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We calculate the isoscalar axial-vector coupling constants of the � hyperon using the method of QCD

sum rules. A determination of these coupling constants reveals the individual contributions of the u, d, and

the s quarks to the spin content of �. Our results for the light-quark contributions are in agreement with

those from experiment assuming flavor SU(3). We also find that the flavor-SU(3)-breaking effects are

small and the contributions from the u and the d quarks to the� polarization are negatively polarized as in

the flavor-SU(3) limit.
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I. INTRODUCTION

According to data from polarized lepton-nucleon deep
inelastic scattering (DIS) which was initially reported by
the EMC Collaboration [1] and confirmed subsequently by
several other experiments [2–4], only a small fraction of
the nucleon spin is carried by the valence quarks. This
observation has triggered many research activities and
puzzles in understanding the spin content of the nucleon
(see, e.g., Refs. [5,6] for a review). In this respect, it has
been realized that the polarized �, having all spin carried
by the s quark while the u-d quark pair is coupled to S ¼ 0,
I ¼ 0, provides a special example in the naive quark
model. Contrary to the naive expectations, the interpreta-
tion of the experimental data together with the SUð3ÞF
symmetry is that �60% of the � spin is carried by the s
(and �s) quark, while �� 40% originates from u (and �u)
and d (and �d) quarks [7]. One important aspect of this
interpretation is that the u-d quark pair has negative polar-
ization. Actually, this result is supported by some model-
dependent approaches as well (see the Appendix). An
investigation of this interesting issue has the potential to
shed light on the ‘‘spin crisis’’ and therefore attracted
considerable attention [7–12]. Experimentally, the polar-
ization of � is of special interest because it can be easily
measured from the nonleptonic decay � ! p� [13–17].

One open question in this framework is how sensitive the
� spin structure to SUð3ÞF breaking effects is. While it is
claimed that the SUð3ÞF breaking may lead to a change in
the sign of the u- and the d-quark polarizations in � [11],
lattice [12], and some model-dependent works [10] find
that � is insensitive to SUð3ÞF breaking. The isoscalar (gqA
and gsA), octet (g

q
8) and singlet (gq0) axial-vector coupling

constants of � [shown generically as gA � gAðq2 ¼ 0Þ
throughout the text] can be expressed in terms of the frac-

tional contributions of the quark flavors, �q, to the � spin
content as

gqA ¼ �uþ �d; gsA ¼ �s;

g8A ¼ �uþ �d� 2�s; g0A ¼ �uþ �dþ �s;
(1)

in the SUð3ÞF limit. Therefore, a determination of these
coupling constants reveals the spin content of �.
Our primary aim in this paper is to calculate the isoscalar

coupling constants gqA and gsA. For this purpose we use the
method of QCD sum rules (QCDSR) [18–21]. Note that
this is reminiscent of the works in Refs. [22–28], where the
axial-vector coupling constants of the nucleon have been
calculated. Using this method, we also extract the contri-
butions of the u and the d quarks to � spin content in the
SUð3ÞF-breaking case in order to see how sensitive the
results are to symmetry-breaking effects.
We have organized our paper as follows: In Sec. II we

derive the QCD sum rules for gA and give numerical
analysis and the results in Sec. III. Finally, we conclude
in Sec. IV.

II. FORMULATION

We start with the correlation function of two � inter-
polating fields in the presence of an external constant axial-
vector field Z�, defined by

i
Z

d4xeip�xh0jT ½��ðxÞ ���ð0Þ�j0iZ
¼ �ðpÞ þ Z ��ZðpÞ þOðZ2Þ: (2)

This correlation function is computed by adding the term

�L ¼ �X
q

gq �qZ6 �5q; (3)

to the usual QCD Lagrangian, where gq is the coupling of

the quark field to the external field and we use the notation
Z6 ¼ Z���.
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The most general � interpolating field is defined as a
mixture of two independent local operators via the mixing
parameter t:

�� ¼ �
ffiffiffi
2

3

s
�abcf2½uTaC�5db�sc þ ½uTaC�5sb�dc

� ½dTaC�5sb�uc þ tð2½uTaCdb��5sc þ ½uTaCsb��5dc

� ½dTaCsb��5ucÞg; (4)

where a, b, c are the color indices, T denotes transposition
and C ¼ i�2�0. The choice t ¼ �1 gives the Ioffe’s cur-
rent, which is often used in QCDSR calculations. In our
numerical analysis, we take t ¼ �1:2 which produces the
optimal interpolating field [29]. In Eq. (2), �ðpÞ is the
correlation function when the external field is absent and
corresponds to the function that is used to determine the �
mass, while �ZðpÞ represents the linear response of the
correlator to a small external axial-vector field Z�. In the

presence of an external axial-vector field, Lorentz invari-
ance of the vacuum is broken and new vacuum condensates
appear as

h �q���5qiZ ¼ gqZ��h �qqi; (5)

h �qgc ~G���
�qiZ ¼ gqZ��h �qqi; ~G�� ¼ 1

2���	
G
	
;

(6)

which are defined in terms of the susceptibilities � and �
with the QCD coupling-constant squared g2c ¼ 4�	s.

