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We point out how, in certain models of new physics, the same combination of couplings occurs in the

amplitudes for both D0- �D0 mixing and the rare decays D0 ! ‘þ‘�. If the new physics dominates and is

responsible for the observed mixing, then a very simple correlation exists between the magnitudes of each;

in fact the rates for the decayD0 ! ‘þ‘� are completely fixed by the mixing. Observation ofD0 ! ‘þ‘�

in excess of the standard model prediction could identify new physics contributions to D0- �D0 mixing.
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I. INTRODUCTION

Following many years of effort, there is now indisput-
able experimental evidence for D0- �D0 mixing. The current
values (the Heavy Flavor Averaging Group ‘‘no-CP-viola-
tion-allowed’’ fit [1]) of the D0 mixing parameters are

xD � �MD

�D

¼ 0:0100þ0:0024
�0:0026 and

yD � ��D

2�D

¼ 0:0076þ0:0017
�0:0018:

(1)

These show that (i) charm mixing occurs at about the
percent level, (ii) xD and yD are comparable in magnitude
and (iii) the signs of xD and yD are positive (although a
direct measurement of the sign of xD is yet to be made).

While it is quite likely that the observed mixing ampli-
tude is dominated by the standard model contributions, the
exact predictions are quite difficult.1 There are several
reasons for this [2–4]. For example, in the ‘‘short distance’’
approach [5] at leading order in the operator product
expansion (OPE) formalism (operators of dimension D ¼
6), the individual diagrams are Cabibbo-Kobayashi-
Maskawa (CKM)-suppressed to the level Oð�2Þ (� ’
0:22 is the familiar Wolfenstein parameter), hinting that
the observed charm mixing is a simple consequence of
CKM structure. This is, however, not correct because
severe cancellations between diagrams [even through
Oð�sÞ] greatly reduce the D ¼ 6 mixing to Oð10�6Þ
[3,4]. As for higher (D> 6) orders in OPE, it is true that
certain enhanced contributions have been identified [6,7],
but a definitive evaluation is lacking due to the large
number of D> 6 operators and the inability to determine
their matrix elements. A promising alternative approach
which involves a hadron-level description [8] may be able
to account for the observed magnitude of yD and xD, but

predicts their relative sign to be opposite. It is fair to say
that this is probably not the final word on the SM analysis.
Given the uncertain status of the SM description, it

would be tempting but premature [9] to attribute the ob-
served xD to new physics.2 But clearly, the possibility that
NP makes a significant or even dominant contribution to
the observed mixing is open. A recent comprehensive
treatment of NP models [14] shows that a large number
of such models can accommodate a value of xD at the
percent level. This encourages us to further explore the
NP option. In particular, new physics could affect charm-
related processes beyond mixing, such as rare decays [15].
Of special interest are the D0 ! ‘þ‘� decays. At present,
there are only the upper limits [16–19]

BD0!�þ�� � 1:3� 10�6;

BD0!eþe� � 1:2� 10�6;

and BD0!��e� � 8:1� 10�7;

(2)

all at C:L: ¼ 90%. In addition, there is a recent update
from the CDF Collaboration, BD0!�þ�� � 4:3� 10�7

[20]. Such branching fractions place bounds on possible
NP couplings, which can be compared with that obtained
from D0- �D0 mixing. In this paper we study the impact of
NP on the combined system of D0- �D0 mixing and the rare
decays D0 ! ‘þ‘�. It should be stressed that the SM rate
for the decay mode, BD0!�þ�� ’ 3� 10�13 can be esti-

mated fairly reliably even upon accounting for the effect of
long distance enhancement [21]. This smallness of the SM
signal makes it easier for NP contributions to stand out. In
this paper, we point out how, in certain NP models, the
same couplings occur in the amplitudes for both D0- �D0

mixing and D0 ! ‘þ‘� decay. If the NP effects are sig-

1Henceforth, we will make frequent use of the abbreviations
SM for standard model and NP for new physics.

2We will focus on xD in this paper. Not only does the SM
estimate for yD work reasonably well when long distance effects
are included [10], but it has also been shown that NP effects are
too small to have any significant impact [11–13].
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nificant in mixing, then a correlation will exist between the
magnitudes of each. In fact the correlation can be very
simple and striking, with the branching fraction BD0!‘þ‘�

being proportional to the mixing parameter xD.
For each NP model considered in this paper, we shall

make the simplifying assumption that the NP dominates
D0- �D0 mixing and then derive the correlated branching
fraction that is then predicted. Obviously, if NP does not
dominate, all our results for the branching fractions be-
come upper bounds.3 We shall stress the general issue of
which conditions allow for such correlations and give
specific examples. Finally, even if the number of parame-
ters in a given NP model is too large to give a unique
prediction for BD0!‘þ‘� in terms of xD (e.g., Z0 models,
etc.), we show in Secs. III B and III C how it is possible to
estimate the scale of BD0!‘þ‘� by using the value of xD as
input.

II. EFFECTIVE LAGRANGIANS

Heavy particles present in NP models are not produced
in final states of charm-quark decays. Yet, effects gener-
ated by exchanges of these new particles can be accounted
for in effective operators built out of the SM degrees of
freedom. That is, by integrating out degrees of freedom
associated with new interactions at a heavy scale M, we
obtain an effective Hamiltonian written in the form of a
series of operators of increasing dimension. Here, we
restrict our attention to the leading-order operators, of
dimension D ¼ 6. For both D0- �D0 mixing and D0 !
‘þ‘� decays, the complete basis of effective operators is
known and is expressed most conveniently in terms of
chiral quark fields:

hfjH NPjii ¼ G
X
i¼1

Cið�ÞhfjQijiið�Þ; (3)

where the prefactor G has the dimension of inverse-
squared mass, the Ci are dimensionless Wilson coeffi-
cients, and the Qi are the effective operators of dimension
six. Throughout, our convention for defining chiral projec-
tions for a field qðxÞ will be qL;RðxÞ � ð1� �5ÞqðxÞ=2.

