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Factorization is the central ingredient in any theoretical prediction for collider experiments. We

introduce a factorization formalism that can be applied to any desired observable, like event shapes or

jet observables, for any number of jets and a wide range of jet algorithms in leptonic or hadronic

collisions. This is achieved by using soft-collinear effective theory to prove the formal factorization of a

generic fully differential cross section in terms of a hard coefficient, and generic jet and soft functions. In

this formalism, whether a given observable factorizes in the usual sense, depends on whether it is inclusive

enough, so the jet functions can be calculated perturbatively. The factorization formula for any such

observable immediately follows from our general result, including the precise definition of the jet and soft

functions appropriate for the observable in question. As examples of our formalism, we work out several

results in two-jet production for both eþe� and pp collisions. For the latter, we also comment on how our

formalism allows one to treat underlying events and beam remnants.
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I. INTRODUCTION

Factorization is the main ingredient in any theoretical
prediction for collider experiments. Most factorization
theorems are easy to understand intuitively. For example,
the most basic factorization theorem for the production of
lepton pairs in proton-proton collisions has the form

� ¼ X
i;j

�̂ij � fi=P � fj=P: (1)

Here, the partonic cross section �̂ij describes the produc-

tion of the two leptons from the two initial-state partons i
and j, while the parton distribution functions fi=P and fj=P
describe the probability of finding the partons i and j in the
proton. The parton distribution functions and the partonic
cross section both depend on the momentum fractions of
the partons with respect to the hadrons, and the � denotes
the convolution in these variables. For more complicated
processes, such as jet production, factorization formulas
still exist, but are more complicated than for the Drell-Yan
process.

While there is usually a simple intuitive picture leading
to factorization theorems like Eq. (1), many open questions
cannot be answered without a much more detailed under-
standing of the factorization theorem. First, precise field-
theoretical definitions of the different elements in terms of
matrix elements of operators are required to calculate them
systematically. Second, each of these elements depends on
a renormalization scale �, and the precise � dependence
cannot be obtained from the naive arguments given above.
The fact that the final hadronic cross section is independent
of� allows one to derive renormalization group equations,
which can be used to sum large logarithmic terms present
in the perturbative results. Finally, it is important to under-
stand under which circumstances the factorization theo-
rems hold and when they break down. Thus, a more

detailed understanding of factorization theorems is man-
datory for a theoretical understanding of collider
signatures.
Understanding factorization has a long history, and

started with the seminal work of Collins, Soper, and
Sterman (see Refs. [1–4] and references therein). It is
instructive to remind the reader about the philosophy of
these traditional factorization proofs, and to compare it to
factorization proofs using effective fields theories, as dis-
cussed in this paper. While the Lagrangian of the strong
interaction is given in terms of partonic degrees of free-
dom, any perturbative calculation of partonic scattering
amplitudes gives rise to infrared-divergent results. These
infrared divergences are a manifestation of the well-known
fact that at long distances the strongly interacting degrees
of freedom are hadrons, not partons, and that the binding of
partons into hadrons is a nonperturbative effect. The infra-
red divergences in the partonic results are regulated, how-
ever, if the dimension of spacetime is chosen to be
D ¼ 4� 2�, and manifest themselves as 1=� poles with
� < 0. Thus, for D � 4 one can calculate the scattering
cross section of two partons m and n, and by the same
intuitive picture as before, one expects that the partonic
scattering cross section factorizes as

�mn ¼ X
i;j

�̂ij � fi=m � fj=n: (2)

In this case, fi=m (fj=n) denotes the probability to find the

parton i (j) in the partonm (n). This probability has a well-
defined expression order by order in perturbation theory,
and is infrared divergent in the limit D ! 4. Under the
assumption that any infrared-safe (finite asD ! 4) result is
the same in the hadronic (D ¼ 4) and partonic (D � 4)
theories, the factorization of long distance and short dis-
tance physics in the hadronic theory can be proven by
showing to all orders in perturbation theory that �̂ij in
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the partonic theory is indeed finite in the limit D ! 4.
Traditional factorization proofs therefore use diagram-
matic techniques to show that all infrared-divergent terms
in �mn are contained in the partonic distributions fi=m and

fj=n.

Proofs of factorization theorems in soft-collinear effec-
tive theory (SCET) [5–8], on the other hand, use a different
approach. By construction, the correct effective field the-
ory reproduces the long distance dynamics of the under-
lying theory in a particular kinematic limit. SCET is
constructed to reproduce the long distance physics for
processes involving highly energetic particles, and the
assumption is now that SCET is indeed the correct effective
field theory of QCD in this particular kinematic limit. What
is important is that this assumption can be tested in per-
turbation theory.

