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We consider the production of heavy-quark pairs in the collisions of polarized and unpolarized on-shell

photons and present, in analytic form, the fully integrated total cross sections for total photon spins Jz ¼
0, �2 at next-to-leading-order in QCD. Phenomenological applications include b �b production, which

represents an irreducible background to standard-model intermediate-mass Higgs-boson production, as

well as t�t production.
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I. INTRODUCTION

It has been emphasized by many physicists that running
a future eþe� linear collider (ILC) in the photon-photon
mode is a very interesting option (see, e.g., Refs. [1,2]).
The high-energy on-shell photons can be generated by
backward Compton scattering of laser light off the high-
energy electron and positron bunches of the collider with
practically no loss in energy and luminosity. In this respect,
one of the most important reactions to consider is heavy-
quark pair production in photon-photon collisions. A ��
collider becomes particularly important for studies of the
standard-model Higgs boson when its mass is below the
WþW� production threshold. Then, the predominant de-
cay is H ! b �b. The dominant background to this comes
from �� ! b �b, which receives contributions from direct
and resolved photons. We leave aside the latter for the time
being and return to this in Sec. V. The use of longitudinally
polarized photons of equal helicity (their angular momen-
tum being Jz ¼ 0) suppresses this background by a factor
ofm2

b=s at the leading order in perturbation theory [3,4]. Of
course, the reason that the Jz ¼ 0 channel is important is
that the Higgs signal comes entirely from it. Nevertheless,
the above-mentioned suppression should not necessarily
hold in general, since QCD higher-order corrections in-
volve gluon emission, which permits the b �b system to have
Jz � 0. Therefore, the process of bottom-quark pair pro-
duction in polarized-photon fusion would represent an
irreducible background to intermediate-mass Higgs-boson
production. Indeed, subsequent calculations of the next-to-
leading-order (NLO) QCD corrections have confirmed
these expectations [5,6].

Furthermore, future photon colliders will become top-
quark factories. The data obtained there, when combined
with data on top-quark production from other reactions,
will certainly improve our knowledge of the top-quark
properties (see, e.g., Ref. [7]). It should also be noted
that the NLO corrections have a large effect on the thresh-
old behavior and exhibit a peculiar spin dependence in this
region.
Heavy-flavor production in photon-photon collisions

receives contributions from direct and resolved incident
photons. In the first case, photons behave as pointlike
objects, interacting directly with the quarks in the hard
scattering, while in the second case, the photon exhibits a
complex structure involving quarks and gluons that par-
ticipate in the hard interaction. In this paper, we present
analytical results for the total cross sections for heavy-
quark pair production by both polarized and unpolarized
direct photons. The present work builds on the previous
work of one of us [5,8]. In Ref. [5], differential cross
sections were calculated analytically in dimensional regu-
larization [9] and cast into a very compact form. We note
that this is the only publication where complete analytical
results for polarized and unpolarized doubly differential
cross sections are presented. In Ref. [8], top-quark pair
production for energies not too far above threshold was
studied, and the fully integrated result for the so-called
‘‘virtual plus soft’’ part of the cross section was derived.
We also note that the results presented in the present work
constitute the Abelian part of the gluon-induced hadropro-
duction of heavy-quark pairs.
This paper is organized as follows. Section II explains

our notations. In Sec. III, we outline our general approach
and discuss in detail our procedure and methodology. In
Sec. IV, we present our analytically integrated total cross
sections. Our conclusions are summarized in Sec. V.
Finally, Appendix A elaborates on the calculation of one
of the most difficult double integrals, Appendix B gives
expressions for the various coefficient functions that ap-
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pear in the main text, and Appendix C displays represen-
tations of our basis functions in terms of generalized
Nielsen polylogarithms.