For �C ¼ 2 processes, there are eight effective opera-
tors that can contribute [14,22]:

Q1 ¼ ð �uL��cLÞð �uL��cLÞ; Q2 ¼ ð �uL��cLÞð �uR��cRÞ;
Q3 ¼ ð �uLcRÞð �uRcLÞ; Q4 ¼ ð �uRcLÞð �uRcLÞ;
Q5 ¼ ð �uR���cLÞð �uR���cLÞ; Q6 ¼ ð �uR��cRÞð �uR��cRÞ;
Q7 ¼ ð �uLcRÞð �uLcRÞ; Q8 ¼ ð �uL���cRÞð �uL���cRÞ: (4)

These operators are generated at the scaleM where the NP
is integrated out. A nontrivial operator mixing then occurs
via renormalization group running of these operators be-

tween the heavy scale M and the light scale � at which
hadronic matrix elements are computed.
All possible NP contributions to c ! u‘þ‘� can be

similarly summarized. In this case, however, there are
now ten operators:

~Q1 ¼ ð �‘L��‘LÞð �uL��cLÞ; ~Q2 ¼ ð �‘L��‘LÞð �uR��cRÞ;
~Q3 ¼ ð �‘L‘RÞð �uRcLÞ; ~Q4 ¼ ð �‘R‘LÞð �uRcLÞ;
~Q5 ¼ ð �‘R���‘LÞð �uR���cLÞ; (5)

with five additional operators ~Q6; . . . ; ~Q10 being obtained,
respectively, from those in Eq. (5) by the substitutions L !
R and R ! L. The corresponding Wilson coefficients will

be denoted as ~Cið�Þ. It is worth noting that only eight

operators contribute to D0 ! ‘þ‘�, as h‘þ‘�j ~Q5jD0i ¼
h‘þ‘�j ~Q10jD0i ¼ 0.
To obtain a general expression for xD as implied by the

effective Hamiltonian of Eq. (3), we evaluate theD0-to- �D0

matrix element in the modified vacuum saturation approxi-
mation of the appendix and work at the light scale� ¼ mc,

xD ¼ G
f2DMDBD

�D

�
2

3
ðC1ðmcÞ þ C6ðmcÞÞ

�
�
1

2
þ �

3

�
C2ðmcÞ þ

�
1

12
þ �

2

�
C3ðmcÞ

� 5�

12
ðC4ðmcÞ þ C7ðmcÞÞ þ �ðC5ðmcÞ þ C8ðmcÞÞ

�
;

(6)

where we have taken Nc ¼ 3, and we remind the reader
that � is discussed in the appendix and the prefactor G
defines the scale at which NP is integrated out. To use this
expression one must relate the light-scale coefficients
fCiðmcÞg to their heavy-scale counterparts fCiðMÞg in terms
of the renormalization-group (RG)-running factors given
in the appendix.
The rare decays D0 ! ‘þ‘� and D0 ! �þe� are

treated analogously. To the decay amplitude

M ¼ �uðp�; s�Þ½Aþ B�5�vðpþ; sþÞ (7)

are associated the branching fractions

BD0!‘þ‘� ¼ MD

8��D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

‘

M2
D

s ��
1� 4m2

‘

M2
D

�
jAj2 þ jBj2�;

BD0!�þe� ¼ MD

8��D

�
1� m2

�

M2
D

�
2½jAj2 þ jBj2�; (8)

where electron mass has been neglected in the latter ex-
pression. Any NP contribution described by the operators
of Eq. (5) gives for the amplitudes A and B

3Here we implicitly assume that there are no significant
cancellations between the SM and NP contributions to mixing.
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jAj ¼ G
fDM

2
D

4mc

½ ~C3�8 þ ~C4�9�;

jBj ¼ G
fD
4

�
2m‘ð ~C1�2 þ ~C6�7Þ þM2

D

mc

ð ~C4�3 þ ~C9�8Þ
�
;

(9)

with ~Ci�k � ~Ci � ~Ck. In general, one cannot predict the
rare decay rate by knowing just the mixing rate, even if
both xD and BD0!‘þ‘� are dominated by a given NP
contribution. We shall see, however, that this is possible
for a restricted subset of NP models.

III. NP MODELS WITH TREE-LEVEL
AMPLITUDES

This is the most obvious situation for producing a cor-
relation between mixing and decay because there is a
factorization between the initial and final interaction ver-
tices. In the following, it will be convenient to consider
separately the propagation of a spin-1 boson V and of a
spin-0 boson S as the intermediate particle in the tree-level
amplitudes. The bosons V and S can be of either parity.

Spin-1 boson V.—Assuming that the spin-1 particle V
has flavor-changing couplings and keeping all the opera-
tors in the effective Lagrangian up to dimension 5, the most
general Lagrangian can be written as

H V ¼ H FCNC
V þH L

V; (10)

where the quark part H FCNC
V is

H FCNC
V ¼ gV1 �uL��cLV

� þ gV2 �uR��cRV
�

þ gV3 �uL���cRV
�� þ gV4 �uR���cLV

��

(11)

and the part that describes interactions of V with leptons
H L

V is

H L
V ¼ g0V1 �‘L��‘LV

� þ g0V2 �‘R��‘RV
�

þ g0V3 �‘L���‘RV
�� þ g0V4 �‘R���‘LV

��: (12)

Here V� is the vector field and V�� ¼ @�V� � @�V� is the

field-strength tensor for V�. For this study we assume that

V corresponds to an Abelian gauge symmetry group. The
generalization to the non-Abelian case is straightforward.
We will be working in the unitary gauge.
In order to see the leading contribution toDmixing from

Eq. (11), let us consider a correlator

�Dðq2Þ ¼ ð�iÞ
Z

d4xeiðq�pÞ�x

� h �D0ðpÞjTfH �C¼1ðxÞH �C¼1ð0ÞgjD0ðpÞi:
(13)

This correlator is related to the mass and lifetime differ-
ences of a D meson as [8]

�DðM2
DÞ ¼ 2MD

�
�MD � i

2
��D

�
: (14)

Inserting Eq. (11) for H �C¼1, we obtain

�Dðq2Þ ¼ ð�iÞ
Z

d4xeiðq�pÞ�xh0jTfV�ðxÞV�ð0Þgj0ih �D0ðpÞjg2V1 �uL��cLðxÞ �uL��cLð0Þ þ gV1gV2 �uL��cLðxÞ �uR��cRð0Þ
þ gV1gV2 �uR��cRðxÞ �uL��cLð0Þ þ g2V2 �uR��cRðxÞ �uR��cRð0Þ þOð1=MVÞjD0ðpÞi; (15)

where Oð1=MVÞ denotes terms additionally suppressed by
powers of 1=MV . The leading-order D ¼ 6 contribution is
found by expanding the vector boson propagator in the
large MV limit and then performing the resulting elemen-
tary integral

�DðM2
DÞ ¼

1

M2
V

h �D0ðpÞjg2V1Q1 þ 2gV1gV2Q2

þ g2V2Q6jD0ðpÞi: (16)

