belong
to the antisymmetric flavor representation �3F � 3FðAÞ,
where both diquark and antidiquark fields have the anti-
symmetric flavor structure. A6, P3 for �3F � �6FðMÞ and A3,
P6 for 6F � 3FðMÞ, where M represents the mixed flavor
symmetry. The isovector states with charges can be ob-
served in the experiments more easily, therefore in this
paper we concentrate on the isovector currents which was
shown in the SUð3Þ tetraquark weight diagram in Fig. 1 [6].
We have

qq �q �qðSÞ; qs �q �sðSÞ 2 6F � �6FðSÞ;
qs �q �sðAÞ 2 �3F � 3FðAÞ;

qq �q �qðMÞ; qs �q �sðMÞ 2 ð�3F � �6FÞ � ð6F � 3FÞðMÞ:
(4)

We do not differentiate up and down quarks and denote
them by q. We are only interested in those neutral compo-
nents. The other states do not carry definite C parity. It
turns out that the neutral isovector and isoscalar states have
the same QCD sum rules. Our following discussions are
valid for both of them. Taking the charge-conjugation

transformation, we get

CS6C
�1 ¼ V6; CA6C

�1 ¼ P6; CA3C
�1 ¼ P3;

CS3C
�1 ¼ V3; CT6C

�1 ¼ T6; CT3C
�1 ¼ T3:

(5)

T6 and T3 have even charge-conjugation parity. We con-
clude that the currents with JPC ¼ 0�� are

�ðSÞ ¼ S6 � V6

¼ qT1aCq2bð �q3a�5C �qT4b þ �q3b�5C �qT4aÞ
� qT1aC�5q2bð �q3aC �qT4b þ �q3bC �qT4aÞ;

�ðMÞ
1 ¼ A6 � P6

¼ qT1aC��q2bð �q3a���5C �qT4b þ �q3b�
��5C �qT4aÞ

� qT1aC���5q2bð �q3a��C �qT4b þ �q3b�
�C �qT4aÞ;

�ðMÞ
2 ¼ A3 � P3

¼ qT1aC��q2bð �q3a���5C �qT4b � �q3b�
��5C �qT4aÞ

� qT1aC���5q2bð �q3a��C �qT4b � �q3b�
�C �qT4aÞ;

�ðAÞ ¼ S3 � V3

¼ qT1aCq2bð �q3a�5C �qT4b � �q3b�5C �qT4aÞ
� qT1aC�5q2bð �q3aC �qT4b � �q3bC �qT4aÞ:

(6)

Adding different quauk contents as shown in Eq. (4), there
are altogether seven independent currents as shown:

FIG. 1. Feynman diagrams for the quark gluon mixed conden-
sate.
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(1) For 6F � �6FðSÞ:
�1 ¼ S6ðqq �q �qÞ � V6ðqq �q �qÞ

¼ uTaCdbð �ua�5C �dTb þ �ub�5C �dTa Þ
� uTaC�5dbð �uaC �dTb þ �ubC �dTa Þ;

�2 ¼ S6ðqs �q �sÞ � V6ðqs �q �sÞ
¼ uTaCsbð �ua�5C�sTb þ �ub�5C�sTa Þ

� uTaC�5sbð �uaC�sTb þ �ubC�sTa Þ;

(7)

where �1 belongs to the 27F representation and
contains up and down quarks only while �2 belongs
to the 8F representation and contains one s�s quark
pair.

(2) For ð�3F � �6FÞ � ð6F � 3FÞðMÞ:
�3 ¼ A6ðqq �q �qÞ � P6ðqq �q �qÞ

¼ uTaC��dbð �ua���5C �dTb þ �ub�
��5C �dTa Þ

� uTaC���5dbð �ua��C �dTb þ �ub�
�C �dTa Þ;

�4 ¼ A6ðqs �q �sÞ � P6ðqs �q �sÞ
¼ uTaC��sbð �ua���5C�sTb þ �ub�

��5C�sTa Þ
� uTaC���5sbð �ua��C�sTb þ �ub�

�C�sTa Þ;
�5 ¼ A3ðqq �q �qÞ � P3ðqq �q �qÞ

¼ uTaC��dbð �ua��C �dTb � �ub�
�C �dTa Þ

� uTaC���5dbð �ua��C �dTb � �ub�
�C �dTa Þ;

�6 ¼ A3ðqs �q �sÞ � P3ðqs �q �sÞ
¼ uTaC��sbð �ua��C�sTb � �ub�

�C�sTa Þ
� uTaC���5sbð �ua��C�sTb � �ub�

�C�sTa Þ;

(8)

where �3 and �5 belong to the 10F representation
and contain only u, d quarks while�4 and�6 belong
to the 8F representation and contain one s�s quark
pair.