II. NOTATION

For consistency, we closely follow the notations of
Ref. [5]. The one-loop Feynman diagrams with t-channel
topology relevant for heavy-flavor production by the scat-
tering of two on-shell photons are depicted in Fig. 1. The
u-channel diagrams are obtained from the depicted ones by
crossing the incoming photon lines. Single-gluon radia-
tion, which arises from the tree-level diagrams with a gluon
attached in all possible ways to the heavy-quark line,
contributes at the same order. We assign the four-momenta
and helicities as

�ðp1; �1Þ þ �ðp2; �2Þ ! Qðp3Þ þ �Qðp4Þ þ gðp5Þ; (2.1)

so that p1 þ p2 ¼ p3 þ p4 þ p5, and have p2
1 ¼ p2

2 ¼
p2
5 ¼ 0 and p2

3 ¼ p2
4 ¼ m2, where m is the quark mass.

We introduce the following Mandelstam variables:

s ¼ ðp1 þ p2Þ2;
t ¼ T �m2 ¼ ðp1 � p3Þ2 �m2;

u ¼ U�m2 ¼ ðp2 � p3Þ2 �m2;

s2 ¼ S2 �m2 ¼ ðp1 þ p2 � p3Þ2 �m2 ¼ sþ tþ u;

(2.2)

so that s2 ¼ 0 in the soft-gluon limit. Introducing

v ¼ 1þ t

s
; w ¼ �u

sþ t
; (2.3)

we may write

t ¼ �sð1� vÞ; u ¼ �svw; s2 ¼ svð1� wÞ:
(2.4)

In Ref. [5], the four-momentum of the gluon was inte-
grated out, the squared amplitudes were summed over the
spins and colors of the final-state heavy quarks and aver-
aged over the spins of the initial photons. The differential
cross sections d��=dvdw and d�=dvdw for the polarized
and unpolarized cases were presented analytically, while
the total cross sections �� and � were calculated numeri-
cally. In Ref. [8], these differential cross sections were
further integrated to obtain fully analytical result for all
the terms proportional to �ð1� wÞ, i.e., those that multiply
the leading-order term. However, the hard-bremsstrahlung
contributions were left out, for which a suitable set of
parametrizations were constructed. It is the aim of the
present work to analytically integrate these remaining
contributions, e.g., the expression in Eq. (30) of Ref. [5],
except for its last term, proportional to d�LO=dvdw.

III. EVALUATION

In order to obtain the analytical result for the total cross
section, one has to perform double integrations over the
variables v andw, as was already mentioned in Sec. II. The
explicit forms of the relevant integrals Ii (i ¼ 1; . . . ; 16)
are given in Appendix C of Ref. [5]. However, their direct
analytical evaluation turns out to be very complicated in
general and even an unfeasible task in some cases. The
integrals Ii contain logarithms with square roots in their
arguments, and their coefficient functions also depend on
the integration variables. In several cases where direct
integration is possible, one obtains expressions in terms

a1 c1 c2

d1 d2 d3

FIG. 1. One-loop Feynman diagrams contributing to the photon-fusion amplitude. Wavy, curly, and solid lines represent photons,
gluons, and heavy quarks, respectively.
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of the generalized Nielsen polylogarithms [10]. These
polylogarithms, however, contain long and complicated
arguments that look unnatural, so that we decided to find
some other universal representation that would be valid for
all the integrals under consideration.

In fact, we made use of another approach to obtain the
results. The essence of our method consists in obtaining the
integrated result from its expansion in the variable it de-
pends on, as well as in the knowledge of the basis functions
entering the integrated result. In the past, such an approach
was used in Ref. [11] for vertex- and propagator-type two-
loop diagrams and was also applied to some other prob-
lems (see, e.g., Ref. [12]).

In our case, the result depends on the single variable
m2=s. We find it, however, more convenient to set up the
expansion in the heavy-quark velocity

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

s

s
: (3.1)