Taking into account RG running between the heavy scale
MV and the light scale � ¼ mc at which the matrix ele-
ments are computed, we obtain a subcase of the general
Eq. (6),

xðVÞD ¼ f2DMDBD

2M2
V�D

�
2

3
ðC1ðmcÞ þ C6ðmcÞÞ �

�
1

2
þ �

3

�
C2ðmcÞ

þ
�
1

12
þ �

2

�
C3ðmcÞ

�
; (17)

where the superscript on xðVÞD denotes propagation of a
vector boson in the tree amplitude. TheWilson coefficients
evaluated at scale � ¼ mc are

C1ðmcÞ ¼ rðmc;MVÞg2V1;
C2ðmcÞ ¼ 2rðmc;MVÞ1=2gV1gV2;
C3ðmcÞ ¼ 4

3½rðmc;MVÞ1=2 � rðmc;MVÞ�4�gV1gV2;
C6ðmcÞ ¼ rðmc;MVÞg2V2:

(18)

Similar calculations can be performed for the D0 !
‘þ‘� decay. The effective Hamiltonian in this case is

H ðVÞ
c!u‘þ‘� ¼ 1

M2
V

½gV1g0V1 ~Q1 þ gV1g
0
V2

~Q7 þ g0V1gV2 ~Q2

þ gV2g
0
V2

~Q6�; (19)

which leads to the branching fraction
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BðVÞ
D0!‘þ‘� ¼ f2Dm

2
‘MD

32�M4
V�D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

‘

M2
D

s

� ðgV1 � gV2Þ2ðg0V1 � g0V2Þ2: (20)

Clearly, Eqs. (17) and (20) can be related to each other only
for a specific set of NP models. We shall consider those
shortly.

Spin-0 boson S.—Analogous procedures can be fol-
lowed if now the flavor-changing neutral-current interac-
tion (FCNC) is generated by quarks interacting with spin-0
particles. Again, assuming that the spin-0 particle S has
flavor-changing couplings and keeping all the operators in
the effective Hamiltonian up to dimension five, we can
write the most general Hamiltonian as

H S ¼ H FCNC
S þH L

S ; (21)

where the quark FCNC part is given by

H FCNC
S ¼ gS1 �uLcRSþ gS2 �uRcLSþ gS3 �uL��cL@

�S

þ gS4 �uR��cR@
�S (22)

and the part that is responsible for the interactions of Swith
leptons is

H L
S ¼ g0S1 �‘L‘RSþ g0S2 �‘R‘LSþ g0S3 �‘L��‘L@

�S

þ g0S4 �‘R��‘R@
�S: (23)

Inserting this Hamiltonian into the correlator Eq. (13) and
performing steps similar to the spin-one case leads to

�DðM2
DÞ ¼ � 1

M2
S

h �D0ðpÞjg2S1Q7 þ 2gS1gS2Q3

þ g2S2Q4jD0ðpÞ: (24)

Evaluation at scale � ¼ mc gives

xðSÞD ¼ � f2DMDBD

2�DM
2
S

��
1

12
þ �

2

�
C3ðmcÞ

� 5�

12
ðC4ðmcÞ þ C7ðmcÞÞ þ �ðC5ðmcÞ þ C8ðmcÞÞ

�
;

(25)

with the Wilson coefficients defined as

C3ðmcÞ ¼ �2rðmc;MSÞ�4gS1gS2;

C4ðmcÞ ¼ �
��

1

2
� 8ffiffiffiffiffiffiffiffi

241
p

�
rþðmc;MSÞ

þ
�
1

2
þ 8ffiffiffiffiffiffiffiffi

241
p

�
r�ðmc;MSÞ

�
g2S2;

C5ðmcÞ ¼ � 1

8
ffiffiffiffiffiffiffiffi
241

p ½rþðmc;MSÞ � r�ðmc;MSÞ�g2S2;

C7ðmcÞ ¼ �
��

1

2
� 8ffiffiffiffiffiffiffiffi

241
p

�
rþðmc;MSÞ

þ
�
1

2
þ 8ffiffiffiffiffiffiffiffi

241
p

�
r�ðmc;MSÞ

�
g2S1;

C8ðmcÞ ¼ � 1

8
ffiffiffiffiffiffiffiffi
241

p ½rþðmc;MSÞ � r�ðmc;MSÞ�g2S1;

(26)

where for notational simplicity we have defined r� �
rð1�

ffiffiffiffiffiffi
241

p Þ=6 [cf. Eq. (A1)].
The effective Hamiltonian for the D0 ! ‘þ‘� decay is

H ðSÞ
c!u‘þ‘� ¼ � 1

M2
S

½gS1g0S1 ~Q9 þ gS1g
0
S2

~Q8 þ g0S1gS2 ~Q3

þ gS2g
0
S2

~Q4�; (27)

and from this, it follows that the branching fraction is

BðSÞ
D0!‘þ‘� ¼ f2DM

5
D

128�m2
cM

4
S�D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

‘

M2
D

s
ðgS1 � gS2Þ2

�
�
ðg0S1 þ g0S2Þ2

�
1� 4m2

‘

M2
D

�
þ ðg0S1 � g0S2Þ2

�
:

(28)

Note that if the spin-0 particle S only has scalar FCNC
couplings, i.e., gS1 ¼ gS2, no contribution to the D0 !
‘þ‘� branching ratio is generated at the tree level; the
nonzero contribution to rare decays is produced at the one-
loop level. This follows from the pseudoscalar nature of
the D meson.
If there are not one but several particles mediating those

processes (assuming that they all couple to quarks and
leptons), the above generic Lagrangians would need to be
modified. For example, in the spin-0 case, one would have
to replace giS with

P
kgikSk, where Sk are the mediating

fields. Similar corrections have to be performed in the case
of a bulk spin-1 boson.
Below, we consider generic models where the correla-

tions between theD0- �D0 mixing rates andD0 ! ‘þ‘� rare
decays can be found.

A. Heavy vectorlike quarks: Q ¼ þ2=3 singlet quark

Scenarios with heavy quarks beyond the three genera-
tions are severely constrained experimentally, if those
quarks have chiral couplings. We thus examine the case
where the heavy quarks are SUð2ÞL singlets (so-called
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vectorlike quarks) [23]. Here, we consider the charge
assignment Q ¼ þ2=3 for the heavy quark and then Q ¼
�1=3 in the next section. Weak isosinglets with Q ¼
þ2=3 occur in little Higgs theories [24,25] in which the
standard model Higgs boson is a pseudo-Goldstone boson,
and the heavy isosinglet T quark cancels the quadratic
divergences generated by the top quark when performing
quantum corrections to the mass of the Higgs boson. Weak
isosinglets with Q ¼ �1=3 appear in E6 grand unified
theories [26,27], with one for each of the three generations
(D, S, and B).

