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We study the nonsinglet evolution for the twist-three quark-gluon correlation functions associated with

the transverse momentum odd quark distributions. Different from that for the leading-twist quark

distributions, these evolution equations involve more general twist-three functions beyond the correlation

functions themselves. They provide important information on nucleon structure and can be studied in the

semi-inclusive hadron production in deep inelastic scattering and Drell-Yan lepton pair production in the

pp scattering process.
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I. INTRODUCTION

Semi-inclusive hadronic processes have attracted much
theoretical interest in recent years, where the so-called
transverse momentum dependent (TMD) parton distribu-
tions and fragmentation functions can be studied [1–9].
These functions generalize the original Feynman parton
picture, where the partons only carry longitudinal momen-
tum fractions of the parenting (final state) hadrons. They
provide important information on nucleon structure and are
crucial in understanding the novel spin phenomena, such as
the single transverse spin asymmetry (SSA) [1–3,9–11].

Important aspects of the TMD parton distributions have
been explored in the last few years, such as the gauge
property and the crucial role of the initial and final state
interactions for the nonzero Sivers quark distribution lead-
ing to the SSA in semi-inclusive hadron production in deep
inelastic scattering (SIDIS) and Drell-Yan lepton pair pro-
duction processes [1–4]. Further study has shown that the
transverse momentum dependent approach is consistent
with the twist-three quark-gluon correlation approach for
the SSA phenomena [12–16]. In particular, these two
approaches are unified to describe the same physics in
the overlap region where both apply [17].

At the leading order, there are eight independent TMD
quark distributions, depending on the polarizations of the
nucleon and the quark [7,8]. Three of them are called
k?-even distributions, where k? is the quark transverse
momentum. After being integrated over transverse mo-
mentum, these k?-even distributions lead to the integrated
leading-twist quark distributions: the spin averaged, the
longitudinal polarized, and the transversity quark distribu-
tions [18]. The remaining five are called k?-odd distribu-
tions and vanish in the quark correlation matrix upon
integral over the transverse momentum. These TMD quark
distributions are defined from the following matrix:

M��ðx; ~k?Þ ¼ Pþ Z d��

2�
eix�

�Pþ Z d2b?
ð2�Þ2 e

�i ~b?� ~k?

� hPSj ���
v ð0Þ��

v ð��; 0; ~b?ÞjPSi; (1)

where x is the longitudinal momentum fraction of the

proton carried by the quark and ~k? is the transverse mo-
mentum. The nucleon momentum is defined as P ¼
ðPþ; 0�; 0?Þ, and S is the polarization vector. The field
operator �vð�Þ is defined as �vð�Þ � Lvð�1;�Þc ð�Þ,
where c ð�Þ is the quark field andLv is the gauge link [3].
We have chosen it going to �1, indicating that we can
adopt the definition for the TMD quark distributions for the
Drell-Yan process [1–3]. The k?-odd TMD quark distri-
butions can be obtained by the following expansion of M
[7,8]:

M ¼ 1

2M

�
g1Tðx; k?Þ�5P6 ð ~k? � ~S?Þ

þ f?1Tðx; k?Þ��	����P	k�S�

þ h1Lðx; k?Þ
i��	�5P
�k	? þ h?1 ðx; k?Þ��	k�P	

þ 1

M
h?1Tðx; k?Þi��	�5P

�

�
~k? � ~S?k	? � 1

2
~k2?S	?

��
;

(2)

where M is the nucleon mass. The interpretations of the
four k?-odd TMD quark distributions are as follows: g1T
and f?1T represent longitudinal polarized and unpolarized
quark distributions in a transversely polarized nucleon,
respectively; and h1L and h?1 represent transversely polar-
ized quark distributions in longitudinal polarized and un-
polarized nucleon targets, respectively. The last k?-odd
TMD quark distribution h?1T represents a correlated trans-
versely polarized quark distribution in a transversely po-
larized nucleon target. They are called k?-odd
distributions, because they will vanish if we integrate out
the matrix M over the quark transverse momentum.
However, if we weight the integral with transverse mo-
mentum, the first four distributions will lead to a set of
quark-gluon correlation functions at the twist-three level,
whereas the last one leads to a twist-four quark-gluon
correlation function. These correlation functions are trans-
verse momentum moments of the corresponding k?-odd
TMD quark distributions.
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In this paper, we study the first four k?-odd TMD
distributions defined in Eq. (2). The transverse momentum
moments of these distributions define the following corre-
lation functions in nucleon1:

Z
d2k?