The procedure for obtaining the required expansions of the
double integrals in the variable �, by first expanding and
then integrating Eq. (30) of Ref. [5], was already discussed
in detail in Ref. [8] and will not be addressed here. We only
mention that, in Ref. [8], only the first 11 terms of the
expansions were obtained, which was all one could achieve
at that time with available computer hardware resources.
For our present purposes, we needed to greatly enlarge the
depths of the expansions. Although this appears to be a
straightforward task at first sight, it turned out to be a major
technical challenge in practice. We actually needed hun-
dreds of expansion terms to be able to rebuild the final
integrated results. For a given integral, the number of
expansion terms is, of course, directly connected to the
number of functions that makes up our basis. Thus, the
main problems were, on the one hand, to define the small-
est possible basis and, on the other hand, to obtain suffi-
ciently many terms of the expansion. Analyzing already
integrated parts of the cross section presented in Ref. [8]
and taking into account observations made in a number of
previous phenomenological studies, we chose our set of
basis functions to be the complete set of harmonic poly-
logarithms of Remiddi and Vermaseren [13]. Further de-
tailed investigation revealed, however, that harmonic
polylogarithms alone are not sufficient, and that some
nonharmonic functions should be added to the basis, as
will be explained below. These functions fall into the class
of multiple polylogarithms [14].

It is well known that Feynman amplitudes satisfy linear
differential equations (see, e.g., Ref. [15]). In order to
establish the structure of the results, we found it very
convenient to consider homogeneous differential equations
for the various integrals Ii, which are of the form

Xk
n¼0

PðiÞ
n ð�Þ dn

d�n Iið�Þ ¼ 0; (3.2)

where PðiÞ
n ð�Þ are some polynomials and k is the order of

the homogeneous differential equation. Having typically
150–200 coefficients of an expansion in �, we were able to
establish the differential equations of the above type for
each of the Ii functions. As a result, we found that the

degrees of the polynomials PðiÞ
n ð�Þ never exceed 14 and

that the orders of the differential equations do not exceed 7.
After having obtained the polynomials, one can try to solve
the homogeneous differential equations by using the linear
ansatz

Ii ¼
X
l

aðiÞl Fl; (3.3)

where the sum runs over all the basis functions. We remark
that the first coefficients of the original � expansions serve
as boundary conditions for our differential equations.
Substitution of such an ansatz into Eq. (3.2) leads to an
algebraic system of linear equations.
As already mentioned, not all the integrals can be given

in terms of harmonic polylogarithms. In particular, this was
the case for the integral I8 of Ref. [5], which is one of the
most complicated ones. We explicitly integrated the doubly
differential distribution associated with this function. The
details are presented in Appendix A. Nevertheless, such a
direct integration would be rather tedious for a majority of
our functions, and the changes of variables described in
Appendix A are not universal and, therefore, not applicable
to the other integrals. Another integral that cannot be ex-
pressed in terms of harmonic polylogarithms is I6.
Originally, our ansatz contained more than 100 basis

functions. To work with such an ansatz, we needed about
1000 expansion coefficients in the � series. Finally, after
some analysis, we constructed a final set of 21 basis
functions. They are harmonic polylogarithms, except for
three, which are discussed in Sec. IV. With this set of basis
functions, the number of linear equations required varies
from several tens to a couple of hundreds, depending on the
function Ii considered. Typically, one needs about 150–200
coefficients of the � expansion to find the solution for the
double integral Ii.

IV. INTEGRATED RESULTS

The unpolarized and polarized cross sections are defined
in terms of ��1�2

as

�unp ¼ 1
2ð�þþ þ �þ�Þ; �pol ¼ 1

2ð�þþ � �þ�Þ:
(4.1)

We parametrize the total cross section in terms of the
polarization of the initial beams as
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� ¼ 2� j

2
�þþ þ j

2
�þ�; (4.2)

where j ¼ 1� h�1�2i involves the average product of the
photon helicities �1 and �2. According to Eq. (4.2), j ¼ 1
corresponds to the unpolarized cross section �unp, while

j ¼ 0 and j ¼ 2 correspond to�þþ and�þ�, respectively.
At NLO, Eq. (4.2) can be written as

� ¼ 2��2e4QNc

s

�
fð0Þðj; �Þ þ CF

�s

�
fð1Þðj; �Þ

�
; (4.3)

where eQ is the fractional electric charge of the heavy

quark Q, Nc the number of colors, and � the fine-structure
constant.

The Born result is well known and reads

fð0Þðj; �Þ ¼ 2�þ 2�3 � 6j�� ð1þ 2j� �4Þ ln1� �

1þ �
:

(4.4)

The NLO result can be presented as a linear combination
of universal basis functions Fi,

fð1Þðj; �Þ ¼ X21
i¼1

cðjÞi ð�ÞFið�Þ; (4.5)

where all the j dependence resides in the coefficients cðjÞi .