The presence of such quarks violates the Glashow-
Weinberg-Paschos naturalness conditions for neutral cur-
rents [28]. Since their electroweak quantum number as-
signments are different than those for the SM fermions,
flavor-changing neutral-current interactions are generated
in the left-handed up-quark sector. Thus, in addition to the
charged current interaction

L ðchÞ
int ¼ gffiffiffi

2
p V�i �u�;L��di;LW

�; (29)

there are also FCNC couplings with the Z0 boson [23],

L ðntlÞ
int ¼ g

2
ffiffiffi
2

p
cos	w

�ij �ui;L��uj;LZ
0�: (30)

Here, g is the SM SUð2Þ gauge coupling and V�i is a 4� 3
mixing matrix with� running over 1 ! 4, i ¼ 1 ! 3, with
the CKM matrix comprising the first 3� 3 block.

D0- �D0 mixing.—In this case, a tree-level contribution to
�MD is generated from Z0 exchange as shown in Fig. 1.
This is represented by an effective Hamiltonian at the scale
MZ as

H 2=3 ¼ g2

8cos2	wM
2
Z

�2
uc; Q1 ¼ GF�

2
ucffiffiffi
2

p Q1; (31)

where from unitarity,

�2
uc � ðV	

udVcd þ V	
usVcs þ V	

ubVcbÞ2: (32)

Thus, we find

xðþ2=3Þ
D ¼ 2GF�

2
ucf

2
DMDBDrðmc;MZÞ
3

ffiffiffi
2

p
�D

: (33)

Using rðmc;MZÞ ¼ 0:778 and demanding that the NP con-
tribution is responsible for the observed mixing value
yields �uc ¼ 2:39� 10�4.

D0 ! �þ�� decay.—For this case, the leptons have
SM couplings to the Z0. We then have

AD0!‘þ‘� ¼ 0; BD0!‘þ‘� ¼ �uc

GFfDm�

2
: (34)

Restricting our attention to the �þ�� final state because
the decay amplitude is proportional to lepton mass, we find

�2
uc � 8�BD0!�þ��

�D

MD

�
2

GFfDm�

�
2
�
1� 4m2

�

MD

��1=2
:

(35)

From the branching fraction bound of Eq. (2), we obtain
�uc � 4:17� 10�2, which is much less restrictive than the
value from D0 mixing.
Combining the mixing and decay relations.—A correla-

tion will exist in this case because the coupling between Z0

and the lepton pair is known from the standard model.
Thus, if we assume that all the D meson mixing comes

from the Q ¼ þ2=3 heavy quark (i.e., xðþ2=3Þ
D ¼ xD), then

we can remove the dependence on the NP parameter �uc

and predict BD0!�þ�� in terms of xD:

B D0!�þ�� ¼ 3
ffiffiffi
2

p
64�

GFm
2
�xD

BDrðmc;MZÞ
�
1� 4m2

�

MD

�
1=2

’ 4:3� 10�9xD � 4:3� 10�11: (36)

B. New gauge boson Z0

New heavy neutral gauge bosons can exist in a variety of
NPmodels [29]. In these scenarios, there are in general five
parameters that describe the two processes under consid-
eration here, namely, gZ01, gZ02, g

0
Z01, g

0
Z02, and MZ0 , where

the coupling constants are defined as in Eqs. (11) and (12)
by substituting V ! Z0. There are, of course, many ways to
reduce this number. In the following, let us assume that Z0
couples only to left-handed quarks and has SM-like diago-
nal couplings to leptons,

gZ02 ¼ 0; g0Z01 ¼
g

cos	W

�
� 1

2
þ sin2	W

�
;

g0Z02 ¼
gsin2	W
cos	W

;

(37)

where g is again the SM SUð2Þ gauge coupling. This
procedure reduces the number of unknowns to two, gZ01
and MZ0 . Note that for purely vector couplings of a Z0 to
leptons, i.e., g0Z01 ¼ g0Z02, no contributions are generated for

D0 ! �þ�� due to conservation of vector current.
D0- �D0 mixing.—The contribution of the Z0 model to

mixing is given by Eq. (17):

xðZ
0Þ

D ¼ f2DMDBDrðmc;MZ0 Þ
3�D

g2Z01
M2

Z0
: (38)

For the very-slowly varying RG factor, we have takenFIG. 1. (a) D0- �D0 mixing, (b) D0 ! �þ��.
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rðmc;MZ0 Þ ¼ 0:71, which is typical of values for a Z0 mass
in the TeV range. From Eq. (38), we obtain the bound
MZ0=gZ01 
 1:7� 106 GeV.

D0 ! �þ�� decay.—In this model, the contribution to
the rare decay branching fraction can be written in the form

B ðZ0Þ
D0!�þ�� ¼ GFf

2
Dm

2
�MD

16
ffiffiffi
2

p
��D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

M2
D

vuut g2Z01
M2

Z0
� M

2
Z

M2
Z0
: (39)

Besides the g2Z01=M
2
Z0 dependence which appears in the

above D mixing relation of Eq. (38), there is now an
additional factor of M2

Z=M
2
Z0 . The bound obtained from

Eq. (2) implies the restriction MZ0=g1=2
Z01 
 8:7102 GeV,

which is weaker than the constraint from D0- �D0 mixing.
Combining the mixing and decay relations.—Assuming

that Z0 saturates the observed experimental value for xD,
the bound obtained from the D0 ! �þ�� branching frac-
tion as a function of MZ0 is

B D0!�þ�� ¼ 3GFm
2
�M

2
ZxD

16
ffiffiffi
2

p
�BDrðmc;MZ0 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

‘

M2
D

s
1

M2
Z0

’ 2:4� 10�10ðxD=M2
Z0 ðTeVÞÞ

� 2:4� 10�12=M2
Z0 ðTeVÞ: (40)

Note that this equation can be generalized if one wishes to
retain the general couplings g0Z01 and g0Z02 in Eq. (37). The

dependence on the difference �Z0 ¼ g0Z01 � g0Z02 can be

read off Eq. (40) if one substitutes GF ! �2
Z0=

ffiffiffi
2

p
M2

Z.