(3) For �3F � 3FðAÞ:
�7 ¼ S3ðqs �q �sÞ � V3ðqs �q �sÞ

¼ uTaCsbð �ua�5C�sTb � �ub�5C�sTa Þ
� uTaC�5sbð �uaC�sTb � �ubC�sTa Þ: (9)

where �7 belongs to the 8F and contains one s�s
quark pair.

It is understood that there exists the other part�½u $ d� in
the expressions of �2;4;6;7.

B. The JPC ¼ 0þ� tetraquark currents

Now we move on to the JPC ¼ 0þ� case. There are also
ten independent scalar tetraquark currents without deriva-
tive:

S06 ¼ qT1aCq2bð �q3aC �qT4b þ �q3bC �qT4aÞ;
V0
6 ¼ qT1a��Cq2bð �q3aC�� �qT4b þ �q3bC�

� �qT4aÞ;
T0
6 ¼ qT1a���Cq2bð �q3aC��� �qT4b þ �q3bC�

�� �qT4aÞ;
A0
6 ¼ qT1a���5Cq2bð �q3aC���5 �q

T
4b þ �q3bC�

��5 �q
T
4aÞ;

P0
6 ¼ qT1a�5Cq2bð �q3aC�5 �q

T
4b þ �q3bC�5 �q

T
4aÞ;

S03 ¼ qT1aCq2bð �q3aC �qT4b � �q3bC �qT4aÞ;
V0
3 ¼ qT1a��Cq2bð �q3aC�� �qT4b � �q3bC�

� �qT4aÞ;
T0
3 ¼ qT1a���Cq2bð �q3aC��� �qT4b � �q3bC�

�� �qT4aÞ;
A0
3 ¼ qT1a���5Cq2bð �q3aC���5 �q

T
4b � �q3bC�

��5 �q
T
4aÞ;

P0
3 ¼ qT1a�5Cq2bð �q3aC�5 �q

T
4b � �q3bC�5 �q

T
4aÞ: (10)

The flavor structure is again fixed due to the Pauli princi-
ple. To have a charge-conjugation parity, we fix the quark
contents to be q1 ¼ q3 and q2 ¼ q4 (or q1 ¼ q4 and q2 ¼
q3). After performing the charge-conjugation transforma-
tion, we find that they all have an even charge-conjugation
parity, for example:

CS06C
�1 ¼ þS06: (11)

Therefore, the JPC ¼ 0þ� tetraquark interpolating cur-
rents without derivatives do not exist.

III. THE SPECTRAL DENSITY

We consider the two-point correlation function in the
framework of QCD sum rule [8,9]:

�ðq2Þ �
Z

d4xeiqxh0jT�ðxÞ�yð0Þj0i; (12)

where � is an interpolating current. We can calculate
�ðq2Þ at the quark gluon level using the propagator:

iSabq � h0jT½qaðxÞ �qbð0Þ�j0i

¼ i	ab

2
2x4
x̂þ i

32
2

�n
ab

2
gGn

��

1

x2
ð���x̂þ x̂���Þ

� 	ab

12
h �qqi þ 	abx2

192
hgs �q�Gqi �

mq	
ab

4
2x2

þ i	abmqh �qqi
48

x̂þ i	abm2
qh �qqi

8
2x2
x̂; (13)

where x̂ � ��x
�. With the dispersion relation �ðq2Þ is

related to the observable at the hadron level

�ðp2Þ ¼
Z 1

0

�ðsÞ
s� p2 � i"

ds; (14)

where

�ðsÞ � X
n

	ðs�M2
nÞh0j�jnihnj�yj0i

¼ f2X	ðs�M2
XÞ þ continuum: (15)

