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Using recent results obtained within the hidden gauge formalism for vector mesons, in which the

f0ð1370Þ and f2ð1270Þ resonances are dynamically generated resonances from the �� interaction, we

evaluate the radiative decay of these resonances into ��. We obtain results for the width in good

agreement with the experimental data for the f2ð1270Þ state and a width about a factor 2 smaller for the

f0ð1370Þ resonance, which is also in agreement with the data of the Crystal Ball Collaboration and with

the more recent ones from the Belle Collaboration, which, however, have a very large uncertainty.
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I. INTRODUCTION

The radiative decay of mesons has been traditionally
advocated as a good tool to investigate the nature of the
controversial mesons. In particular, the decay into �� has
received special attention [1]. The scalar mesons have been
most thoroughly studied, given the ongoing debate on
whether they are q �q states, tetraquarks, or meson-meson
molecules, which is a particular case of the more general
one corresponding to dynamically generated states from
the meson-meson interaction in coupled channels; see [2]
for a recent review.

In this work we want to call attention to two particular
mesons, the f0ð1370Þ and f2ð1270Þ states, because in a
recent paper [3] these two mesons were found to be dy-
namically generated states from the �� � interaction in
the hidden gauge approach for the vector mesons [4,5]. The
attraction was stronger in the spin S ¼ 2 channel than in
the scalar one, but in both channels there was enough
attraction to generate bound states. In other channels the
interaction was either very weak or repulsive, such that
these two states stand as particular cases which can be
viewed as largely being �� � molecules in that frame-
work. It is interesting to see how this idea immediately
leads one to evaluate rather accurately the partial decay
width of the two states into ��, and this is the purpose of
our paper.

Although Ref. [3] contains the first theoretical evalu-
ation of the �� bound system, it is interesting to recall that,
based on phenomenological properties (the large ��� ver-

sus ���), the ��molecular nature of the f0ð1370Þwas also
suggested in [6,7]. The f2ð1270Þ is, however, widely be-
lieved to be part of a p-wave nonet of q �q states [6,7]. The
results of [3] support the suggestion of [6,7] for the

f0ð1370Þ as a �� molecule but, surprisingly, also show
that for spin S ¼ 2 the �� interaction is attractive and
about 3 times larger than in the case of S ¼ 0, thanks to
which a stronger bound �� state appears for S ¼ 2, which
was identified in [3] as the f2ð1270Þ resonance.
The experimental situation is rich in the case of the

f2ð1270Þ, which has a very pronounced peak in �� scat-
tering to pions. Compatible results are found in different
laboratories and using different methods, including those
from Crystal Ball [8], Mark II [9], JADE [10], TOPAZ
[11], MD-1 [12], CELLO [13], and VENUS [14]. The PDG
quotes the result �ðf2ð1270Þ ! ��Þ ¼ 2:71þ0:26

�0:23 keV [15].

Recent results are also presented by the Belle
Collaboration in [16] and in [17], where the preferred
solution gives �ðf2ð1270Þ ! ��Þ ¼ 3:14� 0:20 keV.
The situation of the �� decay of f0ð1370Þ is rather unclear.
The latest edition of the PDG [15] does not quote any
value, superseding old results which were ambiguous.
The Belle Collaboration has the most recent results in
this direction [18]. This work quotes a central value for
the mass of the f0ð1370Þ of 1470 MeV, but with very large
uncertainties, of the order of 255 MeV, mostly of system-
atic origin. It also quotes a value for the radiative decay of
this resonance, again with a very large uncertainty,
���Bð�0�0Þ ¼ ð11þ4þ603

�2�7 Þ eV. The same work quotes

more accurate values deduced by the Crystal Ball
Collaboration [8], ���Bð�0�0Þ ¼ ð430� 80Þ eV, with,

however, much less statistics than Belle.
On the theoretical side, an evaluation of the radiative

decay into �� of f0ð1370Þ has been done in [19], where
using a model in which the scalars are a mixture of q �q and
qq �q �q , the authors find a small value between 0 and
0.22 keV. Much bigger values, of the order of 4 keV, are
obtained in [20] assuming the state to be basically a q �q of
nonstrange nature, although actually the value quoted is
used as input to determine parameters of the theory. Ratios
of radiative widths between scalar states are also quoted in
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[21] under the assumption that they are q �q states mixing
with glueballs. Results for the �� decay of the f2ð1270Þ
state are also obtained in [22], where assuming that the
resonance is a q �q state, a satisfactory description of this
decay rate together with that of f2ð1525Þ is obtained at the
expense of fitting two free parameters.