C. Family (horizontal) symmetries

The gauge sector in the standard model has a large
global symmetry which is broken by the Higgs interaction
[30]. By enlarging the Higgs sector, some subgroup of this
symmetry can be imposed on the full SM Lagrangian and
break the symmetry spontaneously. This family symmetry
can be global as well as gauged [31]. If the new gauge
couplings are very weak or the gauge boson masses are
large, the difference between a gauged or global symmetry
is rather difficult to distinguish in practice. In general there
would be FCNC effects from both the gauge and scalar
sectors. Here we consider the gauge contributions.
Consider the group SUð2ÞG acting only on the first two

left-handed families [it may be regarded as a subgroup of
an SUð3ÞG, which is broken]. Spontaneous breaking of
SUð2ÞG makes the gauge bosonsGi massive. For simplicity
we assume that after symmetry breaking the gauge boson
mass matrix is diagonal to a good approximation in which
case Gi� are physical eigenstates and any mixing between

them is neglected. Leaving further discussion to
Refs. [14,21], we write down the couplings in the fermion
mass basis as

H hs ¼ �f½G1�fsin2	dð �dL��dL � �sL��sLÞ þ sin2	uð �uL��uL � �cL��cLÞ þ sin2	lð �eL��eL � ��L���LÞ
þ cos2	dð �dL��sL þ �sL��dLÞ þ cos2	uð �uL��cL þ �cL��uLÞ þ cos2	lð �eL���L þ ��L��eLÞg
þ iG2�fð�sL��dL � �dL��sLÞ þ ð �cL��uL � �uL��cLÞ þ ð ��L��eL � �eL���LÞg
þG3�fcos2	dð �dL��dL � �sL��sLÞ þ cos2	uð �uL��uL � �cL��cLÞ þ cos2	lð �eL��eL � ��L���LÞ
� sin2	dð �dL��sL þ �sL��dLÞ � sin2	uð �uL��cL þ �cL��uLÞ � sin2	lð �eL���L þ ��L��eLÞg�: (41)

Applications of this general interaction yield expressions
for D0- �D0 mixing,

xðFSÞD ¼ 2f2DMDBDrðmc;MÞ
3�D

f2
�
cos22	u

m2
1

þ sin22	u
m2

3

� 1

m2
2

�
;

(42)

for D0 ! �þ�� decay,

B ðFSÞ
D0!�þ�� ¼ MDf

2
Dm

2
�

64��D

f4
�
sin2	u cos2	‘

m2
3

� cos2	u sin2	‘
m2

1

�
2
; (43)

and for D0 ! �þe� decay,

B ðFSÞ
D0!�þe� ¼ MDf

2
Dm

2
�

64��D

f4
�
cos2	u cos2	‘

m2
1

þ 1

m2
2

þ sin2	u sin2	‘
m2

3

�
2
: (44)

In Eq. (42) the very-slowly varying RG factor rðmc;MÞ is
set to the scale M� 1 TeV.
Precise predictions for the above three processes are not

immediate due to the large number of NP parameters.
Different patterns can be obtained depending on the region
of parameter space:
Case A [m1 ¼ m3 � m2 and 	u � 	‘ ¼ �=4].—Here,

BðFSÞ
D0!�þe� is suppressed and a relation of BD0!�þ�� in

terms of xD occurs:
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B D0!�þ�� ¼ 9�Dm
2
�x

2
D

256�MDf
2
DB

2
Drðmc;m1Þ2

’ 0:7� 10�14x2D � 0:7� 10�18: (45)

Note that here we related the BD0!�þ�� to the square of

xD.
Case B [m1 ¼ m2 ¼ m3 and 	u � 	‘ ¼ �=2].—In this

case, the amplitudes for all three processes vanish.
Case C [m1 ¼ m2 and 	u ¼ 0, 	‘ ¼ �=4].—Now, the

mixing contribution vanishes but the branching fractions
for D0 ! �þ�� and D0 ! �þe� are equal, although
undetermined due to NP parameter dependence.

Case D [m1 ¼ m3 
 m2].—In this limit, D0 ! �þ��
is negligible and there is a parameter-free prediction for
BD0!�þ�� in terms of xD, but xD has the wrong sign.

IV. NP MODELS WITH LOOP AMPLITUDES

Although tree amplitudes represent the most obvious
situation for producing a correlation between mixing and
decay, it turns out that loop amplitudes can have the same
effect. As is well known [32], low energy effective
Lagrangians continue to provide the most useful descrip-
tion. In the following, we consider three examples of NP
models with loop amplitudes.

A. Heavy vectorlike quarks: Q ¼ �1=3 singlet quark

We first consider models with a heavy vectorlike Q ¼
�1=3 singlet quark. Note that essentially identical results
hold for a SM fourth quark generation as well, since in each
case, the fermions will interact with a SMW� gauge boson
and thus the charged leptons have SM interactions [33]. It
is this which allows for correlations between D0- �D0 mix-
ing and D0 ! ‘þ‘� decay.

For the class of models with Q ¼ �1=3 down-type
singlet quarks, the down-quark mass matrix is a 4� 4
array if there is just one heavy singlet (or 6� 6 for three
heavy singlets as in E6 models). As a consequence, the
standard 3� 3 CKM matrix is no longer unitary.
Moreover, the weak charged current will now contain
terms that couple up quarks to the heavy singlet quarks.
For three heavy singlets, we have

L ðchÞ
int ¼ gffiffiffi

2
p Vi�W

� �ui;L��D�; (46)

where ui;L � ðu; c; tÞL and D� � ðD; S; BÞ refer to the

standard up-quark and heavy isosinglet down-quark sec-
tors. The fVi�g are elements of a 3� 6matrix, which is the
product of the 3� 3 and 6� 6 unitary matrices that di-
agonalize the Q ¼ þ2=3 and Q ¼ �1=3 quark sectors,
respectively.

D0- �D0 mixing.—The box diagram contribution to �MD

from these new quarks is displayed in Fig. 2. Assuming that
the contribution of one of the heavy quarks (say, the S
quark, of massmS) dominates, one can write an expression

for xD [33]:

jxð�1=3Þ
D j ’ G2

FM
2
Wf

2
DMD

6�2�D

BDðV	
cSVuSÞ2rðmc;MWÞj �EðxSÞj;

(47)

where xS � ðmS=MWÞ2. The Inami-Lim [32] function
�EðxSÞ is defined as

�EðxSÞ � xS

�
1

4
� 9

4ðxS � 1Þ �
3

2ðxS � 1Þ2

þ 3x3S
2ðxS � 1Þ3 lnxS

�
: (48)

For our numerical work, we assume a default value of
mS ¼ 500 GeV, but express our result for variable mS by
noting that the functions �EðxSÞ and �CðxSÞ [cf. Eq. (53)
below] are proportional to xS within 10% over the mass
region 400 � mS ðGeVÞ � 700. The light-heavy mixing
angles jV	

cSVuSj2 should go as 1=mS for large mS to keep

the contribution under control. The current bound on
jV	

cSVuSj2 from unitarity of the CKM matrix is not very

stringent: jV	
cSVuSj2 < 4� 10�4 [16].