Here, the usual pole plus continuum parametrization of the
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hadronic spectral density is adopted. Up to dimension 12,
the spectral density �iðsÞ at the quark and gluon level reads

�1ðsÞ ¼ s4

15360
6
� m2

q

192
6
s3 �

�hg2sGGi
3072
6

�mqh �qqi
24
4

�
s2

þ
�hg2sGGim2

q

256
6
þ hg3sfGGGi

768
6

�
3 ln

�
s

~�2

�
� 5

��
s

�
�
3m2

qh �qqi2
2
2

þ hg2sGGimqh �qqi
192
4

�

þ
�
16

9
mqh �qqi3 � 1


2
m2

qh �qqihgs �q�Gqi
�
	ðsÞ;

(16)

�2ðsÞ ¼ s4

15360
6
� m2

s

384
6
s3

þ
�
m4

s

64
6
þmsh �ssi

48
4
�hg2sGGi
3072
6

�
s2

þ
�hg3sfGGGi

768
6

�
3 ln

�
s

~�2

�
� 5

�

�
�
m3

sh�ssi
8
4

�m2
shg2sGGi
512
6

��
s

þ
�
m2

sh�ssi2
12
2

�m2
sh �qqi2
3
2

�msh�ssihg2sGGi
384
4

�

�
�
m2

sh �uuihgs �q�Gqi
6
2

� 8

9
msh �ssih �qqi2

�
	ðsÞ; (17)

�3ðsÞ ¼ s4

3840
6
� m2

q

48
6
s3 þ

�
5hg2sGGi
1536
6

þmqh �qqi
6
4

�
s2

þ
�hg3sfGGGi

192
6

�
3 ln

�
s

~�2

�
� 5

�
� 5hg2sGGim2

q

128
6

�
s

�
�
6m2

qh �qqi2

2

� 5hg2sGGimqh �qqi
96
4

�

þ
�
64

9
mqh �qqi3 � 4


2
m2

qh �qqihgs �q�Gqi
�
	ðsÞ;

(18)

�4ðsÞ ¼ s4

3840
6
� m2

s

96
6
s3 þ

�
m4

s

16
6
þmsh �ssi

12
4

þ 5hg2sGGi
1536
6

�
s2 þ

�hg3sfGGGi
192
6

�
3 ln

�
s

~�2

�
� 5

�

�
�
m3

sh�ssi
2
4

þ 5m2
shg2sGGi
256
6

��
sþ

�
m2

sh �ssi2
3
2

� 4m2
sh �qqi2
3
2

þ 5msh �ssihg2sGGi
192
4

�

�
�
2m2

sh �uuihgs �q�Gqi
3
2

� 32

9
msh �ssih �qqi2

�
	ðsÞ;
(19)

�5ðsÞ ¼ s4

7680
6
� m2

q

96
6
s3 þ

�hg2sGGi
1536
6

þmqh �qqi
12
4

�
s2

þ
�hg3sfGGGi

384
6

�
3 ln

�
s

~�2

�
� 5

�
� hg2sGGim2

q

128
6

�
s

�
�
3m2

qh �qqi2

2

� hg2sGGimqh �qqi
96
4

�

þ
�
32

9
mqh �qqi3 � 2


2
m2

qh �qqihgs �q�Gqi
�
	ðsÞ;

(20)

�6ðsÞ ¼ s4

7680
6
� m2

s

192
6
s3 þ

�
m4

s

32
6
þmsh�ssi

24
4

þ hg2sGGi
1536
6

�
s2 þ

�hg3sfGGGi
384
6

�
3 ln

�
s

~�2

�
� 5

�

�
�
m3

sh �ssi
4
4

þm2
shg2sGGi
256
6

��
sþ

�
m2

sh �ssi2
6
2

� 2m2
sh �qqi2
3
2

þmsh�ssihg2sGGi
192
4

�

�
�
m2

sh �uuihgs �q�Gqi
3
2

� 16

9
msh�ssih �qqi2

�
	ðsÞ;

(21)