The novel picture of [3] puts the f0ð1370Þ and f2ð1270Þ
resonances on the same footing, allowing one to calculate
the �� radiative width within the same formalism. This is
the aim of the present paper. The evaluation presented here
turns out to be rather simple technically, once the formal-
ism for the generation of the two resonances is developed
[3]. Wewill find that the widths obtained are rather precise,
with respect to uncertainties from the parameters of the
model, and agree well with the well-known experimental
results for the case of f2ð1270Þ, while the one for f0ð1370Þ
follows the actual experimental trend that it is indeed about
1 order of magnitude smaller than that for the f2ð1270Þ
state.

II. FORMALISM

In [3] the driving term for the �� interaction was ob-
tained from the hidden gauge Lagrangian

L III ¼ �1
4hV��V

��i; (1)

where the symbol h i stands for the SUð3Þ trace and V�� is

given by

V�� ¼ @�V� � @�V� � ig½V�; V��; (2)

with g ¼ MV=2f, and f ¼ 93 MeV is the pion decay
constant. The SUð3Þ matrix of V� is given by

V� ¼
�0ffiffi
2

p þ !ffiffi
2

p �þ K�þ

�� � �0ffiffi
2

p þ !ffiffi
2

p K�0

K�� �K�0 ��

0
BB@

1
CCA: (3)

The interaction of LIII in Eq. (3) gives rise to a contact
term,

L ðcÞ
III ¼

g2

2
hV�V�V

�V� � V�V�V
�V�i; (4)

and a three-vector vertex given by

L ð3VÞ
III ¼ ighð@�V� � @�V�ÞV�V�i: (5)

With this information the driving term for the �� interac-
tion is given by the diagrams of Fig. 1. This driving term,
V, is used as a kernel in the Bethe-Salpeter equation

depicted in Fig. 2, which gives the solution

T ¼ V

1� VG
; (6)

with G the loop function for the meson propagators con-
veniently regularized [3]. The interaction is studied for I ¼
0, and the projections over spin and isospin are performed.
Two states are obtained, visible in neat peaks of jTj2, which
are depicted in Fig. 3. They correspond to f2ð1270Þ and
f0ð1370Þ, the latter one appearing around 1500 MeV in our
approach, close to the preliminary results of the Belle
Collaboration [18].
The model of [3] contains �� as basic components to

form the scalar and tensor states. However, intermediate
�� states, through the box and crossed box diagrams, were
also considered. In addition, intermediate !! states,
driven by pion exchange through anomalous �!� cou-
plings, were also taken into account. It was found that the
real parts of the �� and !! intermediate state mecha-
nisms were individually small compared to the dominant
tree-level �� ! �� mechanisms, and in addition, there
were cancellations between the �� and !! contributions,
rendering the tree-level �� terms largely dominant.
The calculations of Ref. [3] were done using the on-shell

approach of [23] based on the N/D method, using a cutoff
in the three-momentum in the loops, which was shown in
[23] to be equivalent to the use of dimensional regulariza-
tion. This prescription then preserves the underlying sym-
metries and gauge invariance (see a more detailed
discussion in [24], page 5). The approach of Ref. [3] uses
a full relativistic treatment of the loop functions, which
guarantees exact unitarity and analyticity of the ampli-
tudes. Nonrelativistic approximations are done in the
evaluation of the VV potential, neglecting the three-
momentum of the vector mesons versus their mass.
While this approximation is quite good for the f0ð1370Þ
state, for the case of the more bound f2ð1270Þ resonance,
certainly it induces a larger correction, still under control
as discussed in Ref. [3] (see page 4 of this reference),
particularly because a small fine-tuning of the parameters
is allowed in the approach to fit one resonance mass, which
allows one to cope with small corrections stemming from
different sources.
Figure 3 shows results also including the box diagram

accounting for �� decay, which plays a minor role in the
binding of the two states but enlarges the width of the states
due to the large phase space available for decay into two
pions. The � parameter in Fig. 3 appears to account for
� ! �� off shell and is varied within reasonable values
[25].