We can bring the correlation function in Eq. (2) into the
form

�ðpÞ ¼ �1ðp2Þ þ�2ðp2Þp6 ; (7)

Z ��ZðpÞ ¼ �Z
1 ðp2ÞiZ��

��p��5 þ�Z
2 ðp2ÞZ � pp6 �5

þ�Z
3 ðp2ÞZ6 �5: (8)

The operator product expansion (OPE) sides of the sum
rules are obtained by inserting the interpolating field (4)
into the correlation function (2) and evaluating the time-
ordered contractions of quark fields, which include the
quark propagators [22,23,25]. On the OPE side, we include
the terms up to dimension 8. The perturbative-correction
terms in order of 	s may become important especially at
the lower Borel-mass region but they are expected to give
smaller contribution to the sum rule we choose to work
with (see Sec. III) [29]. Therefore these correction terms
are neglected in this work. The phenomenological side is
obtained via a dispersion relation, which is written in terms
of hadron degrees of freedom. Finally, the QCD sum rules
are constructed by matching the OPE sides with the phe-
nomenological sides and applying the Borel transforma-
tion. The details of this procedure can be found in the
extensive literature on QCDSR. Omitting the details, here
we give the final forms of the sum rules for gA as obtained
at three different Lorentz-Dirac structures:

iZ��
��p��5: ½C1aqM

4E0L
2=9 þ C2ms�aqM

4E0L
�8=9 þ C3�a

2
qM

2 þ C4�a
2
qL

�32=81 þ C5�m
2
0a

2
qL

�14=27

þ C6aqbþ C7msa
2
q� e

m2
�
=M2

~�2
�m�

¼ ðgA þ AM2Þ; (9)

Z � pp6 �5:

�
C0
1M

6E1L
�4=9 þ C0

2�aqM
4E0L

�4=9 þ C0
3�aqM

2L�68=81 þ C0
4bM

2L�4=9 þ C0
5msaqM

2L�4=9 þ C0
6a

2
qL

4=9

þ C0
7�aqbL

�4=9 þ C0
8ms�a

2
qL

�4=9 þ C0
9ms�

a2q

M2
L�68=81

�
em

2
�
=M2

~�2
�

¼ ðgA þ A0M2Þ; (10)

Z6 �5: ½C
�
1M

8E2L
�4=9 þ C

�
2�aqM

6E1L
�4=9 þ C

�
3�aqM

4E0L
�68=81 þ C

�
4bM

4E0L
�4=9 þ C

�
5msaqM

4E0L
�4=9

þ C
�
6a

2
qM

2L4=9 þ C
�
7�aqbM

2L�4=9 þ C
�
8ms�a

2
qM

2L�4=9 þ C
�
9ms�a

2
qL

�68=81� em
2
�
=M2

~�2
�ðM2 � 2m2

�Þ
¼ ðgA þ A

�
M2Þ;

(11)

where we have defined
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C1 ¼ �ðt� 1Þ
18

½ðgu þ gdÞð5tþ 1Þ þ gsðtþ 3Þf�;

C2 ¼ �ðt� 1Þ2
12

ðgu þ gdÞ;

C3 ¼ �ðt� 1Þ
18

½ðgu þ gdÞ½ðf� 5Þt� ðfþ 1Þ� þ 2gsðtþ 5Þf�;

C4 ¼ ðt� 1Þ
324

½ðgu þ gdÞ½ð13f� 47Þtþ ð5� 13fÞ� þ 2gsð47� 5tÞf�;

C5 ¼ ðt� 1Þ
144

½ðgu þ gdÞ½�ð3fþ 7Þt� ð5fþ 3Þ� þ 2gsðtþ 5Þf�;

C6 ¼ �ðt� 1Þ
1296

½ðgu þ gdÞð11tþ 7Þ þ gsð35tþ 37Þf�;

C7 ¼ ðt� 1Þ
54

ðgu þ gdÞ½2ðt� 1Þ þ ð5tþ 1Þf�;

(12)

