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We estimate the energy of the lowest charmonium and upsilon states with hybrid admixtures using the

method of QCD sum rules. Our results show that the �0ð2SÞ and �ð3SÞ states both have about a 50%

admixture of hybrid and meson components. From this we find explanations of both the famous �� �

puzzle for charmonium and the unusual pattern of � decays that have been found in � decays. Moreover,

this picture can be used for predictions of heavy quark production with the octet model for RHIC.
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I. INTRODUCTION

There is great interest in studying states with active glue,
such as hybrid mesons, a color singlet composed of a
quark-antiquark in a color octet and a gluon, in order to
better understand nonperturbative QCD. Recently we have
used the method of QCD sum rules in an attempt to find the
lowest hybrid charmonium state [1]. Our conclusion was
that the physical states with active glue must be mixed
states, with both charmonium and hybrid charmonium
components. In the present work we use QCD sum rules
for JPC ¼ 1�� vector states to find the lowest mixed
meson-hybrid meson states for both charmonium and up-
silon systems.

In addition to the importance of finding states with
active glue, we are motivated by several experimental
considerations. First, the ratio of hadronic decays of the
charmonium �0ð2SÞ compared to the J=�ð1SÞ state is
more than an order of magnitude smaller than predicted
by perturbative QCD (PQCD), the so-called �� � puzzle,
which was discussed at length in Ref. [1]. Second, the
�ðnSÞ states have an unusual pattern of decays into two
pions, which also cannot be consistent with PQCD [2],
which we call the Vogel �ð�n ¼ 2Þ puzzle. Third, our
theory of heavy quark states provides a basis for the color
octet model predictions of RHIC heavy quark production
[3,4].

In Sec. II we discuss the motivation for the present work
on mixed heavy quark and hybrid mesons. In Sec. III we
review the method of QCD sum rules, the work in Ref. [1]
on hybrid charmonium, and apply the method of QCD sum
rules for mixed meson-hybrid meson charmonium and
upsilon states. In Sec. IV we discuss our solution to the
�� � puzzle, the Vogel �ð�n ¼ 2Þ puzzle, and applica-
tions of our mixed hybrid states for the RHIC search for the
QCD phase transition via heavy quark state production. In
Sec. V we review our conclusions.

II. HEAVY QUARK PUZZLES AND RHIC
EXPERIMENTS

First let us look at the lowest charmonium and upsilon
(nS) states (Fig. 1):

Note that the separation in energy between the c 0ð2SÞ
and J=c ð1SÞ states is nearly the same as the separation
energy of the �ð2SÞ and the �ð1SÞ states. This will be
important for our studies of heavy quark hybrids, but turns
out to be misleading.

A. The �� � puzzle

The �� � puzzle for c �c 1�� states is based on the two
diagrams for PQCD and electromagnetic decay of such
states, shown in Fig. 2. By taking ratios the wave functions
at the origin cancel, and this predicts the ratio of branching
ratios for c �c decays into hadrons (h)

R ¼ Bð�0ð2SÞ ! hÞ
BðJ=�ð1SÞ ! hÞ ¼

Bð�0ð2SÞ ! eþe�Þ
BðJ=�ð1SÞ ! eþe�Þ ’ 0:12;

(1)

the famous 12% rule.
The �� � puzzle: The �0ð2SÞ to J=� ratios for �� �

and other hadron decays are more than an order of magni-
tude smaller than predicted by Eq. (1). Many theorists have
tried and failed to explain this puzzle. See Ref. [5] for a
review. This and more recent attempts at a solution are also
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FIG. 1. Lowest nS charmonium and upsilon states.
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discussed in Ref. [1], and all agree that previous work has
not produced a solution for this puzzle.

B. The sigma decays of �ðnSÞ states puzzle
The puzzle of sigma decays of b �b 1�� (�ðnSÞ) states is

given by the following. The sigma is a low-energy broad
two-pion scalar resonance. Experiments on �ðnSÞ states
find [2]

�ð2SÞ ! �ð1SÞ þ 2� has a large branching ratio, but
no �

�ð3sÞ ! �ð1SÞ þ 2� has a large branching ratio to �
�n ¼ 2, emit �
�n � 2, no � emitted.
This is the Vogel �n ¼ 2 puzzle, which cannot be

understood using perturbative QCD, as expected for heavy
bottomium states.