�7ðsÞ ¼ s4

30720
6
� m2

s

768
6
s3 þ

�
m4

s

128
6
þmsh�ssi

96
4

þ hg2sGGi
3072
6

�
s2 þ

�hg3sfGGGi
1536
6

�
3 ln

�
s

~�2

�
� 5

�

�
�
m3

sh�ssi
16
4

þm2
shg2sGGi
512
6

��
sþ

�
m2

sh �ssi2
24
2

�m2
sh �qqi2
6
2

þmsh �ssihg2sGGi
384
4

�

�
�
m2

sh �uuihgs �q�Gqi
12
2

� 4

9
msh �ssih �qqi2

�
	ðsÞ:

(22)

It is interesting to note several important features of the
above spectral densities:
(i) First the special Lorentz structure of the JPC ¼ 0��

interpolating currents forbids the appearance of the
four-quark type of condensates h �qqi2, h �qqi
hgs �q�Gqi, and hgs �q�Gqi2. Usually these terms
play an important role in the multiquark sum rules.
The Feynman diagrams for the dimension 10 con-
densate hgs �q�Gqi2 are shown in Fig. 1.

(ii) The dominant nonperturbative correction arises
from the gluon condensate, which is destructive
for �1–2ðsÞ and constructive for �3–7ðsÞ. Moreover
there are corrections from the trigluon condensate
hg3sfabcGaGbGci as shown in Fig. 2. In the above
expressions we use the short-hand notation
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hg3sfGGGi to denote the trigluon condensate. There
are three types of Feynman diagrams. The first class
of Feynman diagrams vanishes because of the prod-
uct of the color matrices. The second class is pro-
portional to mq and could be omitted in the chiral

limit. Only the third class leads to a nonvanishing
trigluon correction. In fact the gluon condensates
become the only power corrections in the chiral
limit.

(iii) The second term in each �iðsÞ is destructive, which
renders the spectral density negative when s is
small. This �m2

qs
3 piece is an artifact of the ex-

pansion of the quark propagator i
p̂�mq

in terms of

the quark mass mq perturbatively. Without making

such an expansion, the perturbative contribution to
the spectral density is always positive definite.
Such a destructive term will sometimes produce
an artificial plateau and stability window in the
sum rule analysis, which must be removed.

(iv) Although the tree-level four-quark condensate van-
ishes, one may wonder whether the four-quark
condensate g2sh �qqi2 plays a role since the latter is
very important in the q �q meson sum rules [8,9].
Two types of Feynman diagrams could produce
such a correction. The first class of Feynman dia-
grams is very similar to that in the q �q meson case
where a gluon propagator is attached between two-
quark condensates, as Fig. 3 shows. it is easy to
check that they vanish due to the special Lorentz
structure of the correlation function. One of the
second class of diagrams is shown in Fig. 4. In
this case, we use the mesonic type interpolating
currents in Appendix A to simplify the derivation.
After making a Wick contraction to the correlation
function

�c 3ðxÞ�0
1c 4ðxÞ �c 1ðxÞ�1c 2ðxÞ �c 1ðz1Þgta��c 1ðz1Þ

� Aa
�ðz1Þ �c 2ðz2Þgtb��c 2ðz2ÞAb

�ðz2Þ �c 2ðyÞ
� �2c 1ðyÞ �c 4ðyÞ�0

2c 3ðyÞ;
we get

Tr½��0
1SQðx� yÞ�0

2SQðy� xÞ�
� Tr½�SQðx� z2Þ��SQðz2 � yÞ
� �2SQðy� z1Þ��SQðz1 � xÞ�1 � g��

� SGðz2 � z1Þ�;
where SQ is the quark propagator and SG is the

gluon propagator. f�1;�2g could be either fI; �5g or
f��; �5��g; SQðy� z1Þ / h �qqi. In fact, there would
be three � matrices or three � matrices plus �5 left
in the latter trace. Therefore this piece also
vanishes.