FIG. 1. Driving terms of the �� interaction. The diagram to
the right sums the contribution of the first two diagrams.

FIG. 2. Diagrams summed up in the Bethe-Salpeter equation.
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The amplitude of Fig. 2 can be parametrized as a Breit-
Wigner amplitude, and using the spin projection operators
of [3], we find

S ¼ 2;

tð2Þ ¼ g2T
s�M2

R þ iMR�

�
1

2
ð�ð1Þi �ð2Þj þ �ð1Þj �ð2Þi Þ

� 1

3
�ð1Þl �ð2Þl 	ij

��
1

2
ð�ð3Þi �ð4Þj þ �ð3Þj �ð4Þi Þ � 1

3
�ð3Þm �ð4Þm 	ij

�
;

(7)

S ¼ 0;

tð0Þ ¼ g2S
s�M2

R þ iMR�
� 1ffiffiffi

3
p �ð1Þi �ð2Þi

1ffiffiffi
3

p �ð3Þj �ð4Þj ; (8)

where �ðmÞ
i are the polarization vectors of the � for each m

of the four �mesons involved (1, 2 for the initial states and
3, 4 for the final states). As shown in [3], because of the
small three-momenta of the � mesons involved, only the
spatial components of the � polarization vectors are
needed. These amplitudes correspond to a pole term as
depicted in Fig. 4. Since we are interested in the coupling
of the resonance to the �� system, this is given by

S ¼ 2; gT½12ð�ð3Þi �ð4Þj þ �ð3Þj �ð4Þi Þ � 1
3�

ð3Þ
m �ð4Þm 	ij�; (9)

S ¼ 0; gS
1ffiffiffi
3

p �ð3Þi �ð4Þi : (10)

In both cases we are only interested in the isospin I ¼ 0
component, given by

j��I ¼ 0i ¼ � 1ffiffiffi
6

p j�þ�� þ ���þ þ �0�0i; (11)

which uses the unitary normalization (extra 1ffiffi
2

p factor to

account for identical particles in the sum over intermediate
states) and the phase convention j�þi ¼ �j1; 1i. The use
of this normalization will also account for the factor 1=2 of
symmetry that one has when dealing with the identical
particle in the final state.
We only need the �0�0 component of the amplitude

R ! ��. The �0�0 component is given by ð�1=
ffiffiffi
3

p Þ times
the I ¼ 0 components of Eqs. (9) and (10).
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FIG. 3. jTj2 calculated in [3] for S ¼ 0 and S ¼ 2 for several values of � and qmax defined in [3].

(a) (b)

FIG. 4. (a) Resonance pole representation of the amplitude of
[3]. (b) Diagram depicting the coupling of the resonance to ��.
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III. RADIATIVE DECAYS

Here we present the formalism for the �� decay of the
two resonances. Since the resonances are formed from ��
components, the two photons are radiated from these com-
ponents. This is taken into account by loops involving the
�mesons, in a similar way as done in [26] for the radiative
decay into �� of the axial vector mesons generated dy-
namically from the interaction of vectors and pseudosca-
lars within the same hidden gauge formalism.

Taking into account that in the hidden gauge formalism
the photons do not couple directly to the vector but indi-
rectly through their conversion into �,!,�, the picture we
want for the �� decay of the resonances is given in Fig. 5.
The fact that the photon couples to vectors by direct
conversion into another vector allows one to factorize the
diagrams of Fig. 5 into a strong part, R ! �0�0, depicted
in Fig. 6, followed by the photon coupling to either �0.
Note that whether we have the strong interaction terms or
the electromagnetic ones of Fig. 5, the loop contains �þ��
alone since both the �0�0�0�0 contact terms of the �0�0�0

three-leg vertex are zero.
Coming back to the diagrams of Fig. 6, we see that, by

definition of the potential or kernel of the interaction (see
Fig. 1), the sum of the first two diagrams can be cast as the
diagram of Fig. 6(c), which is given by

tR�0�0 ¼
�
� 1ffiffiffi

3
p

�
gðiÞGðMRÞVPðiÞ; (12)

