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Rotational states (planar uniform rotations) of various string hadron models are tested for stability with

respect to small disturbances. These models include an open or closed string carrying n massive points

(quarks), and their rotational states result in a set of quasilinear Regge trajectories. It is shown that

rotations of the linear string baryon model q-q-q and the similar states of the closed string are unstable,

because spectra of small disturbances for these states contain complex frequencies, corresponding to

exponentially growing modes of disturbances. Rotations of the linear model are unstable for any values of

points’ masses, but for the closed string we have the threshold effect. This instability is important for

describing excited hadrons; in particular, it increases predictions for their width �. Predicted large values

� for N, � and strange baryons in comparison with experimental data result in unacceptability of the

linear string model q-q-q for describing these baryon states.
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I. INTRODUCTION

The Nambu-Goto string (relativistic string) simulates
strong interaction between quarks at large distances in
various string models of mesons, baryons [1–12]
[Figs. 1(a)–1(e)], and glueballs [13–16] [Figs. 1(f)–1(i)].
This string has linearly growing energy (energy density is
equal to the string tension �) and describes a nonperturba-
tive contribution of the gluon field and QCD confinement
mechanism.

Such a string with massive ends in Fig. 1(a) may be
regarded as the meson string model [2]. String models of
the baryon were suggested in the following four topologi-
cally different variants [3]: Fig. 1(b) the quark-diquark
model q-qq [5] [on the classic level it coincides with the
meson model in Fig. 1(a)], Fig. 1(c) the linear configura-
tion q-q-q [6], Fig. 1(d) the ‘‘three-string’’ model or Y
configuration [3,7], and Fig. 1(e) the ‘‘triangle’’ model or
� configuration [8].

All cited string hadron models generate linear or quasi-
linear Regge trajectories in the limit of large energies for
excited states of mesons and baryons [4,5,9,10]

J ’ �0 þ �0E2; (1.1)

if we use rotational states of these systems (classical planar
uniform rotations). Here J and E are the angular momen-
tum and energy of a hadron state (or rotational state of a
string model), respectively, and the slope �0 ’ 0:9 GeV�2.
For the meson model in Fig. 1(a) and for the baryon models
in Figs. 1(b) and 1(c) this slope and the string tension � are
connected by the Nambu relation [1]

�0 ¼ 1

2��
: (1.2)

For rotational states of the linear baryon configuration

[Fig. 1(c)] the middle mass is at the rotational center. In
papers [6,11] we have shown in numerical experiments that
the mentioned states are unstable with respect to small
disturbances.
The string baryon model Y [Fig. 1(d)] for its rotational

states demonstrates the Regge asymptotics (1.1) with the
slope [7] �0 ¼ 1=ð3��Þ. To obtain �0 ’ 0:9 GeV�2 in
trajectories (1.1) we are to assume that the effective string
tension �Y in this model differs from � in models in
Figs. 1(a)–1(c) (the fundamental string tension) and equals
�Y ¼ 2

3� [4,9]. Moreover, rotations of the Y string con-
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FIG. 1 (color online). String models of mesons, baryons and
glueballs.*german.sharov@mail.ru
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figuration are also unstable with respect to small distur-
bances on the classic level [11,12].

The string baryon model triangle or � generates a set of
rotational states with different topology [8]. The so-called
triangle states were applied for describing excited baryon
states on the Regge trajectories [4,9], but in this case (like
for the model Y) we are to take another effective string
tension �� ¼ 3

8�.

Different string models shown in Figs. 1(f)–1(i) were
used for describing glueballs (bound states of gluons) and
other exotic hadrons [13–16] predicted in QCD. String
models of glueballs include the open string with enhanced
tension �adj ¼ 9

4� (the adjoint string) and two constituent

gluons at the end points [14,17] in Fig. 1(f); the closed
string without masses [Fig. 1(g)] [13,15,18] and the closed
string carrying massive points [Figs. 1(h) and 1(i)] [16].

The problem of stability for rotational states with respect
to small disturbances is very important for choosing the
most adequate string model for baryons, glueballs and
other exotic hadrons [4,11,12,16]. Note that instability of
classical rotations for some string configuration does not
mean that the considered string model must be totally
prohibited. All excited hadron states (objects of modeling)
are resonances; they are unstable with respect to strong
decays. So they have rather large width �. On the level of
string models these decays are described as string breaking
with probability, proportional to the string length ‘ [19,20].
The corresponding width � ¼ �br � ‘.

If classical rotations of a string configuration are un-
stable, this instability gives the additional contribution �inst

to width �. This effect is one of the manifestations of
rotational instability. It can restrict applicability of some
string models, if the total width � predicted by this model
(below we suppose � ¼ �br þ �inst) essentially exceeds
experimental data.

The stability problem for rotational states is solved for
the string with massive ends [Figs. 1(a) and 1(b)].
Analytical investigation of small disturbances demon-
strated that rotational states of this system are stable, and
there is the spectrum of quasirotational states in the linear
vicinity of these stable rotations [11,21].

For string baryon models q-q-q, Y and � evolution of
small disturbances of rotational states was investigated in
numerical experiments [11,12]. These calculations demon-
strated instability of rotations for the linear model q-q-q
and for the Y configuration. However, some aspects of this
instability are not studied yet. In particular, we are to
estimate analytically increments of instability for all mod-
els and to investigate its influence on properties of excited
hadrons.

In this paper dynamics of a string with massive points is
described in Sec. II. In Sec. III small disturbances of rota-
tional states for the linear model [Fig. 1(c)] are studied
analytically and the stability problem for these states is
solved. In Sec. IV the similar problem is solved for central

rotational states (with a massive point at the rotational
center) of the closed string carrying n pointlike masses
[Fig. 1(e) and 1(h) or 1(i)]. In Sec. V we study how rota-
tional instability enlarges width of excited hadrons on
Regge trajectories.

II. DYNAMICS OFA STRING WITH MASSIVE
POINTS

Dynamics of an open or closed string carrying n point-
like masses m1; m2; . . .mn is determined by the action
[4,8,16]

A ¼ ��
Z
D

ffiffiffiffiffiffiffi�g
p

d�d�� Xn
j¼1

mj

Z ffiffiffiffiffiffiffiffiffiffiffi
_x2j ð�Þ

q
d�: (2.1)

Here � is the string tension, g is the determinant of the
induced metric gab ¼ ���@aX

�@bX
� on the string world

surface X�ð�;�Þ embedded in Minkowski space R1;3,
��� ¼ diagð1;�1:� 1;�1Þ, and the speed of light c ¼ 1.