C0
1 ¼ 1

24½ð5t2 þ 26tþ 5Þðgu þ gdÞ þ ð11t2 þ 14tþ 11Þgs�;
C0
2 ¼ 1

18½�2ðt2 þ 7tþ 1Þðgu þ gdÞ þ ðt� 1Þ2fgs�;
C0
3 ¼ � 1

108½ð29t2 þ 50tþ 29Þðgu þ gdÞ þ 2ð13t2 þ 10tþ 13Þfgs�;
C0
4 ¼ 1

96½ðt� 1Þ2ðgu þ gdÞ þ ð13t2 þ 10tþ 13Þgs�;
C0
5 ¼ � 1

36½ð5tþ 1Þ½4ðt� 1Þ þ 3ðtþ 5Þf�ðgu þ gdÞ�;

C0
6 ¼ �ðt� 1Þ

27
½ð10ftþ tþ 2f� 1Þðgu þ gdÞ þ ð2ftþ 33tþ 10fþ 39Þgs�;

C0
7 ¼ 1

432½ð7t2 þ 4tþ 7Þðgu þ gdÞ þ ðt� 1Þ2fgs�;
C0
8 ¼ 1

9½ðt2 þ 7tþ 1Þfðgu þ gdÞ�;
C0
9 ¼ 1

243½½ð7fþ 10Þt2 þ ð13f� 8Þtþ 7f� 2�ðgu þ gdÞ�;

(13)

C
�
1 ¼ 1

24
½ð5t2 þ 26tþ 5Þðgu þ gdÞ þ ð11t2 þ 14tþ 11Þgs�;

C
�
2 ¼ 1

18
½�ð5t2 þ 8tþ 5Þðgu þ gdÞ � 2ð19t2 þ 16tþ 19Þfgs�;

C
�
3 ¼ 1

36
½½ð25t2 � 14tþ 25�ðgu þ gdÞ þ 2ð41t2 þ 26tþ 41Þfgs�;

C
�
4 ¼ 1

96
½ðt� 1Þ2ðgu þ gdÞ þ ð13t2 þ 10tþ 13Þgs�;

C
�
5 ¼ �ð5tþ 1Þ

12
½½5fþ tðfþ 4Þ � 4�ðgu þ gdÞ�;

C
�
6 ¼ �ðt� 1Þ

27
½½ð4fþ tð20f� 1Þ þ 1�ðgu þ gdÞ þ ½tð33� 2fÞ � 10fþ 39�gs�;

C
�
7 ¼ � 1

216
½ð5t2 � tþ 5�ðgu þ gdÞ þ 2ð10t2 þ 7tþ 10�fgs�;

C
�
8 ¼ 1

18
½½ð3fþ 10Þt2 þ 4ð3f� 2Þtþ 3f� 2�ðgu þ gdÞ�;

C
�
9 ¼ 1

162
½½ð7fþ 10Þt2 þ ð13f� 8Þtþ 7f� 2�ðgu þ gdÞ�:

(14)

HereM is the Borel mass and the overlap amplitude is defined via h0j��j�ðpÞi ¼ ��
ðpÞ [
ðpÞ is the Dirac spinor for �
with momentum p] with ~�2

� ¼ 32�4�2
�. We have also defined the quark condensate aq ¼ �ð2�Þ2h �qqi, and the quark-
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gluon–mixed condensate h �qgc� �Gqi ¼ m2
0h �qqi. The

flavor-symmetry breaking is accounted for by the factor
f ¼ h �ssi=h �qqi. The continuum contributions are included
via the factors

En � 1�
�
1þ xþ . . .þ xn

n!

�
e�x; (15)

with x ¼ w2=M2, where w is the continuum threshold. The
corrections that come from the anomalous dimensions of
various operators are included with the factors L ¼
logðM2=�2

QCDÞ= logð�2=�2
QCDÞ, where � is the renormal-

ization scale and �QCD is the QCD scale parameter.

III. RESULTS

In principle one can use any of the three sum rules to
calculate gA, however, not all of them work equally well
due to continuum effects and insufficient OPE conver-
gence. For the calculation of the nucleon axial-vector
coupling constants, the sum rule at the structure Z � pp6 �5

has been favored over the others in the literature. On the
other hand, it has been found in Ref. [28] that this sum rule
fails to have a valid Borel region whereas the sum rule at
the structure iZ��

��p��5 satisfies OPE convergence and

pole dominance, therefore has a valid Borel window.
The valid Borel regions are determined so that the

highest-dimensional operator contributes no more than
about 10% to the OPE side, which gives the lower limit
and ensures OPE convergence. The upper limit is deter-
mined using a restrictive criterion such that the continuum-
plus-excited-state contributions are less than about 30% of
the phenomenological side, which is imposed so as to
warrant the pole dominance. Using these criteria we have
similarly found that the sum rule in (9) has a valid Borel
window while those in (10) and (11) are seriously conta-
minated by continuum contributions. Therefore we choose
to work with the sum rule at the structure iZ��

��p��5

in (9). In order to obtain the corresponding sum rules for
gqA (gsA) we set gu ¼ gd ¼ 1 (gu ¼ gd ¼ 0) and gs ¼ 0
(gs ¼ 1).