where gðiÞ stands for gðSÞ or gðTÞ, PðiÞ are the corresponding
spin operators of Eqs. (9) and (10), and GðMRÞ stands for
the loop function defined in Eq. (6) evaluated at

ffiffiffi
s

p ¼ MR.
However, according to Eq. (6), we are now at the pole of

the amplitude, where GV ¼ 1, and, thus, we obtain

tR�0�0 ¼ � 1ffiffiffi
3

p gðiÞPðiÞ (13)

which is the same coupling as in Eqs. (9) and (10), includ-
ing the isospin factor for �0�0. In other words, the addition
of an extra bubble (loop) to the series of diagrams of Fig. 2
leads to the same series at the pole of the resonance. This
means that the coupling of two photons to the resonance is
given by the diagram of Fig. 7. Namely, in the present case,
and due to the peculiar couplings of the hidden gauge
formalism, the coupling of �� to the dynamically gener-
ated �� resonances is given by the tree-level diagram of
Fig. 7 alone. This makes the evaluation obviously very
simple, and taking into account the coupling of the photon
to the �0 [4,5,26],

� it�0� ¼ ð�iÞ 1ffiffiffi
2

p M2
V

e

g
��ð�Þ��ð�Þðe < 0Þ; (14)

we find at the end the two amplitudes

S ¼ 2;

tR!�� ¼ � 1ffiffiffi
3

p e2

2

gT
g2

�
1

2
ð�ið�1Þ�jð�2Þ þ �jð�1Þ�ið�2ÞÞ

� 1

3
�mð�1Þ�mð�2Þ	ij

�
; (15)

S ¼ 0; tR!�� ¼ � 1

3

e2

2

gS
g2

�ið�1Þ�ið�2Þ: (16)

Here we would like to make some consideration concern-
ing gauge invariance of the model. This problem was dealt
with in detail in [26] in the radiative decay of axial vector
mesons to a pseudoscalar and a photon. In that case the low
lying axial vectors were obtained dynamically from the
interaction of a pseudoscalar and a vector within the same
hidden gauge formalism used here. Gauge invariance of the
model was proved there by showing first how it works at
tree level and then in the case of loops. We follow the same
strategy here.
First we show the gauge invariance of the tree-level set

of diagrams of Fig. 8 for the case �þ�� ! �0� (it is
sufficient to make the test for one photon since for two
photons it follows a fortiori). The �0 ! � conversion
proceeds via the term of Eq. (14) and, up to a constant,
replaces ��ð�0Þ by ��ð�Þ. The test of gauge invariance

proceeds by finding a cancellation of terms upon the sub-
stitution of ��ð�Þ by k3�, the photon momentum. We thus

FIG. 5. Feynman diagrams to evaluate the radiative decay
width of f0ð1370Þ and f2ð1270Þ.

FIG. 7. Feynman diagram equivalent to those of Fig. 5 at the
resonance pole energy.

(a) (b) (c)

FIG. 6. The strong part of the Feynman diagrams to evaluate
the radiative decay width of f0ð1370Þ and f2ð1270Þ.
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proceed by substituting ��ð�0Þ by k3� in the strong amplitude, �þ�� ! �0�0. For the case of Fig. 8(a) we find

�itðaÞ � iLðaÞ

¼ 2g2
i

k21 �M2
� � 2k1 � k3

f2ik1 � k3�þ��0þ� þ ik3 � �þðk3 � k1Þ��0þ� � ik1 � �þk�3 �0þ� g

� fð�i�0þ�0 k�
0

2 �
��0 þ �0þ�0 ðk4 � k2Þ�0

���0 Þ�0
�0 þ ði�0�0 ðk2 � k4Þ�0�0þ�0 � i�0�

0
k�

0
4 �

0þ
�0 Þ���0

þ ði���0k
�0
4 �0�

0 þ i���0k
�0
2 �0�

0 Þ�0þ�0 g: (17)

Upon replacing the sum of polarizations in �0þ� �0þ�0 leading to

� g��0 þ ðk1 � k3Þ�ðk1 � k3Þ�0

M2
�

; (18)

we find that the second term in Eq. (18) leads to a vanishing contribution of Eq. (17). The contribution of Fig. 8(b) can be
obtained from the one of Fig. 8(a) upon exchanging k1 $ k2, �

þ $ ��. The sum of polarizations for the intermediate �
meson leads to Eq. (18) with k1 ! k2, and the contribution of the second term of the propagator vanishes equally. Thus,
only the �g��0 part of the propagator contributes and leads to

�iðtðaÞ þ tðbÞÞ ¼ 2g2
i

2k1 � k3 2ik1 � k3f�2ik2 � �0�þ � �� � 2ik4 � ���þ � �0 þ iðk4 þ k2Þ � �þ�� � �0

þ idemðk1 $ k2; �
þ $ ��Þg

¼ i2g2f2k3 � �0�þ � �� � k3 � �þ�� � �0 � k3 � ���0 � �þg: (19)

This last term provides a contribution equal, but with
opposite sign, to the one of Fig. 8(c), the contact term
which comes from the Lagrangian [3] for �þ�� ! �0�0,

Lð�þ�� ! �0�0Þ ¼ 2g2ð�0
��

0
��

þ������0
��

0��þ
� �

��Þ;
(20)

upon substitution of one �0
� by k3�. This shows that the set

of diagrams of Fig. 8 fulfills the gauge invariance
requirement.

The test of gauge invariance for the case of the loops
contained in the dynamically generated states proceeds
like in the case of the axial vector mesons by separating
the intermediate propagator into its on-shell and off-shell
parts,

1

k21 �M2
� � 2k1k3

¼ � 1

2k1k3
þ 1

2k1k3

k21 �M2
�

ðk1 � k3Þ2 �M2
�

;

(21)

which allows one to take into account the on-shell cancel-
lation found before. The rest of the terms vanish on shell
and can be made to cancel a propagator. The cancellation
of terms now requires some new diagrams like the one of
Fig. 9.
Yet, the interesting thing to observe is that in all terms

needed, the photon always comes from a �0, the peculiar
feature of vector meson dominance inherent in the hidden
gauge formalism. This means that the �þ�� ! �0�0 in-
teraction contains all these terms, removing the � coupling.
Terms like those in Fig. 9, with two � mesons propagating
necessarily off shell in the loops, appear in the renormal-
ization procedure of [3] and are effectively incorporated
into the scheme through renormalized couplings and sub-
traction constants. As a consequence of this, the procedure
followed here, coupling a � to any final �0 in the strong
amplitude, is the right thing to do, consistent with gauge
invariance.

(b)(a) (c)

FIG. 8. Feynman diagrams leading to a gauge invariance set in
�þ�� ! �0�.

FIG. 9. Terms encountered in the gauge invariant set of dia-
grams for �þ�� ! �0� in the case of loops.
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Wework in the Coulomb gauge for the photons (�0 ¼ 0,

~� � ~k ¼ 0), and to sum over the final (transverse) polar-
izations we use

X



�ið�Þ�jð�Þ ¼ 	ij �
kikj
~k2

: (22)

The final partial decay widths, summing over final state
and averaging over initial state polarizations, are given by

S ¼ 2; � ¼ 1

5

1

16�

1

MR

g2T
7

3

1

12
e4
�
2f

M�

�
4
; (23)

S ¼ 0; � ¼ 1

16�

1

MR

g2S
2

3

1

12
e4
�
2f

M�

�
4
: (24)

The numerical values require just the knowledge of the
couplings gS and gT . Using Eqs. (7) and (8) and the results
of Fig. 3 (where the spin projectors are excluded in jTj2),
we find

g2S;T ¼ MR�RðjTj2maxÞ1=2: (25)

In Tables I and II, we show the results of the couplings for
different values of the � used in the form factors.