In the E6-based model proposed by Bjorken, Pakvasa,
and Tuan [34], the 6� 6 mass matrix has an especially
simple form. The resulting 6� 6 mass matrix has a
pseudo-orthogonality property which implies that the 3�
3 CKM matrix, although not unitary, satisfies

X3
i¼1

ðVCKMÞ	ibðVCKMÞis ¼ 0: (49)

The analog of this condition in the up-quark sector does not
hold, and as a result, there are no new FCNC effects in the
down-quark sector. For the CKM elements participating in
D0- �D0 mixing, the prediction is now (recall capital letter-
ing is used to denote the heavy quark)

jV	
cSVuSj2 ¼ s22jV	

csVusj2 ’ s22�
2; (50)

where jV	
csVusj ’ � ’ 0:22 and s2 is the (small) mixing

parameter describing the mixing between the light s quark

and the heavy S quark. Thus, we rewrite jxð�1=3Þ
D j in the

modified form

jxð�1=3Þ
D j ’ G2

FM
2
Wf

2
DMD

6�2�D

BDs
2
2�

2rðmc;MWÞj �EðxSÞj: (51)

uc

u c

W

W

DD

FIG. 2. Box contribution from heavy weak-isosinglet quarks.
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D0 ! �þ�� decay.—For D0 ! �þ��, the effective
Lagrangian is given in Eq. (2.2) of Ref. [32]:

L eff ¼ G2
FM

2
W

�2
�CðxSÞ�s2 ~Q1; (52)

where

�CðxSÞ � xS
4
� 3xS

4ðxS � 1Þ �
3

4

�
xs

xS � 1

�
2
lnxS: (53)

In this model, the D0 ! �þ�� branching fraction be-
comes

B D0!�þ�� ¼
MD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

m2
�

M2
D

r
ðGFMwÞ4 � ðs2�fDm�

�CðxSÞÞ2
32�5�D

:

(54)

Combining the mixing and decay relations.—If we
eliminate s22 from the mixing and decay relations, we
obtain

BD0!�þ�� ¼ 6

32�3
�
xD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�=M
2
D

q
ðm�GFMW

�CðxSÞÞ2
BDrðmc;MWÞj �EðxSÞj

’ 1:0� 10�9xD

�
mS

500 GeV

�
2

� 1:0� 10�11

�
mS

500 GeV

�
2
: (55)

B. Minimal supersymmetric standard model

We next consider the minimal supersymmetric standard
model (MSSM) with unbroken R parity. Conservation of R
parity implies that only pairs of sparticles can be produced
or exchanged in loops. We will assume that neither squarks
nor gluinos are decoupled [direct collider searches for
squark and gluino pair production place the bound m~q;g *

330 GeV [16] in the MSSM with minimal gravity medi-
ated supersymmetry (SUSY) breaking], so the MSSM can
in principle give a dominant contribution to the processes
under consideration here.

We will not assume any particular SUSY-breaking
mechanism, and hence parameterize all possible soft
SUSY-breaking terms. We work in the so-called super-
CKM basis, where flavor violation is driven by nondiago-
nal squark mass insertions (see [14] for a discussion of this
mechanism in D0- �D0 mixing). In this case, the squark-
quark-gluino couplings are flavor conserving, while the
squark propagators are expanded to include the nondiago-
nal mass terms. The 6� 6 mass matrix for the Q ¼ þ2=3
squarks can be divided into 3� 3 submatrices

~M 2 ¼ ~M2
LL

~M2
LR

~M2T
LR

~M2
RR

� �
; (56)

and the mass insertions can be parameterized in a model-
independent fashion as

ð
ijÞMN ¼ ðVM
~M2Vy

NÞij
m2

~q

: (57)

Here, i and j are flavor indices, M and N refers to the
helicity choices LL, LR, and RR, and m~q represents the

average squark mass. The squark-gluino loops with mass
insertions are by far the largest supersymmetric contribu-
tion to D0- �D0 mixing and can dominate the transition. The
effective Hamiltonian relevant for this contribution to
D0- �D0 mixing is given by

H mix
MSSM ¼ �2

s

2m2
~q

X8
i¼1

Ciðm~qÞQi; (58)

where all eight operators contribute in the MSSM.
Evaluating the Wilson coefficients at the SUSY scale gives

C1ðm2
~qÞ ¼ 1

18ð
u
12Þ2LL½4xf1ðxÞ þ 11f2ðxÞ�;

C2ðm2
~qÞ ¼ 1

18fð
u
12ÞLRð
u

12ÞRL15f2ðxÞ
� ð
u

12ÞLLð
u
12ÞRR½2xf1ðxÞ þ 10f2ðxÞ�g;

C3ðm2
~qÞ ¼ 1

9fð
u
12ÞLLð
u

12ÞRR½42xf1ðxÞ � 6f2ðxÞ�
� ð
u

12ÞLRð
u
12ÞRL11f2ðxÞg;

C4ðm2
~qÞ ¼ 1

18ð
u
12Þ2RL37xf1ðxÞ;

C5ðm2
~qÞ ¼ 1

24ð
u
12Þ2RLxf1ðxÞ;

C6ðm2
~qÞ ¼ 1

18ð
u
12Þ2RR½4xf1ðxÞ þ 11f2ðxÞ�;

C7ðm2
~qÞ ¼ 1

18ð
u
12Þ2LR37xf1ðxÞ;

C8ðm2
~qÞ ¼ 1

24ð
u
12Þ2LRxf1ðxÞ;

(59)

where x � m2
~g=m

2
~q, with m~g being the mass of the gluino.