A world surface of the closed string mapping into R1;3

from the domain

D ¼ fð�; �Þ: � 2 R;�0ð�Þ<�<�nð�Þg
is divided into nworld sheets by the world lines of massive
points

x�j ð�Þ ¼ X�ð�; �jð�ÞÞ; j ¼ 0; 1; . . . ; n:

Two of these functions x0ð�Þ and xnð�Þ describe the same
trajectory of the nth massive point, and their equality forms
the closure condition

X�ð�; �0ð�ÞÞ ¼ X�ð��; �nð��ÞÞ (2.2)

on the tubelike world surface [8,22]. These equations may
contain two different parameters � and ��, connected via
the relation �� ¼ ��ð�Þ. This relation should be included in
the closure condition (2.2).
For the string baryon model q-q-q (an open string with

n ¼ 3 masses) the domain D in Eq. (2.1) has the form
�1ð�Þ<�<�3ð�Þ. This domain and the world surface are
divided into two sheets by the line � ¼ �2ð�Þ. Naturally,
there is no closure condition in this model.
Equations of motion for both open and closed strings

with massive points result from the action (2.1) and its
variation. If we use invariance of the action (2.1) with
respect to nondegenerate reparametrizations � ¼ �ð~�; ~�Þ,
� ¼ �ð~�; ~�Þ and choose the coordinates �,� satisfying the
orthonormality conditions on the world surface

ð@�X � @�XÞ2 ¼ 0; (2.3)

the equations of motion are reduced to the simplest form
[4,8]. They include the string motion equation

@2X�

@�2
� @2X�

@�2
¼ 0; (2.4)

and equations for two types of massive points: for end
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points of the model q-q-q

m1

d

d�

_x
�
1 ð�Þffiffiffiffiffiffiffiffiffiffiffi
_x21ð�Þ

q � �½X0� þ _�1ð�Þ _X��j�¼�1
¼ 0; (2.5)

m3

d

d�

_x
�
3 ð�Þffiffiffiffiffiffiffiffiffiffiffi
_x23ð�Þ

q þ �½X0� þ _�3ð�Þ _X��j�¼�3
¼ 0; (2.6)

and for the middle point in the mentioned model or points
on a closed string

mj

d

d�

_x�j ð�Þffiffiffiffiffiffiffiffiffiffiffi
_x2j ð�Þ

q þ �½X0� þ _�jð�Þ _X��j�¼�j�0

� �½X0� þ _�jð�Þ _X��j�¼�jþ0 ¼ 0; (2.7)

mn

d

d�

_x
�
0 ð�Þffiffiffiffiffiffiffiffiffiffiffi
_x20ð�Þ

q þ �½X0�ð��; �nÞ � X0�ð�; 0Þ� ¼ 0: (2.8)

Here _X� � @�X
�, X0� � @�X

�, and the scalar product
ð	; 
Þ ¼ ���	

�
�.

In Eq. (2.8) for nth massive point we fix

�0ð�Þ ¼ 0; �nð�Þ ¼ 2� (2.9)

without loss of generality with the help of substitutions ��
� ¼ f�ð~�� ~�Þ, keeping conditions (2.3) (conformal flat-
ness of the induced metric gab) [8,22].

For the open string model q-q-q we can fix the similar
conditions at the ends [4,6] in Eqs. (2.5) and (2.6):

�1ð�Þ ¼ 0; �3ð�Þ ¼ �: (2.10)

Equations (2.2), (2.3), (2.4), (2.7), and (2.8) with the
continuity condition for X� at� ¼ �j describe all motions

of the closed string with n pointlike masses. For the string
baryon model q-q-q this system includes Eqs. (2.3), (2.4),
(2.5), (2.6), and (2.7) for j ¼ 2.

III. ROTATIONAL STATES AND THEIR STABILITY
FOR LINEAR MODEL

Rotational states of the linear string model q-q-q are
planar uniform rotations of the rectilinear string segment
with the middle quark at the rotational center. These rota-
tions may be described by the following exact solution of
Eqs. (2.3), (2.4), (2.5), (2.6), and (2.7) [11]:

X�ð�; �Þ � X� ¼ ��1½!�e
�
0 þ cosð!�þ�1Þ � e�ð�Þ�:

(3.1)

Here � 2 ½0; ��, � is the angular velocity, e0; e1; e2; e3 is
the orthonormal tetrad in Minkowski space R1;3, and

e�ð�Þ ¼ e�1 cos!�þ e�2 sin!� (3.2)

is the unit spacelike rotating vector directed along the
string. Values ! (dimensionless frequency) and �1 are

connected with the constant speeds vj of the ends

v1 ¼ cos�1; v3 ¼�cosð�!þ�1Þ;
mj�

�
¼ 1�v2

j

vj

;

(3.3)

where j ¼ 1; 3. The central massive point of the q-q-q
system is at rest (in the corresponding frame of reference)
at the rotational center. Its inner coordinate is

�2ð�Þ ¼ �2 ¼ �� 2�1

2!
¼ const: (3.4)

Rotational states (3.1) of the model q-q-q was tested for
stability in Ref. [11] in numerical experiments. They dem-
onstrated instability of rotations (3.1). Here we prove this
result analytically, generalizing the approach applied for
the string with massive ends in Refs. [11,21].
Let us consider a slightly disturbed motion of the system

q-q-q in the linear vicinity of the rotational state (3.1). This
disturbed motion is described by the general solution of
Eq. (2.4)

X�ð�; �Þ ¼ 1
2½��

jþð�þ �Þ þ��
j�ð�� �Þ�: (3.5)

Here j ¼ 1 for� 2 ½0; �2� and j ¼ 2 for� 2 ½�2; ��, and
functions ��

j�ð�Þ have isotropic derivatives
_� 2
jþ ¼ _�2

j� ¼ 0 (3.6)

as a consequence of the orthonormality conditions (2.3).
The functions��

j� are smooth, and the world surface (3.5)

(smooth if � � �2) is continuous at the line � ¼ �2ð�Þ.
This condition in terms Eq. (3.5) takes the form