~k2?
2�M2

f?1Tðx; k?Þ ¼ TFðxÞ;
Z

d2k?
~k2?

2M2
g?1Tðx; k?Þ ¼ ~gðxÞ;

(3)

Z
d2k?

~k2?
2�M2

h?1 ðx; k?Þ ¼ Tð�Þ
F ðxÞ;

Z
d2k?

~k2?
2M2

h?1Lðx; k?Þ ¼ ~hðxÞ:
(4)

From the definitions Eqs. (1) and (2), it is straightforward

to show that the correlation functions TF and Tð�Þ
F can be

defined from the following quark-gluon correlation matrix
[4]:

M�
F��ðxÞ �

Z dy�

2�

dy�1
2�

eixP
þy�

� hPSj �c �ð0ÞgFþ�ðy�1 Þc �ðy�ÞjPSi; (5)

where � is a transverse index, Fþ� the gluon field tensor,

and the gauge links between different fields have been
suppressed for simplicity. The expansion of the above
quark-gluon correlation matrix contains the contributions

from TFðxÞ and Tð�Þ
F ðxÞ,

M�
F��ðxÞ ¼

M

2
½TFðxÞ�	�? S?	p6 þ Tð�Þ

F ðxÞi��
?p6 �: (6)

We notice TFðxÞ and Tð�Þ
F ðxÞ are diagonal parts of the

general quark-gluon correlation functions TFðx1; x2Þ and

Tð�Þ
F ðx1; x2Þ which are responsible for the single spin asym-

metry in the hadronic process [13,19], i.e., TFðxÞ �
TFðx; xÞ and Tð�Þ

F ðxÞ � Tð�Þ
F ðx; xÞ.2 Similarly, the correla-

tion functions ~g and ~h can be calculated from the following
matrix expansion [4]:

~M�
F��ðxÞ ¼

M

2
½~gðxÞS�?�5p6 þ ~hðxÞ
�5�

�
?p6 �; (7)

where ~M
�
F�� is defined as

~M
�
F��ðxÞ ¼

Z d��

2�
ei�

�xPþhPSj �c �ð0Þ
�
iD?

�ð��Þ

�
Z �1

��
d��gFþ�ð��Þ

�
c �ð��ÞjPSi: (8)

Applying the time-reversal invariance, we find the above
definition of ~g to be the same as that in [15], except a
normalization factor of 2.
The above four correlation functions are subsets of more

general twist-three quark-gluon correlation functions

[18,20]: GDðx; yÞ, ~GDðx; yÞ, HDðx; yÞ, and Eðx; yÞ. They
are defined by parametrizing the following correlation
matrix [18]:

M�
D��ðx;x1Þ�

Z dy�

2�

dy�1
2�

eixP
þy�eiðx1�xÞPþy�

1

�hP;Sj �c �ð0ÞiD�
?ðy�1 Þc �ðy�ÞjP;Si

¼ M

2Pþ½GDðx;x1Þi��	
? S?	p6 þ ~GDðx;x1ÞS�?�5p6

þHDðx;x1Þ
�5�
�
?p6 þEDðx;x1Þ��

?p6 �: (9)

These functions are called D-type twist-three quark-gluon
correlation functions, because they are defined by the
covariant derivatives. We can also define the F-type corre-
lation functions [20] by replacing D? with Fþ? in the
above matrix,

M
�
F��ðx; x1Þ �

Z dy�

2�

dy�1
2�

eixP
þy�eiðx1�xÞPþy�

1

� hP; Sj �c �ð0ÞgFþ�ðy�1 Þc �ðy�ÞjP; Si
¼ M

2
½TFðx; x1Þ�	�? S?	p6 þ ~TFðx; x1ÞiS�?�5p6

þ ~Tð�Þ
F ðx; x1Þi
�5�

�
?p6 þ Tð�Þ

F ðx; x1Þi��
?p6 �:
(10)

By using the equation of motion [16,20] it was found that
these two types of correlation functions are related to each
other,

GDðx; x1Þ ¼ P
1

x� x1
TFðx; x1Þ; (11)