C. The octet model for RHIC and hybrids

The major goal of modern RHIC (Relativistic Heavy Ion
Collision) experiments is to produce and study the quark-
gluon plasma (QGP) which existed in the early universe
before the QCD phase transition, about 10�5 seconds after
the big bang. One important signal of this QGP is the
production of heavy quark (charmonium and upsilon)
states via q �q interactions in the early universe. The most
natural mechanism is q �q ! g ! Q �Q, in which an octet q �q
produces an octet Q �Q, which is just PQCD, followed by
the nonperturbative (NPQCD) process in which the octet
Q �Q becomes a singletQ �Q with the emission of a gluon (or
other color octet). This is depicted in Fig. 3:

The nonperturbative matrix elements for the transition
from the color octet hQ �Qð8Þj state to a color singlet� state,
h0jO�

8 j0i in the notation of Ref. [6], have been determined

by fits to experiments using the octet model [6]. As we
shall see, our determination of mixed heavy quark and
heavy quark hybrid mesons will provide a mechanism for
predicting these NPQCD matrix elements.

III. MIXED HEAVY QUARK HYBRID HEAVY
QUARK 1�� STATES AND QCD SUM RULES

In this section we review the method of QCD sum rules,
review our previous application of this method to attempt
to find the lowest-energy hybrid charmonium 1�� state,
and present our new application of the QCD sum rule
method to find the lowest-energy mixed charmonium and
upsilon states with hybrids.

A. Method of QCD sum rules

The starting point of the method of QCD sum rules [7]
for finding the mass of a state A is the correlator,

�AðxÞ ¼ hjT½JAðxÞJAð0Þ�ji; (2)

with ji the vacuum state and the current JAðxÞ creating the
states with quantum numbers A:

JAðxÞji ¼ cAjAi þ
X
n

cnjn;Ai; (3)

where jAi is the lowest-energy state with quantum numbers
A, and the states jn;Ai are higher energy states with the A
quantum numbers, which we refer to as the continuum.
The QCD sum rule is obtained by evaluating �A in two

ways. First, after a Fourier transform to momentum space,
a dispersion relation gives the left-hand side (lhs) of the
sum rule:

�ðqÞAlhs ¼
Im�AðMAÞ
�ðM2

A � q2Þ þ
Z 1

so

ds
Im�AðsÞ
�ðs� q2Þ ; (4)

whereMA is the mass of the state A (assuming zero width)
and so is the start of the continuum—a parameter to be
determined. The imaginary part of�AðsÞ, with the term for
the state we are seeking shown as a pole (corresponding to
a �ðs�M2

AÞ term in Im�), and the higher-lying states
produced by JA shown as the continuum, is illustrated in
Fig. 4:
Next �AðqÞ is evaluated by an operator product expan-

sion (OPE), giving the right-hand side (rhs) of the sum rule

�ðqÞArhs ¼
X
k

ckðqÞh0jOkj0i; (5)

where ckðqÞ are the Wilson coefficients and h0jOkj0i are
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FIG. 2. Perturbative QCD and em diagrams for Q �Qð1��Þ
decays.

qq(octet)

QQ (singlet)

gluon (8)

QQ(8)

Perturbative QCD Nonperturbative QCD

FIG. 3. Octet model for production of heavy quark mesons.

M so

continuum

Gap
fit to continuum

A

Im

2

Π (s)][

s

FIG. 4. QCD sum rule study of a state A with mass MA (no
width).
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gauge invariant operators constructed from quark and
gluon fields, with increasing k corresponding to increasing
dimension of Ok. It is important to note that the Wilson
coefficients, ckðqÞ obey renormalization group equations
[8].