��
1þðþ2Þ þ��

1�ð�2Þ ¼ ��
2þðþ2Þ þ��

2�ð�2Þ; (3.7)

where ð�2Þ � ð�� �2ð�ÞÞ.
We use underlined symbols for describing the particular

exact solution (3.1) for the rotational states. For example,
we denote

� �
1�ð�Þ ¼ ��

2�ð�Þ ¼ ��1½e�0 !�þ e�ð���1=!Þ�
(3.8)

the functions in Eq. (3.5) corresponding to the states (3.1):
X� ¼ 1

2 ½��
jþð�þ �Þ þ��

j�ð�� �Þ�.
To describe any small disturbances of the rotational

motion, that is, motions close to states (3.1) we consider
vector functions �

�
j� close to �

�
j� (3.8) in the form

��
j�ð�Þ ¼ ��

j�ð�Þ þ c �
j�ð�Þ: (3.9)

The disturbance c �
j�ð�Þ is supposed to be small, so we

omit squares of c j� when we substitute the expression

(3.9) into dynamical equations (2.5), (2.6), (2.7), and (3.7).
In other words, we work in the first linear vicinity of the

states (3.1). Both functions _�
�
j� and _�

�
j� in expression

(3.9) must satisfy the condition (3.6) resulting from
Eq. (2.3); hence in the first order approximation on _c j�
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the following scalar product equals zero:

ð _�j�; _c j�Þ ¼ 0: (3.10)

For disturbed (quasirotational) motions of the model
q-q-q the inner coordinate �2ð�Þ of the middle massive
point differs from the constant value �2 (3.4) and should
include the following small correction �2:

�2ð�Þ ¼ �2 þ �2ð�Þ: (3.11)

If we substitute expressions (3.9) and (3.11) with (3.5)
into the continuity condition (3.7) and three equations
(2.5), (2.6), and (2.7) (with j ¼ 2) for massive points, we
obtain equalities for summands with ��

j� and four equa-

tions for small disturbances c �
j�ð�Þ in the first linear

approximation:

c �
1þðþ2Þ þ c �

1�ð�2Þ ¼ c �
2þðþ2Þ þ c �

2�ð�2Þ;
_c �
1þ þ _c �

1� �U
�
1 ðU1; _c �

1þ þ _c �
1�Þ ¼ Q1ðc �

1þ � c �
1�Þ;

_c �
2þðþÞ þ _c �

2�ð�Þ �U
�
3 ðU3; _c �

2þðþÞ þ _c �
2�ðþÞÞ ¼ Q3½c �

2�ð�Þ � c �
2þðþÞ�;

_c �
1þðþ2Þ þ _c �

1�ð�2Þ � 2a0½ _�2e
�ð�Þ þ!�2 �e

�ð�Þ� ¼ e
�
0

2a0
½ð _�1þðþ2Þ; _c 1�ð�2ÞÞ þ ð _�1�ð�2Þ; _c 1þðþ2ÞÞ�

þ 2Q2½c �
2þðþ2Þ � c �

1þðþ2Þ�: (3.12)

Here

Qj ¼ �

mj

ffiffiffiffiffiffiffiffiffiffiffi
_x2j ð�Þ

q
¼ �a0

mj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

j

q
; a0 ¼ !

�
; (3.13)

vector functions

U�
j ð�Þ ¼ ð1� v2

j Þ�1=2½e�0 � 
jvj �e
�ð�Þ�;


1 ¼ �1; 
3 ¼ 1;

are unit velocity vectors of the moving massive points, and

�e �ð�Þ ¼ �e�1 sin!�þ e�2 cos!�

is the unit rotating vector, orthogonal to eð�Þ (3.2).
If we consider projections (scalar products) of 4 equa-

tions (3.12) onto 4 basic vectors e0, eð�Þ, �eð�Þ, e3 and add
Eqs. (3.10) we obtain the system of 20 differential equa-
tions with deviating arguments with respect to 17 unknown
functions: �2ð�Þ and 16 projections

c 0
j� � ðe0; c j�Þ; c 3

j� � ðe3; c j�Þ;
c j� � ðe; c j�Þ; �c j� � ð �e; c j�Þ:

(3.14)

Four projections of Eqs. (3.12) onto direction e3 (or-
thogonal to the rotational plane e1, e2) form the closed
subsystem with respect to 4 functions (3.14) c 3

j�:

c 3
1þðþ2Þ þ c 3

1�ð�2Þ ¼ c 3
2þðþ2Þ þ c 3

2�ð�2Þ;
_c 3
1þð�Þ þ _c 3

1�ð�Þ ¼ Q1½c 3
1þð�Þ � c 3

1�ð�Þ�;
_c 3
2þðþÞ þ _c 3

2�ð�Þ ¼ Q3½c 3
2�ð�Þ � c 3

2þðþÞ�;
_c 3
1þðþ2Þ þ _c 3

1�ð�2Þ ¼ 2Q2½c 3
2þðþ2Þ � c 3

1þðþ2Þ�:

(3.15)

We search solutions of this homogeneous system in the
form of harmonics

c 3
j� ¼ B3

j�e�i	�: (3.16)

This substitution results in the linear homogeneous sys-
tem of 4 algebraic equations with respect to 4 amplitudes
B3
j�. The system has nontrivial solutions if and only if its

determinant equals zero:

����������������

i	þQ1 i	�Q1 0 0
0 0 ði	�Q3Þe�2i�	 i	þQ3

i	� 2Q2 i	e2i�2	 �2Q2 0
e�i�2	 ei�2	 �e�i�2	 �ei�2	

����������������
¼ 0:

This equation is reduced to the form

Q2½ðQ1Q3 � 	2Þ sin�	þ ðQ1 þQ3Þ	 cos�	�
þ 	ðQ1~c1 � 	~s1ÞðQ3~c3 � 	~s3Þ ¼ 0; (3.17)

where

~c 1 ¼ cos�2	; ~s1 ¼ sin�2	;

~c3 ¼ cosð�� �2Þ	; ~s3 ¼ sinð�� �2Þ	:
The spectrum of transversal (with respect to the e1, e2

plane) small fluctuations of the string for the considered
rotational state contains frequencies 	 which are roots of
Eq. (3.17). We search complex roots 	 ¼ 	1 þ i	2 of this
equation.
In Fig. 2(a) the thick and thin lines are zero level lines

correspondingly present real and imaginary part of the left-
hand side fð	Þ ¼ fð	1 þ i	2Þ of Eq. (3.17) for given val-
ues Qj. Roots of this equation are shown as cross points of

a thick line with a thin line. If the values (3.13) Qj are

given, one can determine values !, �2, vj, mj=� from

Eqs. (3.3), (3.11), and (3.13). In particular, values !, Q1,
Q3 are connected by the relation

!ðQ1 þQ3Þ ¼ ð!2 �Q1Q3Þ tan�!; (3.18)

resulting from the mentioned equations.
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Analysis of roots of Eq. (3.17) for various values Qj, mj

and vj shows that for all values of mentioned parameters

all these frequencies are real numbers (cross points lie on
the real axis), and therefore amplitudes of such fluctuations
do not grow with growing time t.