The equations above are symmetric under the interchange
L $ R. These contributions to xD are found to be large
[14], and the observation of D mixing constrains the mass
insertions to be at the percent level, or less, for TeV-scale
sparticles.
We now examine the squark-gluino contribution to rare

decays, which proceeds through Z penguin diagrams for
on-shell leptons. The relevant c ! u‘þ‘� Lagrangian is
given, for example, in Ref. [21]. Electromagnetic current
conservation forbids the contribution of the photonic pen-
guin diagram for on-shell leptons in the final state. In

addition, the vector leptonic operator �‘��‘ also does not

contribute for on-shell leptons as p
�
Dð �‘��‘Þ ¼

ðp�

‘þ þ p
�
‘�Þð �‘��‘Þ ¼ 0. The effective Hamiltonian is

then given by

H rare
MSSM ¼ � 4GFffiffiffi

2
p e2

16�2
½c10ð �‘���5‘Þð �uL��cLÞ

þ c010ð �‘���5‘Þð �uR��cRÞ�; (60)

where c10 and c010 are given by [35]
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c10 ¼ � 1

9

�s

�
ð
u

22ÞLRð
u
12ÞRLP032;

c010 ¼ � 1

9

�s

�
ð
u

22ÞRLð
u
12ÞLRP122:

(61)

P032;122 are kinematic loop functions and are defined in the

above reference. The double mass insertion is required to
induce a helicity flip in the squark propagator. Because of
this double mass insertion, this contribution to D ! ‘þ‘�
is completely negligible. We note that the chargino con-
tribution to the Z penguin for D ! ‘þ‘� also contains a
double mass insertion. The leading MSSM contribution to
this rare decay is thus most likely mediated by a box
diagram with squark-chargino-sneutrino exchange. This
precludes a relation to D0- �D0 mixing.

Finally, we note that in contrast to the Bs system [36],
D ! ‘þ‘� does not receive a sizable contribution from
Higgs boson exchange with large tan�. This is because in
this case, the loop-induced term to the Yukawa couplings is
proportional to vd (i.e., the vacuum expectation value
(VEV) of the Higgs doublet that generates masses for the
down-type quarks) which is the smaller of the two VEVs
and hence does not compensate for the small loop factor.

C. R parity violating supersymmetry

Finally, we consider supersymmetry with R-parity vio-
lation (RPV). We refer the reader to Refs. [14,21] for
discussions and earlier references of RPV-SUSY relevant
to this paper. Suffice it to say that the lepton number
violating RPV-SUSY interactions can be expressed as

W�0 ¼ ~�0
ijkfVjl½~�i

L
�dkRd

l
L þ ~dlL �d

k
R�

i
L þ ð~dkRÞ	ð ��i

LÞcdlL�
� ~eiL

�dkRu
j
L � ~ujL

�dkRu
j
L � ð~dkRÞ	ð �eiLÞcujLg; (62)

in terms of the coupling parameters f~�0
ijkg. The generation

indices denote the correspondences i , leptons or slep-
tons, j , up-type quarks and k , down-type quarks or
squarks.

D0- �D0 mixing.—As described at the high mass scale by
the effective Hamiltonian

H Rp
¼ 1

128�2
ð~�0

i2k
~�0
i1kÞ2

�
1

m2
~‘L;i

þ 1

m2
~dR;k

�
Q1; (63)

this implies constraints on the product of couplings
~�0
i2k

~�0
i1k. Here, we have assumed that only one set of the

R-parity violating couplings ~�0
i2k

~�0
i1k is large and domi-

nant. This is equivalent to saying that, e.g., both the slep-
tons and both the down-type quarks being exchanged in the
first contribution to the box diagram of Fig. 3 are from the
same generation. In general, this need not be the case and
the coupling factor would then be the product
~�0
i2k

~�0
m1k

~�0
m2n

~�0
i1n, with, e.g., the set of ~‘L;i, dR;k, ~‘L;m,

dR;n being exchanged. Computing the evolution to the

charm-quark scale yields

H Rp
¼ 1

2m2
~dR;k

C1ðmcÞQ1; (64)

with C1ðmcÞ ¼ rðmc;m~qÞC1ðm~qÞ. The mixing contribution

from the R-parity violating ~�0 terms then implies

ð~�0
i2k

~�0
i1kÞ2 ¼

192�2�Dm
2
~dR;k

ð1þ �Þf2DMDBDrðmc;m~qÞ
xD; (65)

where � � m2
~dR;k

=m2
~‘L;i
. For definiteness, we shall scale the

results to the value m~dR;k
¼ 300 GeV, so that

~� 0
i2k

~�0
i1k ¼ 0:0053 � m~dR;k

300GeV
�

ffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ �

s
�

ffiffiffiffiffiffiffiffiffi
xD
0:01

r
: (66)

D0 ! �þ�� decay.—In RPV-SUSY, the underlying
transition for D0 ! �þ�� is cþ �u ! �þ þ�� via
tree-level d-squark exchange. The coupling constant de-
pendence for D0 ! ‘þ‘� would therefore generally in-

volve ~�0
i2k

~�0
i1k. For the specific mode D0 ! �þ��, we

take i ¼ 2 to get ~�0
22k

~�0
21k. The effective Hamiltonian of

Eq. (74) in Ref. [21], but with ‘ ! �, reads


H eff ¼ �
~�0
22k

~�0
21k

2m2
~dkR

~Q1: (67)

This leads to the branching fraction

B
6Rp

D0!�þ�� ¼ f2Dm
2
�MD

�D

�
1� 4m2

�

M2
D

�
1=2 ð~�0

22k
~�0
21kÞ2

128�m4
~dk

;

(68)

and so the constraint

ð~�0
22k

~�0
21kÞ2 � BD0!�þ��

128�m4
~dk

f2Dm
2
�

�D

MD

�
1� 4m2

�

MD

��1=2
;

(69)

which reads numerically

~� 0
22k

~�0
21k � 0:088

� m~dk

300 GeV

�
2
: (70)

Combining the mixing and decay relations.—Note the

mixing constraint involves ~�0
i2k

~�0
i1k, whereas the decay

constraint has ~�0
22k

~�0
21k. If the i ¼ 2 case dominates, then

FIG. 3. Contributions to D0- �D0 mixing from the �0 superpo-
tential terms in supersymmetric models with R-parity violation.

RELATING D0- �D0 MIXING AND . . . PHYSICAL REVIEW D 79, 114030 (2009)

114030-9



we arrive at the prediction (here we set � ¼ 1)

B
6Rp

D0!�þ�� ¼ 3�m2
�½1� 4m2

�=MD�1=2xD
4m2

~dk
BDrðmc;m~qÞ

’ 4:8� 10�7xD

�
300 GeV

m~dk

�
2

� 4:8� 10�9

�
300 GeV

m~dk

�
2
: (71)

V. CONCLUSIONS

The search for new physics will in general involve many
experiments, including the measurement of rare decay
branching fractions and observation of particle-antiparticle
mixing. Such experiments are essentially competitors,
each seeking to be the first to indirectly detect physics
beyond the standard model. At any given point, which
measurements are more sensitive to new physics must be
determined on a case by case basis. Our earlier work of
Ref. [14] already pointed out that the observed D0- �D0

signal imposes severe limits for a large number of new
physics models. If the D0- �D0 mixing is dominated by one
of those new physics contributions, what does it imply for
rare decays such as D0 ! �þ��? Not only have we been
able to answer this question in several specific scenarios,
but we find a striking correlation in some of the models,
wherein the branching fraction for the decay mode D0 !
�þ�� is completely fixed in terms of the mixing parame-
ter xD.