We determine the uncertainties in the extracted parame-
ters via the Monte Carlo-based analysis introduced in
Ref. [29]. In this analysis, randomly selected, Gaussianly
distributed sets are generated from the uncertainties in the
QCD input parameters. Here we use aq ¼ 0:52�
0:05 GeV3, b � hg2cG2i ¼ 1:2� 0:6 GeV4, m2

0 ¼ 0:72�
0:08 GeV2, and �QCD ¼ 0:15� 0:04 GeV. The flavor-

symmetry breaking parameter and the mass of the s quark
are taken as f � h �ssi=h �uui ¼ 1 and ms ¼ 0, respectively,
in the SUð3ÞF limit. In the SUð3ÞF-broken case, we take
these parameter values as f ¼ 0:83� 0:05 and ms ¼
0:11� 0:02 GeV. The values of the vacuum susceptibili-
ties have been estimated in Refs. [22,27,30,31]. We con-
sider the values �aq ¼ 0:60 GeV2 and �aq ¼ 0:05 GeV4

for gqA and gsA. The continuum threshold is taken as w ¼

1:5 GeV in the SUð3ÞF limit and as w ¼ 1:7 GeV in the
SUð3ÞF-breaking case.
For normalization of the sum rule (9), we use the chiral-

odd mass sum rule, which is obtained using the invariant
function �1ðp2Þ as follows:
~C1aqM

4E1 þ ~C2m
2
0aqM

2E0 þ ~C3aqbþ ~C4msM
6E2

þ ~C5msa
2
q þ ~C6msbM

2E0 ¼
~�2
�

2
m�e

�m2
�
=M2

; (16)

where

Ĉ1 ¼ �ðt� 1Þ
12

½11fþ 10þ ð13fþ 2Þt�;

Ĉ2 ¼ ðt� 1Þ
24

½7fþ 11þ ð11fþ 7Þt�;

Ĉ3 ¼ �ðt� 1Þ
288

½13fþ 2þ ð11fþ 10Þt�;

Ĉ4 ¼ �ðt� 1Þ
12

ð13tþ 11Þ;

Ĉ5 ¼ 1

18
½3ð5t2 þ 2tþ 5Þ þ ðt� 1Þðtþ 5Þf�;

Ĉ6 ¼ �ðt� 1Þ
96

ð11tþ 13Þ:

(17)

Note that the chiral-odd mass sum rule has been found to
be more reliable than the chiral-even one [29].
We first concentrate on the sum rules for the isoscalar

coupling constants gqA and gsA in the SUð3ÞF limit. The

Monte Carlo-based analyses of the sum rules are per-
formed by first fitting the mass sum rule (16) to simulta-

neously obtain m� and ~��, and the obtained value for the
overlap amplitude is used in the sum rules of gA for each
corresponding parameter set. In Fig. 1, we plot the left-
hand and the fitted right-hand sides of the sum rules (9) in
their valid Borel regions. The bands show the errors as
obtained from the Monte Carlo-based analysis.
Our numerical results are given in Table I. For compari-

son, we also give the coupling constants from SUð3ÞF
assuming hNj�s���5sjNi ¼ 0, and those from DIS data

assuming SUð3ÞF relations given as gqA ¼ 2=3ð��DÞ
and gsA ¼ 1=3ð�þ 2DÞ, where � is equivalent to the

flavor-singlet axial-vector coupling constant, g0A. The value
we obtain for gqA in QCDSR, namely gqA ¼ �0:37� 0:13,
is in nice agreement with the experimental result, while gsA
lies slightly lower.
The SUð3ÞF-breaking effects are accounted for by re-

storing the physical values of the parameters ms and f in
the sum rules (9) and (16). We consider only the sum rule
for gqA since the susceptibilities associated with this cou-

pling are unaffected with SUð3ÞF breaking. We apply a

similar procedure as above where we obtain ~�� from the
mass sum rule in (16) with the SUð3ÞF-breaking effects and
this value is used in the sum rules of gA for each corre-
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sponding parameter set. In Fig. 2, we plot the left-hand and
the fitted right-hand side of the sum rule (9) for gqA in the

SUð3ÞF-broken case. We obtain gqA ¼ �0:29� 0:22,
which is consistent with the value obtained in the SUð3ÞF
limit. This implies that the SUð3ÞF-breaking effects are
small and the contributions from the u and the d quarks
to the � polarization are negatively polarized as in the
SUð3ÞF limit.