Note that any complex frequency 	 ¼ 	1 þ i	2 with
positive imaginary part 	2 results in exponential growth
of the corresponding amplitude of disturbances

c 3
k ¼ B3

k expð�i	1�Þ � expð	2�Þ:
In this case the considered state will be unstable [11,12].

To study small disturbances in the e1, e2 plane we
consider projections (scalar products) of Eqs. (3.12) onto
3 vectors e0, eð�Þ, �eð�Þ. They form the system of 12 differ-
ential equations with deviating arguments with respect to

9 unknown functions c j�, �c j�, �2, if functions c 0
j� are

excluded via the orthonormality condition, Eqs. (3.10):

_c 0
j� ¼ �c1ðe; _c j�Þ � v1ð �e; _c j�Þ; c1 ¼ cos�2!:

Only 9 from these 12 equations are independent ones.
When we search solutions of this system in the form of
harmonics (3.16)

c j�¼Bj�e�i	�; �c j�¼ �Bj�e�i	�; 2a0�2¼�2e
�i	�;

(3.19)

we obtain the homogeneous system of 9 algebraic equa-

tions with respect to 9 amplitudes Bj�, �Bj�, �2 (it is

convenient to use the linear combinations of them Aj� ¼
�i	Bj� �! �Bj�, �Aj� ¼ �i	 �Bj� þ!Bj�):

Kþ
1 A1þ þ K�

1 A1� ¼ �Kþ
1
�A1þ þ �K�

1
�A1�; ð1� i	Q	

1ÞA1þ þ ð1þ i	Q	
1ÞA1� ¼ !Q	

1ð �A1� � �A1þÞ;
ðv1�1 �!Q	

1ÞðA1� � A1þÞ ¼ ð1� i	Q	
1Þ �A1þ þ ð1þ i	Q	

1Þ �A1�; c1ðA1þ � A2þÞ � v1ð �A1þ � �A2þÞ ¼ 0;

c1ðA1� � A2�Þ þ v1ð �A1� � �A2�Þ ¼ 0; Kþ
1 E

þ
3 A2þ þ K�

1 E
�
3 A2� ¼ �Kþ

1 E
þ
3
�A2þ þ �K�

1 E
�
3
�A2�;

Kþ
2 E

þ
3 A2þ þ K�

2 E
�
3 A2� ¼ �Kþ

2 E
þ
3
�A2þ þ �K�

2 E
�
3
�A2�;

ðc1 � 2!v1Q
	
2ÞEþ

2 A1þ þ c1E
�
2 A1� þ v1E

�
2
�A1� � i	�2 ¼ Eþ

2 ½ðv1 þ 2!c1Q
	
2Þ �A1þ � 2!Q	

2ðv1A2þ þ c1 �A2þÞ�;
�Kþ
1 E

þ
2 A1þ þ �K�

1 E
�
2 A1� þ Kþ

1 E
þ
2
�A1þ þ K�

1 E
�
2
�A1� ¼ �ð	2 þ!2Þ�2:

Here Q	
j ¼ Qj=ð	2 �!2Þ, E�

j ¼ expð�i	�jÞ,
K�

1 ¼ c1!� iv1	; �K�
1 ¼ �v1!þ ic1	;

K�
2 ¼ !Q	

3 sin�!� ð1� i	Q	
3Þ cos�!;

�K�
2 ¼ �!Q	

3 cos�!� ð�1þ i	Q	
3Þ sin�!:

Nontrivial solutions of this system exist if the condition
similar to Eq. (3.17) takes place. It may be reduced to the
following equation:

	

Q2

� 	
2 �!2

	2 þ!2
¼ X

j¼1;3

ðqj � 	2Þ~cj � 2Qj	~sj

ðqj � 	2Þ~sj þ 2Qj	~cj
: (3.20)

Here qj ¼ Q2
j ð1þ v�2

j Þ.
Figures 2(b) and 2(c) demonstrate roots 	 ¼ 	n of

Eq. (3.20), corresponding to frequencies of small oscilla-
tions of the rotating system q-q-q in the rotational plane.
Unlike Eq. (3.17), describing oscillations in the z or e3
direction, Eq. (3.20) always has two imaginary roots 	 ¼
�i	�

2. The positive imaginary roots 	 ¼ i	�
2, 	

�
2 > 0 are

marked with a circle in Figs. 2(b) and 2(c).
Other roots of Eq. (3.20) are real ones. In

Figs. 2(a) and 2(b) values Qj, mj are the same, and the

mass relation here is m1:m2:m3 ’ 1:1:85:1; for the case in
Fig. 2(c) it is m1:m2:m3 ’ 1:10:5:4:2.
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FIG. 2 (color online). Zero level lines for real part (thick) and
imaginary part (thin) (a) for Eq. (3.17) withQ1 ¼ Q2 ¼ Q3 ¼ 1;
(b) for Eq. (3.20) with Q1 ¼ Q2 ¼ Q3 ¼ 1; (c) for Eq. (3.20),
Q1 ¼ 1, Q2 ¼ 0:2, Q3 ¼ 0:4.
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The positive imaginary root 	 ¼ i	�
2 of Eq. (3.20) may

be found after substituting 	 ¼ i	2:

	2

Q2

� 	
2
2 þ!2

!2 � 	2
2

¼ X
j¼1;3

qj þ 	2
2 þ 2Qj	2 tanh ��j	2

ðqj þ 	2
2Þ tanh ��j	2 þ 2Qj	2

:

Here ��1 ¼ �2, ��3 ¼ �� �2. Evidently, the required
value 	� exists in the interval ð0; !Þ. An arbitrary disturbed
motion of the q-q-q configuration contains exponentially
growing modes in its spectrum, in particular,

c j� ¼ Bj� expð	�
2�Þ: (3.21)

So the rotational motion (3.1) is unstable with respect to
small disturbances. Evolution of this instability was nu-
merically analyzed in Ref. [11].