After a Borel transform, B, in which the q variable is
replaced by the Borel mass, MB,

B ¼ lim
q2;n!1

1

ðn� 1Þ! ðq
2Þn

�
� d

dq2

�
n
��������q2=n¼M2

B

: (6)

The final QCD sum rule, B�AðqÞðLHSÞ ¼ B�AðqÞ�
ðRHSÞ, has the form
1

�
e�M2

A
=M2

B þB
Z 1

so

Im½�AðsÞ�
�ðs� q2Þ ds ¼ B

X
k

cAk ðqÞh0jOkj0i:

(7)

This sum rule and tricks are used to find MA, which
should vary little with MB. A gap between M2

A and so is
needed for accuracy. If the gap is too large, the solution is
unphysical, which is important for our present work, as we
discuss below.

B. Hybrid charmonium

Here we give a brief review of the calculation of the
correlator and the results for the QCD sum rule for a pure
hybrid charmonium 1�� state, which could possibly be the
�0ð2SÞ. The current JHH (which we called JH in Ref. [1])
for a heavy quark hybrid meson with JPC ¼ 1�� is

J�HH ¼ ����G
���; (8)

where � is the heavy quark field, �� ¼ C��, �� is the
usual Dirac matrix, C is the charge conjugation operator,
and the gluon color field is

G�� ¼ X8
a¼1

�a

2
G��

a ; (9)

with �a the SU(3) generator (Tr½�a�b� ¼ 2�ab). The cor-
relator

���
HHðxÞ ¼ h0jT½J�HHðxÞJ�HHð0Þ�j0i; (10)

after a Fourier transform, was evaluated using the leading
two operators in the operator product expansion, shown in
Figs. 5 and 6. The scalar correlator �S is defined by
���ðpÞ ¼ ðp�p�=p

2 � g��Þ�VðpÞ þ ðp�p�=p
2Þ�SðpÞ.

The leading term in the OPE for �S
HH, �

S
1HH, corre-

sponds to the diagram in Fig. 5. It is quite complicated, and
the result is given in Ref. [1]. After the Borel transform,
�S

1HHðMBÞ is given in the appendix, Eq. (A1).

The second order term, corresponding to the operator
with a gluon condensate shown in Fig. 6, has a scalar part
�S

2HHðMBÞ given in the appendix, Eq. (A2).
In Ref. [1] a solution to the QCD sum rule was found for

a charmonium hybrid state at the mass of �0ð2SÞ, from

which one would at first conclude that the�0ð2SÞ is a pure
hybrid 1�� meson. However, in order to satisfy the crite-
rion that the solution is almost independent of the Borel
mass a value of so ¼ 60:0 GeV2 was needed. This would
imply that the next excited state was 7 to 8 GeV, which is
not consistent with the first state at only 3.66 GeV. Note
that lattice QCD calculations found the first charmonium
hybrid at about 1 GeV higher than our solution [9,10],
which is also consistent with the �0ð2SÞ not being a pure
hybrid.
This result, as well as the heavy quark puzzles and RHIC

experiments discussed in Sec. II, were the main motivation
for the present work, in which we seek a solution for a
mixed charmonium and hybrid charmonium state.

C. Mixed charmonium-hybrid charmonium states

Recognizing that there is strong mixing between a heavy
quark meson and a hybrid heavy quark meson with the
same quantum numbers (as shown below), and the fact that
our pure hybrid charmonium solution was not a physical
state, we now attempt to find the lowest JPC ¼ 1�� char-

FIG. 6. Gluon condensate term in sum rule.

FIG. 5. Lowest-order term in sum rule.
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monium state with a sizable admixture of a charmonium
meson and a hybrid charmonium meson. An appropriate
mixed vector (JPC ¼ 1��) charmonium, hybrid charmo-
nium current to use in QCD sum rules is

J� ¼ bJ
�
H þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
J
�
HH (11)

with

J
�
H ¼ �qac�

�qac; (12)

where J
�
H is the standard current for a 1�� charmonium

state, and J
�
HH is the heavy charmonium hybrid current

given above in Eqs. (8) and (9).
Therefore the correlator for the mixed state:

�
��
H-HHðxÞ ¼ h0jT½J�ðxÞJ�ð0Þ�j0i (13)

is

�
��
H-HHðxÞ ¼ b2�

��
H ðxÞ þ ð1� b2Þ���

HHðxÞ
þ 2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
���

HHHðxÞ;
���

H ðxÞ ¼ h0jT½J�HðxÞJ�Hð0Þ�j0i;
���

HHðxÞ ¼ h0jT½J�HHðxÞJ�HHð0Þ�j0i;
���

HHHðxÞ ¼ h0jT½J�HðxÞJ�HHð0Þ�j0i: (14)

For heavy quarks the gluon condensate is proportional to
the quark condensate, and the renormalization group equa-
tions for the Wilson coefficients of the operator product
expansions of �H, �HH, and �HHH are similar for the
terms considered here [8].