IV. CONCLUSION

In conclusion, we have calculated the isoscalar axial-
vector coupling constants of � using the method of
QCDSR. This information reveals the individual contribu-
tions of the u, d, and s quarks to the spin content of �. We
have found that in the SUð3ÞF limit our results for gqA are in

agreement with expectations based on experiment assum-
ing SUð3ÞF symmetry while the value we obtain for gsA
slightly deviates from the empirical one. We have also
analyzed the isoscalar coupling gqA with SUð3ÞF breaking

effects and have found that the light-quark contributions
remain mainly unaffected and negatively polarized as in
the SUð3ÞF limit.
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APPENDIX

A simple model for the � baryon is that it is contami-
nated by� baryon together with a � having orbital angular
momentum L ¼ 1 in order to conserve parity. In the naive
quark model the� is composed of a u-d quark pair coupled
to S ¼ 1 and a s quark with S ¼ 1=2. In this picture, the
quark-spin configurations of � are given as

j�ðþ1=2Þi ¼
ffiffiffiffiffiffiffiffi
2=3

p
j½ud�ðþ1Þ; sð�1=2Þi

�
ffiffiffiffiffiffiffiffi
1=3

p
j½ud�ð0Þ; sðþ1=2Þi; (A1)

j�ð�1=2Þi ¼ � ffiffiffiffiffiffiffiffi
2=3

p j½ud�ð�1Þ; sðþ1=2Þi
þ ffiffiffiffiffiffiffiffi

1=3
p j½ud�ð0Þ; sð�1=2Þi; (A2)

using the appropriate Clebsch-Gordan coefficients.
Similarly, the �-� mixed state is written as

TABLE I. The isoscalar (gqA and gsA) axial-vector coupling
constants of � as obtained from QCDSR. For comparison, we
also give the coupling constants from naive SUð3ÞF assuming
hNj�s���5sjNi ¼ 0 [denoted by SUð3ÞF½naive�], and those from

DIS data assuming SUð3ÞF [denoted by SUð3ÞF½DIS�], which are
obtained by inserting � ¼ 3F�D and � ¼ 0:33 (central value
as reported by the HERMES Collaboration [4]), respectively,
into the SUð3ÞF relations. As for the SUð3ÞF parameters we use
F=D ¼ 0:575 and FþD ¼ 1:269 [32].

gA SUð3ÞF½naive� SUð3ÞF½DIS� QCDSR

gqA �0:15 �0:32 �0:37� 0:13
gsA 0.73 0.65 0:51� 0:11
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FIG. 2 (color online). Same as Fig. 1 but for gqA in the
SUð3ÞF-broken case.
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FIG. 1 (color online). The left-hand (solid red curves) and the
fitted right-hand (dotted lines) sides of the sum rules (9) for gqA
and gsA in their valid Borel regions. The bands show the errors as

obtained from the Monte Carlo-based analysis and the diamonds
mark the values based on expectations from experimental results
assuming SUð3ÞF.
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j�; �; J ¼ 1=2i ¼ �
ffiffiffiffiffiffiffiffi
2=3

p
j�ð�1=2Þ; L�ðþ1Þi

þ ffiffiffiffiffiffiffiffi
1=3

p j�ðþ1=2Þ; L�ð0Þi: (A3)

Inserting the spin configurations in Eqs. (A1) and (A2) into
Eq. (A3), we obtain

j�; �; J ¼ 1=2i ¼ 2=3j½ud�ð�1Þ; sðþ1=2Þ; L�ðþ1Þi
� ffiffiffi

2
p

=3j½ud�ð0Þ; sð�1=2Þ; L�ðþ1Þi
þ ffiffiffi

2
p

=3j½ud�ðþ1Þ; sð�1=2Þ; L�ð0Þi
� 1=3j½ud�ð0Þ; sðþ1=2Þ; L�ð0Þi: (A4)

It is then straightforward to calculate the spin probabilities
of the u-d quark pair in the �-� mixed state as 2=9, 3=9,
and 4=9 corresponding to ½ud�ðþ1Þ, ½ud�ð0Þ, and ½ud�ð�1Þ
configurations, respectively, which results in an expecta-
tion value of �2=9 for the spin of the u-d pair.
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