The coefficients cðjÞi are given in Appendix B. The choice
of the basis functions Fi is not unique. We choose the 21
basis functions Fi as follows:

F1 ¼ 1; F2 ¼ H1; F3 ¼ H�1; F4 ¼ H1;1;

F5 ¼ H�1;1; F6 ¼ H1;�1; F7 ¼ H�1;�1;

F8 ¼ Li2ð�Þ � Li2ð��Þ; F9 ¼ H1;1;1;

F10 ¼ H�1;1;1; F11 ¼ H1;�1;1; F12 ¼ H�1;�1;1;

F13 ¼ H1;1;�1; F14 ¼ H�1;1;�1; F15 ¼ H1;�1;�1;

F16 ¼ H�1;�1;�1;

F17 ¼ 2
Z �

0

db

1� b2
½Li2ðbÞ � Li2ð�bÞ�;

F18 ¼
Z �

0

db

b
ln2

1� b

1þ b
;

F19 ¼ 2
Z �

0

bdb

5� b2

�
1

2
ln2ð1þ bÞ � 1

2
ln2ð1� bÞ þ Li2

�
1þ b

2

�
� Li2

�
1� b

2

�
þ ln2 ln

1� b

1þ b

�
;

F20 ¼ 2
Z �

0

bdb

3þ b2

�
ln2

1þ b

2
� ln2

1� b

2

�
;

F21 ¼ �½A1ð�Þ � A2ð�Þ�:

(4.6)

The H functions appearing in Eq. (4.6) are the so-called
harmonic polylogarithms, defined as

H�1ð�Þ ¼
Z �

0

db

1� b
¼ � lnð1� �Þ;

H�1;a;...ð�Þ ¼
Z �

0

db

1� b
Ha;...ðbÞ;

(4.7)

Li2 is the dilogarithm, defined below Eq. (4.9); and the
functions A1 and A2 have the following compact one-fold
integral representations:

A1ð�Þ ¼
Z �

0
db

lnð1� b2Þ
2� �2 � b2

ln
1� b2

1� �2
;

A2ð�Þ ¼
Z �

��
db

lnð1þ bÞ
2� �2 � b2

� ½2 lnð1þ bÞ � lnð1þ �2 þ 2bÞ�:

(4.8)

We observe that only three basis functions F19, F20, and
F21 of Eq. (4.6) are not expressible in terms of harmonic
polylogarithms (4.7). We remark that the basis function F20

arises only from the virtual part of the cross section.
We note that all the basis functions Fi of Eq. (4.6) can

also be expressed via generalized Nielsen polylogarithms,
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S n;pðyÞ ¼ ð�1Þnþp�1

ðn� 1Þ!p!
Z 1

0

dt

t
lnpð1� tyÞlnn�1t; (4.9)

with nþ p ¼ 2, 3 and complicated arguments. Special
cases include the polylogarithm of order n, LinðyÞ ¼
Sn�1;1ðyÞ, and Riemann’s zeta function �n ¼ �ðnÞ ¼
Linð1Þ [10,16]. We rewrite the functions Fi in terms of
the standard generalized Nielsen polylogarithms in
Appendix C. We note in passing that all the Fi functions
can be expressed in terms of multiple polylogarithms L1;1;1

of depth and weight 3 [14] with simple linear arguments.
To verify our analytical results, we compared the nu-

merical values for the function fð1Þ of Eq. (4.3) produced
by our MATHEMATICA program in the polarized and unpo-
larized cases with Table 1 of Ref. [8]. There, the values for

fð1Þ are presented as functions of the variable

z ¼
ffiffiffi
s

p
2m

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p : (4.10)

We found agreement on the level of better than one part in
10 000. Next, we compared our numbers with those for z ¼
1, 2, 3, 4, 5, 10 presented in Table 1 of Ref. [17] dealing
with the unpolarized case. The agreement was at the order
of 1 part in 10 000 or better. Finally, we also compared our

numbers with the corresponding values for fð1ÞðþþÞ and
fð1Þðþ�Þ from Ref. [6]. Generally, we were in good agree-

ment; however, we found deviations for fð1ÞðþþÞ by about
3% at some values of z.