The heavy hybrid correlator, ���
HHðq2Þ was presented in

the previous section. The operator product expansion for
the standard heavy quark correlator,�

��
H ðq2Þ (rhs) is given

by the diagrams shown in Fig. 7.
The leading term for the quark correlator in momentum

space, with MC the charm quark mass, is

���
H1ðpÞ ¼ g2v

Z d4k

ð2�Þ4 Tr½SðkÞ��
5 Sðp� kÞ��T

5 �;

SðkÞ ¼ 6kþMC

k2 �M2
C

; ��
5 ¼ ���5:

(15)

Noting that the charmonium quark condensate is very
small, and that the gluon condensate term and all higher-
dimensional terms are also small, ���

H1ðpÞ dominates the

heavy quark correlator, ���
H ðpÞ. Carrying out the momen-

tum integral in Eq. (15) and extracting the scalar correlator
we find

�S
HðpÞ ¼ i

3g2v
ð4�Þ2

Z 1

o
d	

6p4 � 23p2M2
C

ð	� 	2Þp2 �M2
C

: (16)

Carrying out the Borel transform we find

�S
HðMBÞ ¼ 3

2�2
M4

Cexp
�2z

�
13

4
Koð2zÞ

þ 1

2
K1ð2zÞ þ 3K2ð2zÞ

�
; (17)

with z ¼ M2
C=M

2
B.

Finally, for the ���
HHH term, the dominant diagram is

shown in Fig. 8, in which the gluon from the JHH operator
is coupled to a quark, leading to the JH operator. This is
essentially the perturbative plus nonperturbative H-HH
matrix element without condensates.
Using the external field method, the leading term of

�
��
HHH, corresponding to Fig. 8, is

���
HHH1ðpÞ ¼ �i

g2v
4

Z d4k

ð2�Þ4 Tr

�½�
�; ð6kþMCÞ�þ
ðk2 �M2

CÞ

� C��ð6p� 6kþMCÞðC��ÞT
ðp� kÞ2 �M2

C

�

� Tr½G��ð0ÞG
�ð0Þ�: (18)

After a Borel transform and extracting the scalar com-
ponent of ���

HHH1, one finds that

Gluon condensate     < G G >

+

+

+  higher order terms

Quark propagator

Quark  condensate     < q q  >

FIG. 7. Heavy quark meson diagrams.

FIG. 8. Meson-hybrid meson lowest-order diagram.
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�S
HHH1ðMBÞ ’ �2�S

HðMBÞ: (19)

Therefore the right-hand side of our scalar correlator is

�S
H-HHðMBÞrhs ¼ ðb2 þ 2�2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:� b2

p
Þ�S

HðMBÞ
þ ð1:� b2Þ�S

HHðMBÞ: (20)

The left-hand side of the sum rule has the usual form (see
Eq. (7))

�S
H-HHðMBÞlhs ¼ Fe�M2

H-HH=M
2
B þ e�so=M

2
BðK0þ K1M2

B

þ K2M4
B þ K3M6

BÞ; (21)

with so, K0, K1, K2, K3 parameters used to fit the con-
tinuum. Note that the meson and hybrid meson states
associated with the H and HH operators are normalized
independently, and the operators have different dimen-
sions. We renormalize by calculating NHH ¼R
dMB�

S
HðMBÞ=

R
dMB�

S
HHðMBÞ. Henceforth, for

�S
HHðMBÞ we use NHH ��S

HHðMBÞ.
As in Ref. [1], we obtain the expression for the mass of

the mixed heavy meson-hybrid heavy meson by taking the
ratio of the derivative of the sum rule with respect to 1=M2