~GDðx; x1Þ ¼ P
1

x� x1
~TFðx; x1Þ þ 
ðx� x1Þ~gðxÞ; (12)

where P stands for the principal value prescription. A

similar expression holds forHD and ED with Tð�Þ
F and ~Tð�Þ

F .
These twist-three functions and their contributions to the

inclusive DIS and Drell-Yan lepton pair productions have
been under intense investigation in the last two decades
(see, for example, [18]). The above four correlation func-
tions Eqs. (3) and (4), however, will enter in the transverse
momentum weighted cross sections in the semi-inclusive
hadron production in DIS and Drell-Yan lepton pair pro-
duction in pp collisions [7,8,21]. They will provide addi-

1Here we emphasize that the TMD quark distributions follow
their definitions in the Drell-Yan process. If we choose those for
the semi-inclusive DIS process, the two equations associated
with TFðxÞ and Tð�Þ

F ðxÞ will change signs.
2For the convenience of our presentation, we have changed the

normalization for TFðx1; x2Þ and Tð�Þ
F ðx1; x2Þ by a factor of

1=2�M as compared to those in [17,19].
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tional information on the quark-gluon correlations in the
nucleon and will be complementary to those studied in the
inclusive DIS and Drell-Yan processes. Recent experimen-
tal developments will help to pin down these contributions
and build strong physics associated with these correlation
functions [22].

One of the important questions remaining to be an-
swered is the scale evolution for these correlation func-
tions. The evolution equation controls the energy
dependence of the associated observables [23]. For ex-
ample, with the evolution equations, we will be able to
compare the single spin asymmetries coming from the
same quark-gluon correlation function TFðxÞ in hadronic
processes at different energy experiments. The general
structure of the evolution equations for the twist-three
quark-gluon correlation functions has been known in the
literature [24]. However, the above correlation functions
Eqs. (3) and (4) are special projections of the general twist-
three quark-gluon correlations, and their evolutions are not
directly available from the already known results [24].
Earlier attempts [25] have been made to derive the evolu-
tion equations for the correlation functions of Eqs. (3) and
(4), but were not complete. On the other hand, from the
large transverse momentum quark Sivers function calcu-
lated in [17], we would already obtain the evolution equa-
tion for TFðxÞ, since the collinear divergence in that
calculation will lead to the splitting function of TFðxÞ.
This splitting function was confirmed by a complete cal-
culation of next-to-leading order QCD correction to the
transverse momentum weighted spin asymmetry in Drell-
Yan lepton pair production [26]. More comprehensive
evolution equations for TFðxÞ, together with those for the
three-gluon correlation functions which are relevant to the
single spin asymmetry observables, have recently been
derived in [27]. In this paper, we will extend these studies
to calculate the scale evolutions for the above four quark-
gluon correlation functions, but restrict ourselves to the
nonsinglet case for the splitting functions.

II. THE DERIVATION OF SCALE EVOLUTION
EQUATIONS

The scale evolution of these twist-3 correlation func-
tions can be studied in terms of the higher twist collinear
factorization approach in the covariant gauge as well as in
the light-cone gauge. In our calculations, we will choose
the light-cone gauge: Aþ ¼ 0. There are several advan-
tages for this choice. First, the quark Sivers function was
previously calculated in the covariant gauge [17]. Our
calculation in the light-cone gauge will provide an impor-
tant cross-check for the results. Second, the light-cone
gauge is more convenient to calculate the evolution equa-

tions for ~g and ~h. In particular, the evolution equations for
TFðxÞ and ~gðxÞ can be calculated simultaneously. The only
difference is that for TFðxÞ we have to take a pole contri-
bution for some diagrams, whereas for ~gðxÞ we will not

take the pole (see the discussions below). Third, we can
further choose a particular boundary condition in the light-
cone gauge [3], which will greatly simplify the derivation.
We have also checked that the final results do not depend
on the boundary condition. According to the quark distri-
bution definition we have chosen above, it is convenient to
choose the retarded boundary condition, i.e., A?ð�1�Þ ¼
0. With this choice, the gauge link associated with the
TMD quark distributions in Eq. (1) becomes a unit [3],
and correspondingly the quark-gluon correlation functions
TFðxÞ and ~g can be written as

TFðxÞ ¼
Z dy�

8�2M
eixP

þy�

� hPSj �c ð0Þn6 �	�? S?	i@?�c �ðy�ÞjPSi; (13)