The present results form an Abelian subset of the non-
Abelian gluon-induced NLO contributions to heavy-quark
pair production. Recently, the total cross section of this
subprocess was calculated analytically for unpolarized
gluons in Ref. [18] using a completely different approach.
By modifying the color structures, it is possible to extract
the unpolarized �� cross section from their result.
Comparing both numerically and analytically (after ex-
panding in �), we find complete agreement. Specifically,
three nonharmonic functions F1ðxÞ, F2ðxÞ, and F3ðxÞ ap-
pearing in Eqs. (13)–(15) of Ref. [18] can be expressed as
linear combinations of our functions F19, F20, and F21. For
instance, for the most complicated function F3ðxÞ, one has

F21ð�Þ ¼ 8

15

1� xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6xþ x2

p F3ðxÞ; (4.11)

where x ¼ ð1� �Þ=ð1þ �Þ.

V. CONCLUSIONS

We presented, in analytic form, the integrated total cross
sections of heavy-quark production in polarized and un-
polarized �� collisions at NLO in QCD. The result is

written as a sum over bilinear products of j-dependent
coefficient functions and j-independent basis functions,
where j denotes the total angular momentum of the
photons.
We checked our analytical results by reproducing, with

great accuracy, all the numerical values listed in the rele-
vant tables of Refs. [8,17]. Furthermore, we established
agreement with the analytic NLO result for the total cross
section of heavy-quark production via gg fusion, obtained
just recently in Ref. [18], by taking the Abelian limit.
Using the backscattering technique, it is straightforward

to obtain polarized-photon beams of high intensity at the
�� option of the ILC by colliding low-energy laser light
with polarized electron and positron beams.
Of some concern are resolved-photon contributions. On

the one hand, the unpolarized cross sections of the con-
tributing subprocesses were already presented in Ref. [18]
and the polarized ones may be deduced, e.g., from
Ref. [19]. On the other hand, such contributions can be
suppressed by operating close to the production threshold.
In fact, we infer from Ref. [20] that, in the case of b-quark
production close to threshold, the resolved contribution
only makes up a fraction of a percent of the full cross
section. Resolved contributions may also be reduced by
identifying outgoing jets collinear to one of the photon
beams, which are a signature of resolved-photon events.
One can also require that the energy deposited in the
detectors be equal to the total beam energy in order to
account for missed jets of the type mentioned above. From
the experimental side, we are assuming only that heavy-
quark events can be clearly identified.
Our computer program evaluates the total cross sections

presented here in less than a second. It is publicly available
[21] and uses the program package HPL [22]. Being im-
plemented in MATHEMATICA, it does not allow for calcu-
lations with arbitrary precision. However, with some
additional technical modifications, arbitrary precision
could be achieved.
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APPENDIX A: INTEGRAL TRANSFORMATIONS

The contribution proportional to the integral I8 of
Ref. [5] can be represented in the form

I8
N

¼
Z v2

v1

dv
Z 1

w1

vdwffiffiffiffiffi
x8

p ln

ffiffiffiffiffi
x8

p þ v �wffiffiffiffiffi
x8

p � v �w
e8ðv;wÞ; (A1)

where N is a known normalization constant and

v1 ¼ 1� �

2
; v2 ¼ 1þ �

2
; w1 ¼ a

vð1� vÞ ;
�w ¼ 1� w; x8 ¼ v2 �w2 þ 4avð1� vwÞ;
a ¼ v1v2:

(A2)

In the polarized case, the coefficient function e8 is simply
replaced by �e8. The actual expressions for �e8 and e8
may be found in Eqs. (B6) and (B8) of Ref. [5],
respectively.