B

to the sum rule, giving

M2
H-HH ¼ f½soðK0þ K1M2

B þ K2M4
B þ K3M6

BÞ þ K1M4
b

þ 2K2M6
B þ 3K3M8

B�e�ðso=M2
BÞ þ @1=M2

B
�S

H-HHg
� �fðK0þ K1M2

B þ K2M4
B þ K3M6

BÞe�ðso=M2
BÞ

��S
HHH

g�1: (22)

A key parameter in our numerical fits is the value of b.
The solution for b ¼ �0:7 was most successful in fitting
the criteria for finding the mixed hybrid state using QCD
sum rules. The range of b for which a satisfactory solution
is obtained is b ¼ �0:7� 0:1, with the result for b ¼ �:7
shown in Fig. 9.

We find the mass of the lowest-energy mixed
charmonium-hybrid charmonium to be about the energy
of the �0ð2SÞ state, 3.69 GeV, with so ¼ 20 GeV2, b ¼
�0:7 ) 50%–50% charmonium-hybrid charmonium. It

satisfies the criteria for about a 15% accuracy. The values
of the other parameters are K0 ¼ �15:9, K1 ¼ 0:224,
K2 ¼ �0:000 15, K3 ¼ 0:000 09. The only solutions sat-
isfying the sum rule criteria are those with the value of b
about�:7� :1, so that we find the state to be about a 50%–
50% meson-hybrid meson. As we shall see, this gives a
solution to the �� � puzzle.

D. Mixed upsilon-hybrid upsilon states

The calculation of the mixed upsilon-hybrid upsilon
meson mass is the same as that of the mixed
charmonium-hybrid charmonium mass using QCD sum
rules, except the charm quark mass (which we took as
M2

C ¼ 1:8 GeV2) is replaced by the bottom quark mass

(which we take as M2
b ¼ 25:0 GeV2). In fact, the QCD

sum rule method is more accurate for the calculation of
upsilon states, since the bottom quark condensate is much
smaller than the charm quark condensate, and the operator
product expansion converges faster.
Since we found that the �0ð2SÞ is a mixed charmonium

state (see previous subsection) and as we noted earlier the
separation in energy between the c 0ð2SÞ and J=c ð1SÞ
states is nearly the same as the separation energy of the
�ð2SÞ and the �ð1SÞ states (see Fig. 1), we would expect
that the �ð2SÞ is a 50–50 mixture of upsilon and hybrid
upsilon. This is not our result, as we shall now see.
From the QCD sum rule one obtains the expression

given in Eq. (22), except the charm quark mass is replaced
by the bottom quark mass in the expressions for the right-
hand side of the correlator. The parameters so,K0,K1,K2,
K3 are chosen to fit the continuum, and the mixing pa-
rameter b is also chosen to give a solution in which the
mixed upsilon state mass is almost independent of the
Borel mass. The result is shown in Fig. 10.
We find the energy of the lowest mixed upsilon meson

and hybrid upsilon meson state to be at 10.4 GeV, approxi-
mately the energy of the �ð3SÞ state (see Fig. 1.). The
parameters are so ¼ 120 GeV2, K0 ¼ �50 000, K1 ¼
70 500, K2 ¼ �605:, K3 ¼ �0:5165, and b ’ �0:7 for
a good solution. Thus we predict that the �ð3SÞ state is a

57.3106.3155.3105.31 13.7013.65

13.65

13.64

13.66

MC−HC
2

M 2
B

FIG. 9. Mixed charmonium-hybrid charmonium mass ¼
3:69 GeV.

107 108 109 110 111 112
107

108

109

MY−HY
2

M 2
B

FIG. 10. Mixed upsilon-hybrid upsilon mass ¼ 10:4 GeV.
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50%–50% admixture of an upsilon meson and a hybrid
upsilon meson. As we shall now see, from this we have
obtained a solution to the Vogel �n ¼ 2 puzzle.

IV. MIXED MESON-HYBRID MESON, HEAVY
QYARK DECAY PUZZLES, AND OCTET MODEL

In this section we show that the solutions for the mixed
nature of the charmonium c 0ð2SÞ and bottomonium �ð3SÞ
states provide explanations for the decay puzzles and a
basis for the calculation of the nonperturbative matrix
elements needed for the octet model used in RHIC
calculations.