IV. NUMERICAL ANALYSIS

In the chiral limit (ms ¼ mq ¼ 0) the spectral density

reads

�1–2ðsÞ ¼ s4

15360
6
� hg2sGGi

3072
6
s2

þ hg3sfGGGi
768
6

�
3 ln

�
s

~�2

�
� 5

�
s;

�3–4ðsÞ ¼ s4

3840
6
� 5hg2sGGi

1536
6
s2

þ hg3sfGGGi
192
6

�
3 ln

�
s

~�2

�
� 5

�
s;

�5–6ðsÞ ¼ s4

7680
6
� hg2sGGi

1536
6
s2

þ hg3sfGGGi
384
6

�
3 ln

�
s

~�2

�
� 5

�
s;

�7ðsÞ ¼ s4

30720
6
� hg2sGGi

3072
6
s2

þ hg3sfGGGi
1536
6

�
3 ln

�
s

~�2

�
� 5

�
s;

(23)

where ~� ¼ 1 GeV. Requiring the pole contribution is
FIG. 3. One set of Feynman diagrams for the four-quark con-
densate.

FIG. 4. Feynman diagrams for the four-quark condensate.

FIG. 2. Feynman diagrams for the trigluon condensate.
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larger than 40%, one gets the upper bound M2
max of the

Borel parameter M2
B. The convergence of the operator

expansion product leads to the lower bound M2
min of the

Borel parameter. In the present case, we require that the
two-gluon condensate correction be less than one third of
the perturbative term and the trigluon condensate correc-
tion less than one third of the gluon condensate correction.

The working region of M2
B in the sum rule analysis is

½M2
min;M

2
max�, which is dependent on the threshold s0.

In order to study the sensitivity of the sum rule to the
condensate values, we adopt two sets of the gluon conden-
sate values in our numerical analysis. One set is from
Ioffe’s recent review [10]: hg2sGGi ¼ ð0:20�
0:16Þ GeV4, hg3sfGGGi ¼ 0:12 GeV6. We also use the
original Shifman-Vainshtein-Zakharov’s (SVZ) values
[8]: hg2sGGi ¼ ð0:48� 0:14Þ GeV4, hg3sfGGGi ¼
0:045 GeV6. The working regions of the sum rules with
the above two sets of gluon condensates and s0 ¼ 7 GeV2

are listed in Table I. The working region of the sum rule is
very narrow even with s0 ¼ 7 GeV2. The variation of MX

with M2
B and s0 is shown in Figs. 5–8 for the interpolating

currents �1–2, �3–4, �5–6, �7 respectively using Ioffe’s
gluon condensate values. The variation ofMX withM2

B and
s0 and SVZ’s gluon condensate values is presented in
Figs. 9–12.

TABLE I. The working region of M2
B with Ioffe’s and SVZ’s

gluon condensates and s0 ¼ 7 GeV2.

\ ½M2
min;M

2
max�(SVZ) ½M2

min;M
2
max� (Ioffe)

�1–2 0:77� 1:50 0:90� 1:68
�3–4 1:22� 1:90 1:40� 1:65
�5–6 1:05� 1:77 1:55� 1:74
�7 1:10� 1:85 1:50� 1:75
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FIG. 5 (color online). The variation of MX with M2
B (left) and s0 (right) for the current �1–2 using Ioffe’s gluon condensate values.
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FIG. 6 (color online). The variation of MX with M2
B (left) and s0 (right) for the current �3–4 using Ioffe’s gluon condensate values.
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FIG. 7 (color online). The variation of MX with M2
B (left) and s0 (right) for the current �5–6 using Ioffe’s gluon condensate values.
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FIG. 8 (color online). The variation of MX with M2
B (left) and s0 (right) for the current �7 using Ioffe’s gluon condensate values.
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FIG. 9 (color online). The variation of MX with M2

B (left) and s0 (right) for the current �1–2 using SVZ’s gluon condensate values.
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FIG. 10 (color online). The variation of MX with M2
B (left) and s0 (right) for the current �3–4 using SVZ’s gluon condensate values.
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FIG. 11 (color online). The variation of MX with M2
B (left) and s0 (right) for the current �5–6 using SVZ’s gluon condensate values.
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FIG. 12 (color online). The variation of MX with M2
B (left) and s0 (right) for the current �7 using SVZ’s gluon condensate values.
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For a genuine hadron state, one expects that the ex-
tracted mass from the sum rule analysis is stable with the
reasonable variation of the Borel parameter and the con-
tinuum threshold. In other words, there should exists dual
stability in M2

B and s0 in the working region of M2
B. From

all these figures we notice none of the mass curves satisfy
the stability requirement. These interpolating currents do
not support a low-lying resonant signal.