IV. ROTATIONAL STATES FOR CLOSED STRING

For the case of a closed string rotational states (planar
uniform rotations of the string with massive points) were
described in Refs. [8,16] in the following form:

X � ¼ e�0 a0ð�� ��Þ þ uð�Þ � e�ð�Þ þ ~uð�Þ � �e�ð�Þ:
(4.1)

Here the function

uð�Þ ¼

8>>><
>>>:

A1 cos!�þ B1 sin!�; � 2 ½0; �1�;
A2 cos!�þ B2 sin!�; � 2 ½�1; �2�;
. . .
An cos!�þ Bn sin!�; � 2 ½�n�1; 2��;

and ~uð�Þ ¼ ~Aj cos!�þ ~Bj sin!�, � 2 ½�j�1; �j� are

continuous, but their derivatives have discontinuities at
� ¼ �j � �j ¼ const (positions of masses mj); the clo-

sure condition (2.2) takes the form

�� ¼ �þ 2��; � ¼ const; (4.2)

and the values (3.13) �m�1
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_X2ð�; �jÞ

q
¼ Qj are constants.

Expression (4.1) satisfies Eq. (2.4) and describes uni-
form rotations of the closed string with masses if condi-
tions (2.2), (2.3), (2.7), and (2.8) and the condition of
continuity

X�ð�; �jð�Þ � 0Þ ¼ X�ð�; �jð�Þ þ 0Þ (4.3)

are fulfilled. Substituting Eq. (4.1) into these conditions we
obtain the system of equations [16]. This system connects

parameters !, �, �j, Aj, ~Aj, Bj, ~Bj characterizing rota-

tional states (4.1).
A set of rotational states (4.1) of the closed string is

divided into 3 classes [16]: ‘‘hypocycloidal states,’’ ‘‘linear
states’’ and ‘‘central states.’’ Hypocycloidal states exist if
� � 0; in this case segments of rotating string, connecting
massive points, are segments of a hypocycloid [8,16].
Hypocycloid is the curve drawing by a point of a circle

(with radius r) rolling inside another fixed circle with
larger radius R. Here r=R ¼ 1

2 ð1� j�jÞ.
Linear states take place if � ¼ 0, solution (4.1) describes

rotating n times folded closed string with rectilinear seg-
ments, and all masses mj move at nonzero velocities vj at

the ends of the segments. Central states also correspond to
the case � ¼ 0, but differ from linear ones by a massive
point (or some of them) placed at the rotational center.
For all classes of rotational states (4.1) the string rotates

at the angular velocity � ¼ !=a0, the value a0 connected
with speeds vj of massive points by the following equa-

tions, resulting from Eqs. (3.13):

a0 ¼ m1Q1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

1

q ¼ � � � ¼ mnQn

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

n

p : (4.4)

A. Central rotational states

In this section we investigate the central rotational states
(4.1) with n ¼ 3massive points where the massm3 is at the
center and other masses m1 and m2 rotate at the ends of
rectilinear segments. These states look like the states (3.1)
of the linear model q-q-q, but have the additional string
segment (the string is closed) and another numeration of
massive points.
These central states (4.1) with n ¼ 3 have the form

X � ¼ e�0 a0�þ uð�Þ � e�ð�Þ: (4.5)

They are described by the following parameters, deter-
mined by Eqs. (2.2), (2.3), (2.7), (2.8), and (4.3): � ¼ 0,

~uð�Þ ¼ 0, A1 ¼ 0, �2 � �1 ¼ �, A2 ¼ 2 �S1 �C1B1, B2 ¼
ð �S21 � �C2

1ÞB1, A3 ¼ � �SB1, B3 ¼ �CB1; v1 ¼ �S1, v2 ¼
sinð2�� �2Þ!; the relation between values !, Q1, Q2

!ðQ1 þQ2Þ ¼ ð!2 �Q1Q2Þ tan�!;

is similar to Eq. (3.18). Here

�C j ¼ cos!�j; �Sj ¼ sin!�j; �C� �C3; �S� �S3:

If we present the considered central rotational state (4.5)
in the form (3.5), the derivatives of corresponding func-
tions �

�
j�, j ¼ 1; 2; 3, are

_��
1�ð�Þ ¼ a0½e�0 � e�ð�Þ�;
_�
�
2�ð�Þ ¼ a0½e�0 þ 2v1

�C1 �e
�ð�Þ � ð2v2

1 � 1Þe�ð�Þ�;
_��
3�ð�Þ ¼ a0½e�0 � �S �e�ð�Þ � �Ce�ð�Þ�: (4.6)

To test for stability central rotational states (4.5) we use
the approach suggested in Sec. III for states (3.1) of the
linear baryon model. In particular, to describe any small
disturbances of the state (4.5) we consider vector functions
��

j� close to the functions (4.6) in the form (3.9), where the

disturbance c �
j�ð�Þ is supposed to be small. Both functions

(4.6) and (3.9) must satisfy the condition (3.6); hence in the
first order approximation the condition (3.10) takes place.
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For disturbed motions the equalities �j ¼ �j ¼ const

and (4.2) �� ¼ �þ 2�� ¼ �, generally speaking, are not
imposed but are instead replaced with the conditions

�jð�Þ ¼ �j þ �jð�Þ; �� ¼ �þ �ð�Þ; (4.7)

where �1ð�Þ, �2ð�Þ and �ð�Þ are small disturbances.