~gðxÞ ¼
Z dy�

4�M
eixP

þy�hPSj �c �ð0Þ�5n6 S?�i@
�
?c �ðy�ÞjPSi;

(14)

in the light-cone gauge with retarded boundary condition.
Similar expressions hold for the other two correlation

functions, Tð�Þ
F and ~h. In the following calculations, we

will focus on the derivation for the evolution functions for

TF and ~g, especially for TF, and those for T
ð�Þ
F and ~h can be

obtained accordingly.
We follow the general approach to calculate the evolu-

tion equations for these correlation functions. For example,
as a perturbative expansion, we have

TFðxÞ ¼ Tð0Þ
F ðxÞ þ Tð1Þ

F ðxÞ þ � � � ; (15)

where Tð0Þ
F is the ‘‘bare’’ leading order correlation function,

Tð1Þ
F the next-to-leading correction, and the left terms are

even higher order expansions. The leading order evolution
of TFðxÞ comes from the collinear divergence of the cal-

culation for Tð1Þ
F . The contributions include the virtual and

real diagrams. The virtual diagrams can be calculated
following that for the spin-average leading-twist quark
distributions, and the results are the same at this order.
The real diagram contributions are much more involved. In
particular, we have to take into account the contributions
from the operators ð �c @?c Þ and ð �cA?c Þ [20], because
they are at the same order. Especially, because of the
contribution from A?, the evolution of the above correla-
tion functions will involve more general twist-three func-

tions such as GDðx; x1Þ and ~GDðx; x1Þ or TFðx; x1Þ and

Tð�Þ
F ðx; x1Þ. This is an important feature for the scale evo-

lution of the higher twist distributions, such as that of the
gT structure function [24].
We plot the Feynman diagram contributions from the

real gluon radiations in Fig. 1, where Fig. 1(a) is the
contribution from the partial derivative on the quark field,
and Figs. 1(b)–1(d) are those from A? contributions. The
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virtual corrections only contribute to the partial derivative
part, and their contributions are easy to carry out.

We perform the collinear expansion for the hard scatter-
ing part to calculate the contribution from Fig. 1(a). The
linear k? expansion term combining with the quark field
will lead to the quark-gluon correlation function TFðxÞ and
~gðxÞ in Eqs. (11) and (12). In the collinear expansion in
terms of k?, we can fix the transverse momentum of the
probing quark (lq) or the radiated gluon (lg), because of

momentum conservation and we are integrating over them
to obtain TFðxÞ and ~gðxÞ. We have also checked that they
will generate the same result. In the following calculations,
we choose lg being fixed in the collinear expansion. This

will avoid the collinear expansion of the on-shell condition
for the radiated gluon and simplify the derivations.

For the A? contribution, we notice that Fþ� ¼ @þA�
? in

the light-cone gauge. Therefore, one can relate the corre-
sponding soft matrix to the correlation function TFðx; x1Þ in
the following way:

i

x� x1 þ i�

Z dy�dy�1
4�

eixP
þy�eiðx�x1ÞPþy�1

� hPSj �c �ð0�Þn6 �	�? S?	gF
þ
�ðy�1 Þc �ðy�ÞjPSi

¼
Z dy�dy�1

4�
PþeixPþy�eiðx�x1ÞPþy�1

� hPSj �c �ð0�Þn6 �	�? S?	gA?�ðy�1 Þc �ðy�ÞjPSi: (16)

In the above formula, the soft gluon pole appearing in the
first line comes from the partial integration. The prescrip-
tion of this pole has been determined because we have
chosen the retarded boundary condition. For the same
reason, we have to regulate the light-cone propagator in a
consistent manner, and the gluon propagator in Fig. 1(c) in
the light-cone gauge with retarded boundary condition is
given by [3]

D��ðlÞ ¼ �i

l2 þ i�

�
g�� � l�n� þ n�l�

l � nþ i�

�
; (17)

where l is the gluon propagator momentum entering the
quark-gluon vertex in Fig. 1(c).
Adding the contributions from the partial derivative and

A?, we find that the real diagram contributions to Tð1Þ
F can

be summarized as

Tð1Þ
F ðxBÞjreal ¼

Z
dxd2lg?