A. The �� � puzzle

First note that the matrix element h��jOjc 0ðc �c; 2SÞi for
�� � decay of jc �cð2SÞi is given by the PQCD diagram
shown in Fig. 11.

Next, the hybrid decay matrix element
h��jO0jc 0ðc �cg; 2SÞi is given by the PQCD diagram shown
in Fig. 12.

As one can see from the diagrams, these matrix elements
are almost equal in magnitude. Since we find that
j�0ð2SÞi ’ �0:7jc �cð2SÞi þ 0:7jc �cgð2SÞi, so the charmo-
nium and hybrid charmonium approximately cancel, we
obtain for all 2 hadron decays, including �þ � decay,

R ¼ Bð�0ð2SÞ ! �þ �Þ
BðJ=�ð1SÞ ! �þ �Þ � 0:12; (23)

which is our proposed solution to the �� � puzzle.

B. � Decays of �ðnSÞ states puzzle
The solution to the Vogel �n ¼ 2 puzzle is based on the

application of the glueball/sigma model, based on the study
of scalar mesons and scalar glueballs [11,12], which was
motivated by the BES analysis of glueball decay [13], and
our solution for the lowest mixed state to be the �ð3SÞ
state. The glueball/sigma model has been used for predic-
tion of sigma production from glue created in hadron-
hadron collisions [14] and the decay of hybrid baryons
[15], which is closely related to the puzzle of sigma decays
from upsilon states. The key is the glueball-meson cou-
pling theorem [16]

Z
dxT½JGðxÞJmð0Þ� ’ � 32

9
h �qqi; (24)

where h �qqi � quark condensate, which is depicted in
Fig. 13.
From this one can calculate the matrix element for sigma

decay from a hybrid meson, using the diagram shown in
Fig. 14.
Just as scalar glueballs, such as the foð1500Þ, decay

mainly into sigmas, the hybrid component of the �ð3SÞ
has a strong � decay branch, while we predict that the
�ð2SÞ two-pion decay to the �ð1SÞ would have a very
small � decay branch. Therefore, our solution for the
�ð3SÞ to be a mixed b �b-b �bg provides a solution to the
Vogel �n ¼ 2 puzzle. Since our states are not normalized
we cannot calculate the numerical value of the cross sec-
tion, a subject for future research.

C. Octet model for RHIC

As discussed in Sec. II, the octet model, depicted in
Fig. 3, is the dominant mechanism for production of heavy
quark states from a quark-gluon plasma produced via
RHIC. Let us consider the collision of a nucleus A, e.g.,
lead or gold nucleus, with a similar nucleus. The differen-
tial cross section for the production of a charmonium state
in a A-A collision in the color octet model is

c

c

g

g

g

π

ρ

FIG. 11. PQCD diagram for charmonium decay into a � and a
�.

c

c

g

g

g

π

ρ

FIG. 12. PQCD diagram for hybrid charmonium decay into a
� and a �.

g

g q

q
FIG. 13. Glueball-meson coupling.

81

σ
π

π

FIG. 14. Sigma decay of a hybrid meson.
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d�

dpT

½pp ! c ðc �cÞ� ¼
Z

fq=Afq=A
d�

dt

� ½qq ! C �Cð8Þ ! c ðc �cÞ�;
d�

dt
½qq ! C �Cð8Þ ! c ðc �cÞ� ¼ ½perturbative QCD�

� h0jOcQ

8 j0i; (25)

where fq=A is the momentum fraction carried by a quark in

the nucleus A, and h0jOcQ

8 j0i is the NPQCD color octet

matrix element. In previous applications of the model, the
nonperturbative octet-singlet matrix element was taken
from fits to other experiments [3,4]. We, however, can
determine the NPQCD matrix elements for an octet quark-
onium pair to emit a gluon (octet) and leave a physical
singlet quarkonium state, which is given by �8;1. This is

shown in Fig. 15.
We have seen how to evaluate this diagram, but the

normalization of the states must be carried out to make a
numerical estimate. We can, however, estimate ratios of
matrix elements, to predict ratios of quarkonium produc-
tion. As an example, from a table in Cho-Leibovich [6]

h0jOJ=c
8 ð1SÞj0i ¼ 1:2� 10�2 GeV3;

h0jOc 0
8 ð2SÞj0i ¼ 0:73� 10�2 GeV3; or

RC ¼ h0jOc 0
8 ð2SÞj0i

h0jOJ=c
8 ð1SÞj0i

’ 0:6: (26)