Substituting expressions (3.9) and (4.7) with Eq. (4.6)
into Eqs. (2.7) and (2.8), the closure condition (2.2) and the
continuity condition (4.3) we obtain in the first linear
approximation the following system of equations for small
disturbances c �

j�, �j, �, similar to the system (3.12):

_c �
jþ þ _c �

j� � _c �
j�þ � _c �

j�� þ 2Fjðe� _�j þ! �e��jÞ ¼ 0; _c �
3þ þ _c �

3� � _c �
1þð�Þ � _c �

1�ð�Þ þ 2a0e
�
0
_� ¼ 0;

d

d�
f _c �

jþ þ _c �
j� þ Fjðe� _�j þ! �e��jÞ þGjg

�
j g ¼ Qj½ _c �

j� � _c �
jþ þ _c �

j�þ � _c �
j���;

d

d�
f _c �

1þð�Þ þ _c �
1�ð�Þ þ ½’1þð�Þ � ’1�ð�Þ�e�0 g ¼ Q3½ _c �

3� � _c �
3þ þ _c �

1þð�Þ � _c �
1�ð�Þ þ 2!a0 �e

���:

(4.8)

Here j ¼ 1; 2, j� � jþ 1, and we denote projections

’j� � ðe; _c j�Þ; �’j� � ð �e; _c j�Þ; (4.9)

the following arguments are omitted in Eqs. (4.8): (�) for �,
�j, e

� and �e�, for _c �
j� and their projections (4.9)

_c �
j� � _c �

j�ð�� �jÞ; _c �
j�� � _c �

j��ð�� �jÞ;
in particular, _c �

3� � _c �
3�ð�� 2�Þ.

Other notations in Eqs. (4.8) are

~� 3¼2���2¼���1; C3¼ cos ~�3!; F1¼2 �C1a0;

F2¼�2C3a0; g�j ¼e�0 �ð�1Þjvj �e
�ð�Þ;

G1¼’1þ�’1��v1ð �’1þþ �’1��2!a0�1Þ= �C1;

G2C3¼ �C2½’2��’2þ�þ �S2½ �’2þþ �’2��þ2!v2a0�2:

Scalar products of Eqs. (4.8) onto the vector e3 (orthogo-
nal to the rotational plane e1, e2) form the closed subsys-
tem from 6 equations with respect to 6 functions ðc j�; e3Þ.
It corresponds to the system (3.15) and has nontrivial
solutions in the form (3.16) B3

j�e�i	� if and only if the

corresponding determinant equals zero. This conditions is
reduced to the equation

4Q1Q2Q3~s
2 þ 2ðQ1Q2 þQ2Q3 þQ1Q3Þ~s ~c 	

¼ ðQ1~s3~s2 þQ2~s1~s23 þQ3~s
2Þ	2 � ~s1~s3~s	

3: (4.10)

Here

~s j ¼ sin�j	; j ¼ 1; 2; ~s3 ¼ sin ~�3	;

~s ¼ sin�	; ~c ¼ cos�	; ~s23 ¼ sinð2�� �1Þ	:
Analysis of the real and imaginary parts of Eq. (4.10)
demonstrates that all its roots (frequencies of small oscil-
lations in the e3 direction) are real numbers. They behave
like roots of Eq. (3.17) [see Fig. 2(a)].

Let us consider small disturbances concerning to the e1,
e2 plane. Projections (scalar products) of Eqs. (4.8) onto
3 vectors e0, eð�Þ, �eð�Þ form the system of 18 differential
equations with deviating arguments. It contains only 15 in-

dependent equations with respect to 15 unknown functions
of � (’j�, �’j�, j ¼ 1; 2; 3, �1, �2, �), if we exclude

projections ðc j�; e0Þ via the following relations resulting

from Eqs. (3.10):

ð _c 1�; e0Þ ¼ �’1�; ð _c 3�; e0Þ ¼ �S �’3� � �C’3�;

ð _c 2�; e0Þ ¼ �ð1� 2v2
1Þ’2� � 2v1

�C1 �’2�:

When we search solutions of this system in the form of
harmonics (3.19) with addition 2a0�j ¼ �je

�i	�, 2a0� ¼
�e�i	�, we obtain the homogeneous system of 15 algebraic

equations with respect to 15 amplitudes Bj�, �B0
j�, �1, �2,

�. Nontrivial solutions of this system exist if the corre-
sponding determinant vanishes. This condition in the sym-
metric case of equal masses

m1 ¼ m2; �1 ¼ �

2
; (4.11)

resulting in equalities v1 ¼ v2, Q1 ¼ Q2, is reduced to the
following equation (it is factorized):

ð �C1~s1	� �S1!~c1Þð �C2
1~s1	

2 � �S�!~c1	� Z1~s1Þ ¼ 0;

(4.12)

~c	ð	2 �!2Þð �C3
1~s	

3 � 3 �S1 �C
2
1!~c	2 � Z3

�C1~s	þ Z1
�S1!~cÞ

¼ 4Q3ð �C2
1~c1	

2 þ �S�!~s1	� Z1~c1Þ½ �C1	
3 cos32�	

þ 2ð �S1!~c~s1 þQ3
�C1~s~c1Þ	2

þ ð �C1!~c~c1 þ 2Q3
�S1~s~s1Þ!	þ �S1!

3~c~s1�: (4.13)

Here Z1 ¼ !2ð1þ �S21Þ, Z3 ¼ !2ð1þ 3 �S21Þ, and �S� ¼
sin�!.
Analysis of Eq. (4.12) (decomposing into two factors)

for complex 	 ¼ 	1 þ i	2 shows that for all values ! all
its roots are real numbers. Their behavior is similar to that
for roots of Eqs. (3.17) and (4.10).
But roots of Eq. (4.13) have other properties. These

roots 	 ¼ 	1 þ i	2 are shown in Figs. 3(a)–3(c) as cross
points of thin and thick zero level lines for the real and
imaginary parts of Eq. (4.13) (like in Fig. 2) for specified
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values Qj and mj. In Fig. 3(d) the similar spectrum for the

case of different masses m1:m2:m3 ’ 1:10:5:3:38 is pre-
sented. Here we used the generalization of Eqs. (4.12) and
(4.13), considered in Ref. [23].

Figure 3 demonstrates that the spectrum of small dis-
turbances of the central rotational states (4.5) has complex
frequencies (marked with a circle); in particular, Eq. (4.13)
has complex roots 	 ¼ 	1 þ i	2 with positive imaginary
parts 	2 > 0, if the central massm3 is nonzero and does not
exceed some critical value

0<m3 <m3cr: (4.14)

Under this condition the complex roots generate exponen-
tially growing modes of disturbances jc j � expð	2�Þ, and
the considered rotational state is unstable with respect to
small disturbances.
The critical value m3cr (and the corresponding Q3cr) is

determined from the condition of vanishing all complex
roots of Eq. (4.13) (with Im	 > 0) form3 >m3cr. Thus, we
obtain the threshold effect in stability properties: the state
is stable if m3 >m3cr and it is unstable in the case m3 	
m3cr. This effect is observed only for the central rotational
states (4.5) of the closed string; the similar states (3.1) of
the linear string model q-q-q are unstable with any positive
value of central mass.
Note that in the case m3 ¼ m3cr the rotational state (4.5)

is unstable because the vanishing complex root transforms
into double real root 	. The corresponding mode of small
disturbances grows as jc j � � expði	�Þ.
Under condition (4.14) for all values Q1 ¼ Q2 the pure

imaginary root 	� ¼ i	�
2 (	�

2 > 0) exists. For the states
with! 	 0:5, Q1 	 0:25, Eq. (4.13) has no other complex
roots except 	� ¼ i	�

2. The value 	
�
2 tends to 0 at m3 ! 0

and at m3 ! m3cr � m�
3cr, and it reaches the maximum for

values m3 close to m1. For the case Q1 ¼ Q2 ¼ 1=4 the
value m�

3cr ’ 5:05m1 [Fig. 3(b)].