For convenience we have gathered our results in Table I.
For all but one case (family symmetry), we find the NP
branching fraction exceeds the SM branching fraction. All
the NP branching fractions are, however, well below the
current experimental bounds of Eq. (2). Anticipating future
improvements in sensitivity, the first NP model to be con-
strained will be R-parity violating supersymmetry. This
will require lowering of the current bound by a factor of
a few hundred.
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APPENDIX: RG RUNNING AND MIXING MATRIX
ELEMENTS

NP contributions are affected by RG running. The rele-
vant 8� 8 anomalous dimension matrix, derived to next-
to-leading order in Ref. [22], is applied to LO here (see also
Ref. [14]) to yield the Wilson coefficients

C1ð�Þ ¼ rð�;MÞC1ðMÞ;
C2ð�Þ ¼ rð�;MÞ1=2C2ðMÞ;

C3ð�Þ ¼ rð�;MÞ1=2 2C2ðMÞ
3

þ rð�;MÞ�4

�
�
C3ðMÞ � 2C2ðMÞ

3

�
;

C4ð�Þ ¼ rð�;MÞð1þ
ffiffiffiffiffiffi
241

p Þ=6
��

1

2
� 8ffiffiffiffiffiffiffiffi

241
p

�
C4ðMÞ

� 30C5ðMÞffiffiffiffiffiffiffiffi
241

p
�
þ rð�;MÞð1�

ffiffiffiffiffiffi
241

p Þ=6

�
��

1

2
þ 8ffiffiffiffiffiffiffiffi

241
p

�
C4ðMÞ þ 30C5ðMÞffiffiffiffiffiffiffiffi

241
p

�
;

C5ð�Þ ¼ rð�;MÞð1þ
ffiffiffiffiffiffi
241

p Þ=6
��

1

2
þ 8ffiffiffiffiffiffiffiffi

241
p

�
C5ðMÞ þ C4ðMÞ

8
ffiffiffiffiffiffiffiffi
241

p
�

þ rð�;MÞð1�
ffiffiffiffiffiffi
241

p Þ=6
��

1

2
� 8ffiffiffiffiffiffiffiffi

241
p

�
C5ðMÞ

� C4ðMÞ
8

ffiffiffiffiffiffiffiffi
241

p
�
;

(A1)

where (presuming that M>mt)

rð�;MÞ ¼
�
�sðMÞ
�sðmtÞ

�
2=7

�
�sðmtÞ
�sðmbÞ

�
6=23

�
�sðmbÞ
�sð�Þ

�
6=25

: (A2)

Regarding the remaining Wilson coefficients, C6 runs
analogous to C1 and C7;8 run analogous to C4;5. The

presence of operator mixing in Eq. (A1) is a consequence
of the nondiagonal structure of the anomalous dimension
matrix.
We also need to evaluate the D0-to- �D0 matrix elements

of the eight dimension-six basis operators. In general, this
implies eight nonperturbative parameters that would have

TABLE I. Predictions for D0 ! �þ�� branching fraction for
xD � 1%. Experimental upper bound is a compilation from [16].

Model BD0!�þ��

Experiment � 1:3� 10�6

Standard model (SD) �10�18

Standard model (LD) �several� 10�13

Q ¼ þ2=3 vectorlike singlet 4:3� 10�11

Q ¼ �1=3 vectorlike singlet 1� 10�11ðmS=500 GeVÞ2
Q ¼ �1=3 fourth family 1� 10�11ðmS=500 GeVÞ2
Z0 standard model (LD) 2:4� 10�12=ðMZ0 ðTeVÞÞ2
Family symmetry 0:7� 10�18 (case A)

RPV-SUSY 4:8� 10�9ð300 GeV=m~dk
Þ2
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to be evaluated by means of QCD sum rules or on the
lattice. We choose those parameters (denoted by fBig) as
follows:

hQ1i ¼ 2
3f

2
DM

2
DB1; hQ2i ¼ �5

6f
2
DM

2
DB2;

hQ3i ¼ 7
12f

2
DM

2
DB3; hQ4i ¼ � 5

12f
2
DM

2
DB4;

hQ5i ¼ f2DM
2
DB5; hQ6i ¼ 2

3f
2
DM

2
DB6;

hQ7i ¼ � 5
12f

2
DM

2
DB7; hQ8i ¼ f2DM

2
DB8;

(A3)

where hQii � h �D0jQijD0i, and fD represents the D meson
decay constant. By and large, the compensatory B factors
fBig are unknown, except in vacuum saturation and in the
heavy quark limit; there, one has Bi ! 1.

Since most of the matrix elements in Eq. (A3) are not
known, we will need something more manageable in order
to obtain numerical results. The usual approach to comput-
ing matrix elements is to employ the vacuum saturation
approximation. However, because some of the B parame-
ters are known, we introduce a ‘‘modified vacuum satura-
tion’’, where all matrix elements in Eq. (A3) are written in
terms of (known) matrix elements of ðV � AÞ � ðV � AÞ
and ðS� PÞ � ðSþ PÞ matrix elements BD and BðSÞ

D :

hQ1i ¼ 2

3
f2DM

2
DBD;

hQ2i ¼ f2DM
2
DBD

�
� 1

2
� �

Nc

�
;

hQ3i ¼ f2DM
2
DBD

�
1

4Nc

þ �

2

�
;

hQ4i ¼ � 2Nc � 1

4Nc

f2DM
2
DBD�;

hQ5i ¼ 3

Nc

f2DM
2
DBD�;

hQ6i ¼ hQ1i; hQ7i ¼ hQ4i; hQ8i ¼ hQ5i;

(A4)

where we take Nc ¼ 3 as the number of colors and define

� � BðSÞ
D

BD

�M
2
D

m2
c

: (A5)

In our numerical work, we take
(1) BD ¼ 0:82, which is the most recent result from the

quenched lattice calculation [37].

(2) For �, we use BðSÞ
D ’ BD [37] so that � ’ M2

D=m
2
c ’

2.
(3) Regarding the decay constant fD, there is now good

agreement [38] between determinations from QCD-

lattice simulations fðlattÞD ¼ 0:207ð4Þ GeV and vari-

ous experiments fðexptÞD ¼ 0:206ð9Þ GeV. For defi-
niteness, we adopt the value fD ¼ 0:207 GeV.
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