@

@k
�
?
f½Ĥðk; lgÞp6 � � l�q?gjk?¼0

� TFðx; xÞ þ
Z

dxdx1d
2lg?

� f½Ĥ�ðxP;x1P; lgÞp6 � � l
�
q?g

1

�

i

x� x1 þ i�

� TFðx; x1Þ; (18)

where the transverse spin vector has been integrated out,
and the transverse index � is not meant to be summed up.
lq? is the probing quark transverse momentum. In the

above equation, Ĥðk; lgÞ represents the hard partonic part

in Fig. 1(a) with transverse momentum dependence on k?,
and Ĥ�ðxP; x1P; lgÞ is the hard part for Figs. 1(b)–1(d)

with transverse polarized gluon A?� insertion where all

momenta are collinear. We have to include both contribu-
tions to obtain a complete result.
We have similar expression for ~gðxÞ splitting. The only

difference is to replace p6 with �5p6 and a similar replace-
ment in the hard parts in the above two terms. Moreover,
because of simple Dirac algebra, the first term is the same
for both TFðxÞ and ~gðxÞ which comes from Fig. 1(a). Let us
first discuss this contribution. In the calculations, we have
to perform the collinear expansion in terms of k�?. Because
of the momentum conservation, l

�
q ¼ k

�
? � l

�
g , we can

separate the contribution from the explicit dependence on
k�?,

Tð1Þ
F jFig: 1ðaÞ ¼

Z
dxTFðx; xÞd2lg?

�
½Ĥðk; lgÞp6 �jk?¼0

� l�g?
@

@k
�
?
½Ĥðk; lgÞp6 �jk?¼0

�
: (19)

The first term is easy to derive, and its contribution is

�s

2�

Z dl2g?
l2g?

Z 1

xB

dx

x
CF

�
1þ z2

1� z

�
TFðx; xÞ; (20)

where z ¼ xB=x, and the well-known splitting kernel ap-
pears. The collinear divergence in the transverse momen-
tum integral dl2g? is identified as the splitting function for

TFðxBÞ. This splitting kernel contains the end-point diver-
gence, which should be canceled out by the virtual diagram
contributions. After taking into account the virtual contri-
bution, the end point will be regulated by the plus function,

FIG. 1. Real gluon radiation contributions to the evolution
equations for the twist-three quark-gluon correlation functions

TFðxÞ, ~gðxÞ, Tð�Þ
F ðxÞ, and ~hðxÞ.
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�s

2�

Z dl2g?
l2g?

Z 1

xB

dx

x
CF

�
1þ z2

ð1� zÞþ þ 3

2

ð1� zÞ

�
TFðx; xÞ;

(21)

where the plus function follows the definition of [23]. To
calculate the second term of Eq. (14), we do the collinear

expansion of the hard scattering part Ĥðk; lgÞ with lg?
fixed. The transverse momentum k? flow can go through
the quark line in Fig. 1(a), labeled as a � in the diagram.
We can further simplify the derivation by using the follow-
ing identity:

@

@k�
i

k6 ¼ i

k6 i�
� i

k6 ; (22)

which essentially represents the application of the Ward
identity. Applying the above identity, we can relate the k?
expansion in the quark propagator and quark line to that
with a transverse polarized gluon insertion with zero mo-
mentum attachment. These contributions will be combined
with those from Figs. 1(c) and 1(d). We discuss them
below.

As we mentioned above, the contributions from Fig. 1(a)
are the same for the evolutions of TFðxÞ and ~gðxÞ.
Therefore, the above results apply for that of ~gðxÞ too.
However, the contributions from Figs. 1(b)–1(d) are differ-
ent for TFðxÞ and ~gðxÞ. This is because for this part, we
have to take a pole contribution to obtain the splitting for
TFðxÞ, whereas for ~gðxÞ we do not take a pole contribution.
We first discuss their contributions to the evolution of
TFðxÞ correlation function. Depending on the value of xg ¼
x� x1 when we take the pole, these poles are called soft
(xg ¼ 0) and hard (xg � 0) poles, respectively. The hard

pole contribution only comes from the light-cone propa-
gator in Fig. 1(c), and its contribution is easy to calculate.
For this, we obtain

Tð1Þ
F jhpFig:1ðcÞ ¼

�s

2�

Z dl2g?
l2g?