The critical value Q�
3cr ¼ �a0=m

�
3cr, corresponding to

vanishing the root 	�, may be calculated, if we substitute
	 ¼ i	2 into Eq. (4.13) and analyze its behavior at 	2 ! 0:

�S1!	2þ�ð	2Þ¼ 2Q3

�C1ð1þcosh�	2Þ	2þ �S1!sinh�	2

cosh�	2

:

The function �ð	2Þ ¼ Oð	3
2Þ ¼ �3	

3
2 þ�5	

5
2 þ � � � is

positive for 	2 > 0 (contains only positive summands), so
the root 	2 ¼ 	�

2 of this equation exists only under the

condition 2Q3ð2 �C1 þ � �S1!Þ> �S1! resulting in the fol-
lowing expression for the critical value:

Q�
3cr ¼

1

2�þ 4 �C1ð! �S1Þ�1
¼ 1

2�þ 2Q�1
1

: (4.15)

For values !> 1=2 the structure of complex roots of
Eq. (4.13) is more complicated. Additional complex roots
may exist in certain interval of values m3. So the critical
value m3cr (4.14) corresponds to vanishing all these roots.
In the case m3 ¼ 0, corresponding to Q3 ! 1, there is

no massive point at the center, and we have the linear
rotational state with n ¼ 2. In this case Eq. (4.13) takes
the form

�
	þ! tan

�!

2
tan

�	

2

�
	 sin�	 ¼ 0: (4.16)

For all values ! it has only real roots. So the linear rota-
tional state with n ¼ 2 of the type (4.11) are stable.
Stability also takes place for the case Q3 ¼ 0 (m3 ! 1).
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FIG. 3 (color online). Frequencies of small disturbances for
central states (4.5); values Qj and m3 are specified.
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For the case m1 � m2 the generalization of Eqs. (4.12)
and (4.13) is rather complicated. But its roots, considered
in Ref. [23] and presented in Fig. 3(d), behave similarly to
the case m1 ¼ m2; in particular, the interval (4.14) of
instability exists. Generalization of the expression (4.15)
for the critical value Q�

3cr is

ðQ�
3crÞ�1 ¼ 2�þQ�1

1 þQ�1
2 :

Taking into account Eq. (4.4) m3 ¼ �a0=Q3 we obtain the
critical value of the central mass

m�
3cr ¼ 2��a0 þ m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
1

q þ m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

2

q � E�m3:

(4.17)

It coincides with energy of this state of the string without
contribution of the mass m3 [8,16].

We may conclude that the central rotational state is
unstable if the central mass m3 is nonzero and less than
the energy of the string with other massive points.

V. INSTABILITY OF ROTATIONAL STATES AND
HADRON’S WIDTH

Rotational states (3.1) of the linear string model were
applied for describing orbitally excited baryons [4,9]. The
similar states (4.1) and (4.5) of the closed string describe
the Pomeron trajectory [16], corresponding to possible
glueball states.

For rotational states (3.1) and (4.5) energy E or mass M
and angular momentum J are determined by the following
expressions [4,9,16]:

M ¼ E ¼ q��a0 þ
Xn
j¼1

mjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

j

q þ�ESL; (5.1)

J ¼ Lþ S ¼ a0
2!

�
q��a0 þ

Xn
j¼1

mjv
2
jffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
j

q
�
þ Xn

j¼1

sj:

(5.2)

Here q ¼ 1 for the linear model, q ¼ 2 for the closed
string, sj are spin projections of massive points (quarks

or valent gluons), and �ESL is the spin-orbit contribution
to the energy in the following form [4]:

�ESL ¼ Xn
j¼1

½1� ð1� v2
j Þ1=2�ð� � sjÞ:

If the string tension � and valuesmj and sj are fixed, we

obtain the one-parameter set of rotational states (3.1) or
(4.5). Values J and E2 for these states form the quasilinear
Regge trajectory with asymptotic behavior (1.1) for large E
and J [4,16] with the slope (1.2) �0 ¼ 1=ð2�q�Þ.

Figure 4 presents the typical picture of Regge trajecto-
ries for N baryons with JP ¼ 1=2þ; 3=2�; 5=2þ; . . . gen-

erated by the linear baryon model (solid lines) in
comparison with the quark-diquark model (dashed lines).
Here the model parameters are taken from Ref. [4]:

� ¼ 0:175 GeV2; mq ¼ 130 MeV; mqq ¼ 2mq:

(5.3)

This tension corresponds to the slope �0 ’ 0:9 GeV�2;
effective masses of light quarks are less than constituent
masses [4,9].
One can see that predictions of the linear baryon model

q-q-q and the quark-diquark model q-qq are rather close
under conditions (5.3). The similar picture takes place for
baryons � and strange baryons [4,9].
We have shown in Sec. III that the rotational states (3.1)

of the linear string model are unstable for all energies on
the classic level. But this does not mean disappearance or
terminating corresponding Regge trajectories in Fig. 4. The
straight consequence of this instability is the contribution
to the width of a hadron state.
String models describe only excited hadron states with

large orbital momenta L. These states are unstable with
respect to strong decays and have rather large width �. In
string interpretation this width is connected with probabil-
ity of string breaking; this probability is proportional to the
string length ‘ [19,20]. The value ‘ is proportional to the
string contribution Estr to energy E of a hadron state. For
rotational states (3.1) and (4.5) this contribution to the
expression (5.1) is Estr ¼ q��a0.
Therefore, the component of width �br, connected with

string breaking, is proportional to Estr with the factor 0.1
resulting from particle data [19,20,24]:

�br ’ 0:1 � Estr ¼ 0:1 � q��a0: (5.4)

If a state of a string system is unstable with respect to
small disturbances on the classical level, we are to take this
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FIG. 4 (color online). Regge trajectories for rotational states
(3.1) of the linear baryon model (solid lines) and the quark-
diquark model (dashed lines).
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instability into account in the form of an additional sum-
mand in width � of this hadron state:

� ¼ �br þ �inst: (5.5)

The contribution �inst due to the mentioned instability is
determined by the increment 	2 ¼ 	�

2 of exponential
growth (3.21)

jc j � expð	�
2�Þ ¼ expð	�

2a
�1
0 tÞ

and relation t ¼ a0� for rotational states (3.1) and (4.5). So
for these states

�inst ’ 	�
2

a0
: (5.6)

The values 	�
2 and a0 and both summands (5.4) and (5.6)

of the width (5.5) depend on energy E of the hadron state.
This dependence for values 	�

2, �inst, �br, and � is calcu-
lated for rotational states (3.1) of the model q-q-q, corre-
sponding to parameters (5.3) for the N baryons in Fig. 5.
These graphs are presented in Fig. 5(a) in comparison with
experimental widths of N and � baryons [24] lying on
main Regge trajectories. These widths are shown as the bar
graph with dark bars forN baryons mentioned in Fig. 4 and
light bars for baryons �ð1232Þ, �ð1930Þ, �ð2420Þ, and
�ð2950Þ.

Note that the dimensionless value 	�
2 ¼ 	�

2ðEÞ tends to
zero at E ! Emin ¼

P
mj, but a0 tends to zero more

rapidly, so width �inst (5.6) tends to infinity.

In Fig. 5(b) the similar graphs for strange baryons with
m2 � ms ¼ 300 MeV, m1 ¼ m3 ¼ 130 MeV are pre-
sented. Here dark bars show the width of baryons
�ð1405Þ;�ð1520Þ;�ð1820Þ; . . . , and light bars correspond
to 	ð1385Þ, 	ð1670Þ, 	ð1775Þ, and 	ð2030Þ.
In the mass range 1–2.8 GeV the contribution �inst (5.6)

due to instability of the linear model exceeds �br and tends
to infinity at E ! Emin. This behavior contradicts experi-
mental data of baryon’s width in the mentioned mass
range: � tends to zero if E ! Emin. So one may conclude
that the linear baryon model q-q-q is not adequate for
describing orbitally excited baryon stated as the conse-
quence of rotational instability of this model.
We mentioned above that unstable central rotational

states (4.5) of the closed string, considered in Sec. IV,
may be applied for describing the Pomeron trajectory

J ’ 1:08þ 0:25E2 (5.7)

corresponding to possible glueball states [16,18].
Estimations of gluon masses on the base of gluon propa-

gator in lattice calculations [25,26] yield values mj from

700 to 1000 MeV. We suppose that gluon masses mj ¼
750 MeV and string tension � ¼ 0:175 GeV2 correspond
to the value (5.3). These parameters result in Regge tra-
jectories J ¼ JðE2Þ for states (4.1) and (4.5) close to the
Pomeron trajectory (5.7) [16].
In Fig. 6(a) the total width � ¼ �ðEÞ (5.5) with its

summands �br and �inst is presented for central rotational
states (4.5). They are unstable for all energies E, if masses
mj are equal. The corresponding width �instðEÞ tends to

infinity in the limit E ! Emin ¼
P

mj.
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FIG. 5 (color online). Width � ¼ �ðEÞ (5.5) (solid line), its
summands �br (5.4) (dashed line) and �inst (5.6) (line with dots)
for states (3.1) of the model q� q� q (a) with parameters (5.3);
(b) with m2 ¼ 300 MeV.
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FIG. 6 (color online). Width �ðEÞ (5.5) (solid line) as the sum
of �br (5.4) (dashed line) and �inst (5.6) (dashed-dotted line) for
central states (4.5) of the closed string (a) with parameters mj ¼
750 MeV; (b) with m1 ¼ m2 ¼ 200 MeV, m3 ¼ 750 MeV.
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Behavior of width �ðEÞ (5.5) for central rotational states
of the system withm3 >m1 þm2 is presented in Fig. 6(b).
In this case the threshold effect (4.17) exists, so the ‘‘in-
stability’’ width �instðEÞ equals zero for energies E<
Ecr ¼ 2m3 (here it is 1.5 GeV). For E> Ecr, �instðEÞ ex-
ceeds �brðEÞ in the certain interval, but if E grows, �instðEÞ
tends to zero and �brðEÞ increases.

VI. CONCLUSION

The stability problem was solved for classic rotational
states (3.1) of the linear string baryon model and (4.5) for
the closed string with massive points. It was shown for both
models that the mentioned rotations are unstable, because
spectra of small disturbances for these states contain com-
plex frequencies. They are roots of Eqs. (3.20) and (4.13).
These frequencies 	 ¼ 	1 þ i	2 correspond to exponen-
tially growing modes of disturbances c � expð	2�Þ and,
consequently, to instability of the mentioned rotational
states.

States (3.1) of the linear string baryon model q-q-q are
unstable for any values of masses mj on the string (except

for the case m2 ¼ 0: if the middle mass vanishes, the
system transforms into the stable string with massive

ends). But for the closed string we have the threshold
effect, the central rotational states (4.5) unstable, if the
central mass is nonzero and less than the critical value mcr

(4.17). This critical value equals the energy of the string
without the central mass.
Instability of classic rotations results in some manifes-

tations in properties of hadron states, described by the
considered string model. In particular, such a model pre-
dicts additional width �inst (5.6) of excited hadrons. To
make a definite conclusion for the closed string, considered
in Sec. IV, we are to have more reliable experimental data
for glueballs and exotic hadrons. But for the linear string
baryon model q-q-q the predicted contribution �inst in total
width � (5.5) in the mass range 1–3 GeV is too large in
comparison with experimental data for N, � and strange
baryons.
These predictions very weakly depend on quark masses

mj as model parameters. So we conclude that the linear

string model q-q-q is unacceptable for describing these
baryon states and we should refuse this model in favor of
the quark-diquark and Y models. Nevertheless, we cannot
exclude the q-q-q configuration as a possible structure of
some baryons with anomalously large width or a variant of
mixing with other configurations.
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