It is convenient to change the order of integrations as

Z v2

v1

dv
Z 1

w1

dw !
Z 1

1��2
dw

Z ð1þtÞ=2

ð1�tÞ=2
dv; (A3)

where t2 ¼ 1� 4a=w. Furthermore, x8 defined in
Eq. (A2) can be represented as

x8 ¼ v2y8; y8 ¼ �w2 þ 4a

�
1

v
� w

�
; (A4)

so that we may substitute

vffiffiffiffiffi
x8

p ln

ffiffiffiffiffi
x8

p þ v �wffiffiffiffiffi
x8

p � v �w
¼ 1ffiffiffiffiffi

y8
p ln

ffiffiffiffiffi
y8

p þ �wffiffiffiffiffi
y8

p � �w
(A5)

in Eq. (A1).
Clearly, the ‘‘natural’’ replacement 	 ¼ 1=v renders y8

just linearly dependent on the new variable 	. As a con-
sequence, the integral in Eq. (A1) will be transformed as

I8
N

¼
Z 1

1��2
dwRðwÞ;

RðwÞ ¼
Z ðw=2aÞð1þtÞ

ðw=2aÞð1�tÞ
d	ffiffiffiffiffi
y8

p ln

ffiffiffiffiffi
y8

p þ �wffiffiffiffiffi
y8

p � �w
�e8ðx; wÞ;

(A6)

where �e8 � e8=	
2.

The next step is to replace the integration variable 	 by
the new integration variable z ¼ ffiffiffiffiffi

y8
p

, so that the square

root is removed from the logarithm. Thus, one obtains

RðwÞ ¼ 1

2a

Z ffiffiffiffiffi
yþ

p

ffiffiffiffiffi
y�

p dz ln
zþ �w

z� �w
�e8ðz; wÞ; (A7)

where y� ¼ 2wð1� t� 2aÞ þ �w2.
It is then convenient to split RðwÞ into the two parts as

RðwÞ ¼ RþðwÞ � R�ðwÞ; (A8)

R�ðwÞ ¼ 1

2a

Z ffiffiffiffiffi
yþ

p

ffiffiffiffiffi
y�

p dz lnðz� �wÞ �e8ðz; wÞ

¼ 1

2a

Z ffiffiffiffiffi
yþ

p � �wffiffiffiffiffi
y�

p � �w
dz� lnz� �e8ðz�; wÞ; (A9)

where z� ¼ z� �w, which induces a corresponding split of
the original integral I8=N:

I8
N

¼ IðþÞ
8 � Ið�Þ

8 : (A10)

After exchanging the order of integrations and performing
some algebraic manipulations, we obtain

Ið�Þ
8 ¼ 1

2a

Z 1þ�

1��
dz� lnz�

Z 1

w�
dw �e8ðz�; wÞ;

¼ 1

2a

Z �

��
dr� lnð1� r�Þ

Z �w�

0
d �w �e8ðr�; �wÞ; (A11)

where

z� ¼ 1� r�; w� ¼ ð1� r�Þ2
2ð1� r� � 2aÞ ;

�w� ¼ �2 � r2�
2ð1� r� � 2aÞ :

(A12)

It turns out the function �e8, when expressed in terms of
the new variables r�, is greatly simplified, and so is the
integration over the variable w. Performing the integrals in
Eq. (A11), most of the terms contained in �e8 yield har-
monic polylogarithms H and generalized Nielsen polylo-
garithms Sa;b. Only the most complicated terms of �e8 lead
to the structures A1ð�Þ and A2ð�Þ in Eq. (4.8).

APPENDIX B: COEFFICIENTS

Here, we list the coefficients cðjÞi appearing in Eq. (4.5).
They read
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cðjÞ1 ¼ �19�þ 41�3 þ
�
1þ 3