Z 1

xB

dx

x

CA

2

�
1þ z

1� z

�
TFðxz; xÞ:

(23)

We emphasize that for the hard pole contribution the ex-
plicit factor 1=ðx� x1Þ has been included in the above
result, which is finite because x � x1.

On the other hand, the soft pole contribution comes from
the explicit pole in Eq. (13) which leads to a delta function

ðx1 � xÞ. Because this pole results into zero gluon mo-
mentum insertion to the diagrams, we can combine these
contributions with the second term in Eq. (14) as we
mentioned above. Therefore, we can add them together,

�
Z

dxTFðx; xÞd2lg?l�g?
�
@

@k
�
?
½Ĥðk; lgÞp6 �jk?¼0

� ½Ĥ�ðxP; xP; lgÞp6 �
�
: (24)

From this equation, we find that the contribution from
Fig. 1(b) cancels out that from the k? expansion on the
quark line with momentum k, because they have the same
color factor but opposite signs. The Fig. 1(d) and the k?
expansion on the quark propagator k� lg are also the same

but with a different color factor: the color factor for
Fig. 1(d) is �1=2Nc, whereas that for Fig. 1(a) is CF.
Their total contributions will add up to a color factor
CA=2. The same color factor CA=2 appears for Fig. 1(c).
Thus, the final result for this contribution will be propor-
tional to CA=2. By applying the identity of Eq. (17) again,
we can rewrite this part of the contribution as

� �s

2�

CA

2

Z
dxTFðx; xÞd2lg?

�
@

@l�g?
Ĥ0ðxP; lg?Þ

�
ð�l

�
g?Þ

¼ � �s

2�

CA

2

Z
dxTFðx; xÞd2lg?Ĥ0ðxP; lg?Þ

¼ � �s

2�

CA

2

Z dl2g?
l2g?

Z 1

xB

dx

x

�
1þ z2

1� z

�
TFðx; xÞ; (25)

where Ĥ0 represents the hard scattering part without the
color factor, and we have made use of the fact that the hard

part Ĥ0ðxP; lg?Þ / 1=l2g?. Again, the same splitting kernel

appears. Finally, there is also a contribution from
~TFðx1; x2Þ, which only comes from the hard pole diagram
Fig. 1(c) and has been given in Ref. [28]. Summing up all
contributions, we obtain the scale evolution equation for
the diagonal part of the quark-gluon correlation function
TFðx1; x2Þ,

@

@ ln�2
TFðxB;�2Þ ¼ �s

2�

Z 1

xB

dx

x

�
CF

�
1þ z2

ð1� zÞþ þ 3

2

ð1� zÞ

�
TFðx; xÞ

þ CA

2

�
1þ z

1� z
TFðxz; xÞ � 1þ z2

1� z
TFðx; xÞ þ ~TFðxz; xÞ

��
; (26)

which is consistent with that in Refs. [26,27]. The complete evolution equation for TFðxÞ shall also contain contributions
from the three-gluon correlation functions, which have been calculated in [27]. In the present paper, we only take into
account the singlet case and neglect three-gluon correlation function contributions for all of the evolution kernels.

As we mentioned above, the contributions from Figs. 1(b)–1(d) to the evolution of ~gðxÞ are different from that of TFðxÞ.
For ~gðxÞ splitting, we do not take pole contributions from these diagrams. For example, we do not have cancellation
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between diagrams Fig. 1(b) and collinear expansion of the
quark line k of Fig. 1(a). Moreover, without taking a pole
there will be an additional integral variable in the splitting
function, similar to that for the evolution of the gT structure
function [24]. The A? contribution from Figs. 1(b)–1(d)
can be transformed into TF and ~TF, or to GD and ~GD [18].