Since in our model of the c 0ð2SÞ state the c �cð1Þ compo-
nent should dominate, the parameter b ’ �:7 gives a rough
estimate of this ratio, in agreement with the Cho-Leibovich
phenomenological fit.

V. CONCLUSIONS

In summary, we find that the c 0ð2SÞ is approximately
50% charmonium and 50% hybrid charmonium; and the
�ð3SÞ is approximately 50% bottomium and 50% hybrid
bottomium. This solves the �� � problem for charmo-
nium decays, and the Vogel �n ¼ 2 puzzle for sigma
decays of upsilon states.

From the correlator corresponding to the mixed heavy
meson and heavy hybrid meson current, the color octet-
singlet matrix element can be obtained. This nonperturba-
tive matrix element can be used for studies of the produc-
tion of heavy quark states in RHIC experiments, using the
octet model. It can also be used with the sigma/glueball
model to predict the cross sections for sigma production
from heavy quark state decays. Since the states used in the
QCD sum rule method are not normalized, these numerical
estimates cannot be made at the present time.
In the near future we plan to extend our calculation, so

that numerical predictions of heavy quark decays and
RHIC production of heavy quark states can be made.
This will include possible tests of RHIC quarkonium pro-
duction via sigma decays.
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APPENDIX

In Ref. [1] we found that �S
1HHðMBÞ, the Borel trans-

form of the scalar term of the main diagram for the HH
correlator, shown in Figure 5, is

�S
1HHðMBÞ ¼ �g2v

1

2ð4�Þ2 M
4
Q

Z 1

0
d�e�2ðM2

Q
=M2

BÞð1þ�Þ
��
�310

�

1þ �
þ 638�� 656ð1þ �Þ

�
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�
2
M2

Q

M2
B

ð1þ �Þ
�

þ
�
�1892

�

1þ �
þ 606�� 1968ð1þ �Þ � 32

�
4�� 3

�2

1þ �
þ �3

3ð1þ �Þ2
��

K2

�
2
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Q
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B

ð1þ �Þ
�

þ
�
�4778

�

1þ �
þ 9442�� 4920ð1þ �Þ � 128

�
4�� 3
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��

K1

�
2
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Q

M2
B

ð1þ �Þ
�

þ
�
�1356

�

1þ �
þ 6284�� 3280ð1þ �Þ � 96

�
4�� 3

�2

1þ �
þ �3

3ð1þ �Þ2
��

K0

�
2
M2

Q

M2
B

ð1þ �Þ
��

þmultiple integrals: (A1)

8 1

FIG. 15. �HHH ¼ �8;1 / color octet-color singlet matrix ele-
ment.

MIXED HEAVY QUARK HYBRID MESONS, DECAY . . . PHYSICAL REVIEW D 79, 114026 (2009)

114026-7



The multiple integral terms in Eq. (A1) are small and are
dropped. MQ is the charm quark mass for the charmonium
calculations and the bottom quark mass for the upsilon
calculations. We take M2

C ¼ 1:8 GeV2 and M2
b ¼

25:0 GeV2. The gluon condensate term is shown in
Fig. 6. After the Borel transform the scalar part of this
term [1], �S

2HHðMBÞ, is

�S
2HHðMBÞ ¼ �ig2v

3

2ð4�Þ2 M
4
Qe

�2ðM2
Q
=M2

BÞ
�
11K2

�
2
M2

Q

M2
B

�

þ 14

3
K1

�
2
M2

Q

M2
B

�
þ 18K0

�
2
M2

Q

M2
B

��
: (A2)

The Kn are Bessel functions of an imaginary argument,
related to Hankel functions by

KnðxÞ ¼ i�

2
e�nði�=2ÞHð1Þ

n ðixÞ: (A3)
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