2
�þ 2�2 � 1

2
�3 þ �4

�
�2 � 4�ð1þ 2�2Þ lnð2�2Þ

þ j

�
�32�� 3

4

�
4þ �þ 4�2 � 3

4
�3

�
�2 þ 4�

�
7� 2

3þ �2

�
ln2þ 24� ln�

�
;

cðjÞ2;3 ¼ � 9

2
� 2�� 13�2 � 4�3 � 25

2
�4 þ 80

5� �2
þ 1

4�
ð2� �þ 2�2 þ 2�3 � 2�4 � �5 � 2�6Þ�2

þ 2

�
7þ �2 þ 4�4 � 24

3þ �2

�
ln2þ 8�2ð1þ �2Þ ln�þ j

�
9� 14�þ 7�2 � 40

5� �2
þ 4ð3� �Þ

3þ �2

þ 1

8�
ð8þ �þ 8�2 � 2�3 þ �5Þ�2 � 2

�
21þ 5�2 � 48

3þ �2
þ 48

ð3þ �2Þ2
�
ln2� 4ð5þ 3�2Þ ln�

�
;

cðjÞ4;7 ¼ �18� 9�� 10�2 þ 3�3 � 6�4 � 240

5� �2
� 320

ð5� �2Þ2 �
48

3þ �2

þ 1

2�
ð8� 3�þ 8�2 � 6�3 � 8�4 � 3�5 � 8�6Þ ln2þ 4

�
ð1þ �2 � �4 � �6Þ ln�

þ j

�
� 39

2
þ 9

2
�� 39

2
�2 � 3

2
�3 � 160

ð5� �2Þ2 �
160

5� �2
� 96

ð3þ �2Þ2 �
96

3þ �2

þ 1

4�
ð32� 29�þ 8�2 � 26�3 þ 8�4 � 15�5Þ ln2þ 8

�
ð1þ �2Þ ln�

�
;

cðjÞ5;6 ¼ �32� 9�� 8�2 þ 3�3 � 14�4 � 240

5� �2
� 320

ð5� �2Þ2 þ
1

2�
ð8� 3�þ 8�2 � 6�3 � 8�4 � 3�5 � 8�6Þ ln2

þ 4

�
ð1þ �2 � �4 � �6Þ ln�þ j

�
� 45

2
þ 9

2
�� 59

2
�2 � 3

2
�3 � 160

ð5� �2Þ2 �
160

5� �2

þ 1

4�
ð32� 29�þ 8�2 � 26�3 þ 8�4 � 15�5Þ ln2þ 8

�
ð1þ �2Þ ln�

�
;

cðjÞ8 ¼ �4� 16�2 � 12�4 þ 8jð4þ 3�2Þ;
cðjÞ9;16 ¼ 21� 1

�
� �þ 18�2 � �3 � 7�4 � �5 þ j

4�
ð�8� �� 26�2 � 34�3 � 6�4 þ 7�5Þ;

cðjÞ10;15 ¼ �18� 1

�
� �� 24�2 � �3 þ 10�4 � �5 þ j

4�
ð�8� 5�� 26�2 þ 46�3 � 6�4 � 13�5Þ;

cðjÞ11;14 ¼ � 33

2
� 5

�
� 5�� 27�2 � 5�3 þ 23

2
�4 � 5�5 þ j

2�
ð�20þ 12�� 17�2 þ 36�3 � �4 � 14�5Þ;

cðjÞ12;13 ¼
39

2
� 5

�
� 5�þ 21�2 � 5�3 � 17

2
�4 � 5�5 þ j

2�
ð�20� 15�� 17�2 � 30�3 � �4 þ 11�5Þ;

cðjÞ17 ¼ � 6

�
� 6�þ 6�3 þ 6�5 � 12j

�
ð1þ �2Þ;

cðjÞ18 ¼ cðjÞ17

3
;

cðjÞ19 ¼ 20þ 30�2 � 10�4 � 5j

4
ð7þ 14�2 � 5�4Þ;

cðjÞ20 ¼ � 3

4
þ 3

2
�2 � 3

4
�4 � 3j

8
ð15þ 6�2 � 5�4Þ;

cðjÞ21 ¼ � 11

�
� 15�þ 11�3 � �5 þ 2j

�
ð5� �2Þ: (B1)

APPENDIX C: BASIS FUNCTIONS

As was already mentioned in Sec. IV, all the Fi functions in Eq. (4.6) can be written in terms of Sn;p functions with

nþ p ¼ 2, 3 and some complicated arguments. The functions Fi with i ¼ 1; . . . ; 16 are written in terms of the standard
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harmonic polylogarithms of Remiddi and Vermaseren [13], and their representations in terms of Nielsen polylogarithms
may be found in Ref. [13]. The functions Fi ði ¼ 17; . . . ; 21Þ have the following forms:

F17 ¼ � lnx½Li2ð�Þ � Li2ð��Þ� � F18;

F18 ¼ ln�ln2x� 3�3 þ 2½’1ð1; xÞ � ’1ð�1; xÞ�;
F19 ¼ Fð1Þ

19 þ 2Fð2Þ
19 þ 2Fð3Þ

19 ;

Fð1Þ
19 ¼ � lnð5� b2Þ

�
2Li2ð�xÞ þ �2 þ 2 lnx lnð1þ xÞ � 1

2
ln2x

�
;

Fð2Þ
19 ¼ ln2

�
ln2

1þ �

2
� ln2

1� �

2

�
þ ’1

�
z�1 ;

1þ �

2

�
� ’1

�
z�1 ;

1� �

2

�
þ ’1

�
�zþ1 ;

1þ �

2

�
� ’1

�
�zþ1 ;

1� �

2

�
;

Fð3Þ
19 ¼ ln4

�
2Li2ð�xÞ þ �2 þ 1

2
ln2x

�
� 5

2
�3 þ 8S1;2ð�xÞ � 2’1ð�1; xÞ þ 2’2ð�z�2 ; xÞ � 2’2ð�zþ2 ; xÞ;

F20 ¼ Fð1Þ
20 þ 2Fð2Þ

20 ;

Fð1Þ
20 ¼ ln

3þ �2

4

�
ln2

1þ �

2
� ln2

1� �

2

�
;

Fð2Þ
20 ¼ 1

9
’1

�
�1;

�
1þ �

2

�
3
�
� 1

9
’1

�
�1;

�
1� �

2

�
3
�
� ’1

�
�1;

1þ �

2

�
þ ’1

�
�1;

1þ �

2

�
;

F21 ¼ �

2d

�
ln

1� �2

ðd� 1Þ2 F
ð1Þ
21 þ Fð2Þ

21

�
;

Fð1Þ
21 ¼ ln� ln
� 1

2
ln2
þ Li2ð�
Þ � Li2

�
�




�
� �2 � 2Li2ð�
Þ;

Fð2Þ
21 ¼ �3 � 5S1;2ð�
Þ þ 4S1;2

�
� 1




�
þ 2S1;2ð�Þ � 4S1;2ð�
Þ þ 2S1;2

�
�




�
þ 3�2 ln
� 5’2ð1; 
Þ þ ’2

�
1;
1




�

þ Re

�
S1;2

�
1

�

�
� S1;2

�



�

�
þ 2�

�
��;� 1

�

�
� 3�

�
�
�;�


�

�
þ�

�
� 1


�
;��




�
� 5’2

�
� 1

�
; 


�
þ ’2

�
� 1

�
;
1




��
;

(C1)

where

z�1 ¼
ffiffiffi
5

p � 1

2
; z�2 ¼ 3� ffiffiffi

5
p

2
; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� �2

q
; � ¼ d� 1

dþ 1
; 
 ¼ d� �

dþ �
: (C2)

The functions ’1 and ’2 are defined as

’1ð�; xÞ ¼
Z 1

x

dy

y
lny lnð1� �yÞ ¼ Li3ð�Þ � Li3ð�xÞ þ lnxLi2ð�xÞ;

’2ð�; xÞ ¼
Z 1

x

dy

y
lnð1þ yÞ lnð1þ �yÞ ¼ �ð1; �Þ ��ðx; �xÞ;

(C3)

where (see Eq. (3.15.4) of Ref. [10])

�ðA; BÞ ¼
Z 1

0

dy

y
lnð1þ AyÞ lnð1þ ByÞ

¼ S1;2ð�AÞ þ S1;2ð�BÞ � 1

2
ln2

A

B
lnð1þ BÞ þ ln

A

B

�
Li2

�
A� B

A

�
� Li2

�
A� B

Að1þ BÞ
��

� S1;2

�
A� B

A

�

þ S1;2

�
A� B

Að1þ BÞ
�
� S1;2

�
B� A

1þ B

�
: (C4)
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