V. CONCLUSION

The exotic state with JPC ¼ 0�� cannot be composed of
a pair of gluons nor q �q. In order to explore the possible
existence of these interesting states, we first construct the
tetraquark type interpolating operators systematically. As a
byproduct, we notice that the JPC ¼ 0þ� tetraquark op-
erators without derivatives do not exist. Then we make the
operator product expansion (OPE) and extract the spectral
density. The gluon condensate becomes the dominant
power correction. Usually the four-quark type of conden-
sates h �qqi2, h �qqi hgs �q�Gqi, and hgs �q�Gqi2 are the domi-
nant nonperturbative corrections in the multiquark sum
rules. However these terms vanish because of the special
Lorentz structure imposed by the exotic 0�� quantum
numbers.

Within the framework of the SVZ sum rule, we note that
the absence of the h �qqi2, h �qqi hgs �q�Gqi, and hgs �q�Gqi2
terms destabilize the sum rule. There does not exist stabil-
ity in either M2

B or s0 in the working region of M2
B.

Therefore we conclude that none of these independent
interpolating currents support a resonant signal below
2 GeV, which is consistent with the current experimental
measurement [1].
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APPENDIX A: INTERPOLATING CURRENTS IN
ð �qqÞð �qqÞ BASIS

For 6F � �6FðSÞ:

�ðSÞð1Þ
m ¼ ð �q1a��q1aÞð �q2b���5q2bÞ þ ð �q1a���5q1aÞ

� ð �q2b��q2bÞ þ ð �q1a��q2aÞð �q2b���5q1bÞ
þ ð �q1a���5q2aÞð �q2b��q1bÞ;

�ðSÞð8Þ
m ¼ �ab�cdfð �q1a��q1bÞð �q2c���5q2dÞ

þ ð �q1a���5q1bÞð �q2d��q2dÞ þ ð �q1a��q2bÞ
� ð �q2c���5q1dÞ þ ð �q1a���5q2bÞð �q2c��q1dÞg:

For ð�3F � �6FÞ � ð6F � 3FÞðMÞ:

�ðMÞð1Þ
1m ¼ ð �q1aq1aÞð �q2b�5q2bÞ � ð �q1a�5q1aÞð �q2bq2bÞ;

�ðMÞð8Þ
1m ¼ �ab�cdfð �q1aq1bÞð �q2c�5q2dÞ � ð �q1a�5q1bÞ

� ð �q2cq2dÞg;
�ðMÞð1Þ
2m ¼ ð �q1a��q1aÞð �q2b���5q2bÞ � ð �q1a���5q1aÞ

� ð �q2b��q2bÞ;
�ðMÞð8Þ
2m ¼ �ab�cdfð �q1a��q1bÞð �q2c���5q2dÞ

� ð �q1a���5q1bÞð �q2c��q2dÞg:

For �3F � 3FðAÞ:

�ðAÞð1Þ
m ¼ ð �q1a��q1aÞð �q2b���5q2bÞ þ ð �q1a���5q1aÞ

� ð �q2b��q2bÞ � ð �q1a��q2aÞð �q2b���5q1bÞ
� ð �q1a���5q2aÞð �q2b��q1bÞ;

�ðAÞð8Þ
m ¼ �ab�cdfð �q1a��q1bÞð �q2c���5q2dÞ

þ ð �q1a���5q1bÞð �q2d��q2dÞ � ð �q1a��q2bÞ
� ð �q2c���5q1dÞ � ð �q1a���5q2bÞð �q2c��q1dÞg;

where the indices (1) and (8) represent the color singlet and
octet. Now we get eight mesonic currents. Then we intro-
duce the formula of the interchange of the color indices:

ðq1aq2b �q3a �q4bÞ ¼ 1
3ðq1aq2b �q3b �q4aÞ
þ 1

2�ab�cdðq1aq2c �q3d �q4bÞ;
�ab�cdðq1aq2c �q3b �q4dÞ ¼ 16

9 ðq1aq2b �q3b �q4aÞ
� 1

3�ab�cdðq1aq2c �q3d �q4bÞ:

(A1)

Next, we perform the Fierz rearrangement in the Lorrentz
indices with the formula

ð �abÞð �baÞ ¼ 1
4ð �aaÞð �bbÞ þ 1

4ð �a�5aÞð �b�5bÞ
þ 1

4ð �a��aÞð �b��bÞ � 1
4ð �a�5��aÞð �b�5�

�bÞ
þ 1

8ð �a���aÞð �b���bÞ: (A2)

For example, we have
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ðqT1aCq2bÞð �q3a�5C �qT4bÞ ¼ �1
4ðqT1aC�5C �qT4bÞð �q3aq2bÞ � 1

4ðqT1aC���5C �qT4bÞð �q3a��q2bÞ � 1
8ðqT1aC����5C �qT4bÞð �q3a���q2bÞ

þ 1
4ðqT1aC���5�5C �qT4bÞð �q3a���5q2bÞ � 1

4ðqT1aC�5�5C �qT4bÞð �q3a�5q2bÞ
¼ �1

4ð �q4b�5q1aÞð �q3aq2bÞ � 1
4ð �q4b���5q1aÞð �q3a��q2bÞ þ 1

8ð �q4b����5q1aÞð �q3a���q2bÞ
� 1

4ð �q4b��q1aÞð �q3a���5q2bÞ � 1
4ð �q4bq1aÞð �q3a�5q2bÞ: (A3)

There are only four independent currents among those
eight mesonic currents. Any four currents are independent
and can be expressed by the other four

�ðSÞð8Þ
m ¼ 4

3�
ðSÞð1Þ
m ; �ðMÞð8Þ

1m ¼ �2
3�

ðMÞð1Þ
1m � �ðMÞð1Þ

2m ;

�ðMÞð8Þ
2m ¼ �4�ðMÞð1Þ

1m � 2
3�

ðMÞð1Þ
2m ; �ðAÞð8Þ

m ¼ �8
3�

ðAÞð1Þ
m :

We establish the relations between the diquark currents and
the mesonic currents using the Fierz transformation. For
instance, we can verify the relations

�ðSÞð1Þ
m ¼ �2�S

d; �ðMÞð1Þ
1m ¼ 1

4�
M
1d þ 1

4�
M
2d;

�ðMÞð1Þ
2m ¼ �1

2�
M
1d þ 1

2�
M
2d; �ðAÞð1Þ

m ¼ �2�A
d:

APPENDIX B: FINITE ENERGY SUM RULE

Sometimes the finite energy sum rule is also employed
in the numerical analysis. One first defines the nth moment
using the spectral density

Wðn; s0Þ ¼
Z s0

0
�ðsÞsnds: (B1)

With the quark-hadron duality, we have

Wðn; s0ÞjHadron ¼ Wðn; s0ÞjOPE: (B2)

The mass of the ground state can be obtained as

M2
Xðn; s0Þ ¼

Wðnþ 1; s0Þ
Wðn; s0Þ : (B3)

We have plotted the variation of MX with s0 for all the
seven interpolating currents in Fig. 13. The left and right
diagrams correspond to Ioffe’s and SVZ’s gluon conden-
sate values, respectively. It seems that there exists a mini-
mum of MX for each current. However, a reasonable sum
rule requires that the operator product expansion should
converge well. In other words, we require that the two-
gluon power correction be less than one third of the per-
turbative term and the trigluon power correction less than
one third of two-gluon power correction inWð0; s0Þ, which
leads to the working window of this finite energy sum rule
as:

\ s0ðSVZÞ s0ðIoffeÞ
�1–2 4.0 7.0

�3–4 4.2 5.7

�5–6 4.0 7.0

�7 4.9 6.0

Clearly for each current the minimum of the mass curve
lies outside of the working region in both of the figures and
is not a real resonant signal. Starting from 4:0 GeV2 each
mass curve grows monotonically with s0. Thus, there does
not exist a resonant signal for every interpolating current.
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