Because we do not take a pole for the scattering ampli-
tudes, the calculations for these diagrams are straightfor-
ward. The partial derivative contribution from Fig. 1(a) is
similar to that for the TFðxÞ calculation. This part depends
on ~gðxÞ. After adding all these contributions together, we
obtain the evolution equation for ~gðxÞ,

@~gðxB;�2Þ
@ ln�2

¼ �s

2�

Z 1

xB

dx

x

Z 1

0
dy

�
~gðxÞ
ðy� xÞ

�
CF

�
1þ z2

ð1� zÞþ þ 3

2

ð1� zÞ

�
� CA

2

1þ z2

1� z

�

þ ~GDðx; yÞ
�
CF

�
x2B
x2

þ xB
y
� 2x2B

xy
� xB

x
� 1

�
þ CA

2

ðx2B þ xyÞð2xB � x� yÞ
ðxB � yÞðx� yÞy

�

þGDðx; yÞ
�
CF

�
x2B
x2

þ xB
y
� xB

x
� 1

�
þ CA

2

x2B � xy

ðy� xBÞy
��
; (27)

where again z ¼ xB=x, and the definitions of GD and ~GD

follow that in [18]. The end-point singularity from ~gðxÞ
with color factor CA=2 on the right-hand side of the equa-
tion is canceled out by that from ~GD at the second line. We
further notice that we can replace GD and ~GD with TF and
~TF on the right-hand side by using the following relations
between them [16,20]:

GDðx; x1Þ ¼ P
1

x� x1
TFðx; x1Þ; (28)

~GDðx; x1Þ ¼ P
1

x� x1
~TFðx; x1Þ þ 
ðx� x1Þ~gðxÞ; (29)

where P stands for the principal value prescription.
However, we still have the ~gðxÞ term on the right-hand

side of the equation. Although we can rewrite ~gðxÞ in terms
of ~GD and ~TF [15], that will not eliminate its dependence
completely and the right-hand side will depend on ~GD, ~TF,
and GD instead. Therefore, the evolution of ~gðxÞ depends
on three functions: ~gðxÞ, GDðx; yÞ, and ~GDðx; yÞ. This fea-
ture is different from that for TFðxÞ, where it only depends
on TF and ~TF. It may indicate the nontrivial QCD dynam-
ics associated with the evolution of the correlation function
~gðxÞ. This has also been shown in its contribution to the
Drell-Yan dilepton azimuthal asymmetry in pp scattering.
We leave this study for a future publication.
Since the derivation follows a similar procedure, we skip

the technical details and only list the final result for the

evolution equation of correlation functions Tð�Þ
F ðx; xÞ, ~hðxÞ.

For Tð�Þ
F , we have

@

@ ln�2
Tð�Þ
F ðxB;�2Þ ¼ �s

2�

Z 1

xB

dx

x

�
CF

�
2z

ð1� zÞþ þ 2
ð1� zÞ
�
Tð�Þ
F ðx; xÞ þCA

2

�
2

1� z
Tð�Þ
F ðxz; xÞ � 2z

1� z
Tð�Þ
F ðx; xÞ

��
; (30)

which is consistent with the large transverse momentum Boer-Mulders function h?1 ðx; k?Þ calculated in [19]. Accordingly,
we obtain the evolution equation for ~h,

@~hðxB;�2Þ
@ ln�2

¼ �s

2�

Z 1

xB

dx

x

Z 1

0
dy

�
~hðxÞ
ðy� xÞ

�
CF

�
2z

ð1� zÞþ þ 2
ð1� zÞ
�
�CA

2

2z

1� z

�

þHDðx; yÞ
�
CF

2ðx� y� xBÞ
y

þCA

2

2xBðxBxþ xBy� x2 � y2Þ
ðxB � yÞðx� yÞy

��
; (31)

where the twist-three function HDðx; yÞ has been intro-
duced in Ref. [18]. Similar to that of ~gðxÞ, the evolution
of ~h depends on ~h and HD.

III. CONCLUSION

In conclusion, we have derived the scale evolution for
the transverse momentum dependent quark-gluon correla-
tion functions associated with the four k?-odd TMD quark
distributions in the nonsinglet case. We have performed our
calculations in a light-cone gauge with a particular bound-
ary condition for the gauge potential, and we have checked

that our results do not depend on these boundary condi-
tions. Our result on the evolution of TFðxÞ confirms recent

calculations [26,27]. The scale evolution for ~g and ~h
reveals nontrivial QCD dynamics. We hope this will stimu-
late further theoretical studies.
Meanwhile, we notice that the scale evolution for the

general twist-three operators has been calculated in the
literature [24]. It will be interesting to compare the evolu-
tion equations for the correlation functions studied in this
paper with these well-known results. Especially, the evo-
lution of the twist-three distribution gTðxÞ and its contri-
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bution to semi-inclusive processes deserve further inves-
tigation. We will address these issues in forthcoming
papers.
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