What we can see is that, independent of the value of �,
and hence the total width, the value of the couplings g2S, g

2
T

is rather stable, with the results

g2S ¼ 78� 106 MeV2; g2T ¼ 150� 106 MeV2;

(26)

with uncertainties of the order of 10%. With these values,
the numerical results for the �� radiative widths are

�ðf0ð1370Þ ! ��Þ ¼ 1:62 keV;

�ðf2ð1270Þ ! ��Þ ¼ 2:6 keV;
(27)

with estimated errors of 10%. The results for the f2ð1270Þ
are in perfect agreement with the experimental data quoted
in the Introduction. In order to compare the results ob-
tained for the f0ð1370Þ with experiment, we also need the
branching ratio Bð�0�0Þ provided by the theory for this
resonance. This number can be obtained from [3] since the
total width of the f0ð1370Þ comes about 1=4 from �� and
3=4 from ��, out of which 1=4 corresponds to �0�0

decay. Hence, we should compare our results of

���Bð�0�0Þ ¼ 405 eV with those of the Crystal Ball

Collaboration [8] of ð430� 80Þ eV. The agreement is
very good, but one is left to think why more accurate
results are claimed in the Crystal Ball work than in [18],
in spite of having much less statistics.
The estimated 10% quoted errors are from the uncer-

tainties in the model parameters. This certainly does not
account for the systematic uncertainties related to how
accurately the model can be substituted for the underlying
QCD dynamics of the problem. This is obviously difficult
to quantize, like in other hadronic models, but should be
kept in mind. Admitting that the QCD dynamics is richer
than the one provided by the hidden gauge mechanism
used in the present approach, the hope is that the model
resulting from the present framework can be a good ap-
proximation to the real dynamics of the interaction of
vector mesons in a certain energy regime where we
move. How good this approximation is can only be found
by testing the model with experimental data. The study
done in this work on the radiative decay has passed this
test. Other tests would be most welcome to gradually find
support for the idea of these two resonances as being
largely, dynamically generated states from the �� interac-
tion, or �� bound states in the present case. Certainly,
precise measurement of the decay rate for the f0ð1370Þ
state, together with simultaneous results for both reso-
nances in other models would be most helpful to further
advance our knowledge of the nature of these resonances.

IV. CONCLUSIONS

We have followed recent developments in which the
f2ð1270Þ and f0ð1370Þ resonances appear to be dynami-
cally generated from the interaction of � mesons using the
hidden gauge formalism for vector mesons. We extended
the formalism to account for the radiative decay of the
resonances into ��. The extension has been done follow-
ing the standard method to deal with dynamically gener-
ated resonances, in which the photons are coupled to the
components of the resonance, in this case ��. This is
technically implemented by means of loop functions which
involve the photon couplings to the components of the
resonance. In the present case, the peculiarity of the hidden
gauge approach, in which the photons couple directly to
one �0, allows a factorization of the strong part of the

TABLE II. Resonance parameters and coupling constants ob-
tained by fitting the results shown in Fig. 3 for the S ¼ 0 state
with qmax ¼ 875 MeV.

S ¼ 0
�

(MeV) jTj2max

�R

(MeV)

g2S
(MeV2)

1200 1:0� 105 152 73:8� 106

MR ¼ 1535 MeV 1300 6:0� 104 222 83:5� 106

1400 4:2� 104 245 77:1� 106

TABLE I. Resonance parameters and coupling constants ob-
tained by fitting the results shown in Fig. 3 for the S ¼ 2 state
with qmax ¼ 875 MeV.

S ¼ 2
�

(MeV) jTj2max

�R

(MeV)

g2T
(MeV2)

1200 2:4� 106 76 150� 106

MR ¼ 1275 MeV 1300 1:5� 106 99 155� 106

1400 1:1� 106 110 147� 106
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interaction; the final result is converted into a tree-level
contribution, and hence is rid of any ambiguity due to
possible divergences of the loops. The results obtained
for the radiative width of the f2ð1270Þ are in perfect
agreement with experimental data, as are those for the
f0ð1370Þ when they are compared with the experimental
results of the Crystal Ball Collaboration, or those of the
more recent experiment by Belle within its large errors.
Yet, the large systematic errors quoted in the work from
Belle, which has much better statistics, should raise some
caution about these experimental numbers. With the ulti-
mate goal of learning about the nature of the two reso-
nances discussed, and having in mind the picture as
dynamically generated states emerging from the �� inter-
action in the local hidden gauge approach, the test passed
here in the radiative decay is a first step in the search for
support of this idea, and further tests should be most
welcome. To further strengthen this idea it would be

most useful to have good results for the radiative decay
width of the f0ð1370Þ state, as well as results from other
theoretical models for both resonances which could tell us
how stringent the test is of this radiative decay to discrimi-
nate among different models. The work presented here
should stimulate research along these lines.
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