The physics at short distances, in general, is not properly
described by the dynamics of the effective field theory
itself, but can be determined by demanding that the effec-
tive theory reproduces the underlying theory order by order
in perturbation theory. This matching calculation can be
performed using partonic degrees of freedom, because the
effective theory reproduces the long distance physics of the
full theory ensuring that all infrared divergences cancel in
the matching calculation. Thus, the effective theory gives a
result of the form

� ¼ X
i;j

SDij � LDij; (3)

where SDij describes the short distance physics governing

the scattering of two partons i and j into anything, while
LDij describes the long distance probability of two protons

to give two partons i and j. The final step in the proof of the
factorization formula is to show that

LD ij ¼ fi=P � fj=P; (4)

where fi=P are now matrix elements of operators defined in

SCET. This is accomplished in SCET by exploiting the
dynamics of the effective theory, as will be discussed in
much more detail later.

The first factorization proof in SCET was for B ! D�
decays [9], but it was soon realized that SCET can be used
to reproduce factorization for simple QCD processes with
back-to-back jets [10–13]. Recently, there has been
progress in studying factorization and the resummation
of perturbative corrections for some weighted cross sec-
tions in eþe� ! hadrons [14–18], Drell-Yan [19–21], deep
inelastic scattering [13,22–25], and Higgs production
[20,26].

While such fully inclusive observables have proven to be
very useful in capturing generic features of hadronic
events, they are not well suited to identify specific short
distance processes. For this reason, jet observables are
usually considered, in which hadrons that are ‘‘close to-
gether’’ are collected into jets of particles. The idea is that

QCD radiation will turn a single parton produced in a short
distance process into a jet of hadrons, such that the total
momentum of the jet can be used as a measure of the
momentum of the original parton. Thus, jet observables
can be used to directly test the underlying short distance
process that produced the event, as long as the jets are well
separated from the beam axis and their dependence on the
underlying event is very small.
Of course, the definition of a jet depends on the precise

meaning of ‘‘close together,’’ and there are many algo-
rithms available that group the final-state particles into jets
[27–38]. To calculate jet cross sections perturbatively, we
need a jet algorithm that is infrared safe, such that a
partonic calculation does not lead to infrared divergences
in D ¼ 4 dimensions. Which algorithm is chosen by ex-
perimentalists is usually determined by practical consid-
erations, such as speed and algorithmic robustness.
In this paper, we develop a factorization formalism that

can be applied to any desired observable, like event shapes
or jet observables. In particular, for N-jet production in
hadronic collisions, we show that the cross section factor-
izes into a hard function, �̂ij;k1...kN , describing the under-

lying partonic process to produce N partons, convoluted
with N jet functions, Jki , a soft function, S, and parton

distribution functions, fi;j=P,

� ¼ X
i;j;kn

�̂ij;k1...kN � Jk1 � � � � � JkN � S � fi=P � fj=P:

(5)

The jet functions Jki are the final-state analog of the parton

distribution functions. They describe how the final partons
from the hard interaction evolve into the observed jets, and
contain all dependence on the actual jet algorithm. The soft
function S is a nonperturbative object, which describes, for
example, how color is rearranged to allow the colored
partons to form color-singlet jets. The effective theory
allows to give precise field-theoretic definitions of all
objects in this factorization formula. Whether the differ-
ential cross section in some observable factorizes in the
usual sense depends on whether the observable is domi-
nated by factorizable kinematic configurations and
whether it is inclusive enough to allow perturbative calcu-
lations of the jet functions.
In Sec. II, we first define a generic differential cross

section written in terms of functional derivatives, and then
show in Sec. III how observables are constructed from this
generic cross section. In Sec. IV, we derive a factorization
formula for this differential cross section, which relates it
to convolutions over generic building blocks. To focus on
the overall structure of the result, this derivation will be
schematic in the sense that we will ignore the explicit color
and spin structure of the underlying interaction. As a first
example, in Sec. V, we apply our results to the production
of two-jet events in eþe� collisions, including all color and
spin information. We reproduce the known results for event
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shape and hemisphere mass distributions, and obtain re-
sults for observables based on cone jet algorithms. In
Sec. VI, we apply our formalism to hadronic collisions.
We derive the factorization formula for two-jet production
in pp collisions, focussing on the simplest subprocess
qq0 ! qq0. Our conclusions and outlook are presented in
Sec. VII.

II. ENERGYAND THREE-MOMENTUM
CONFIGURATION OFAN EVENT

The differential cross section in any observable O is
given by

d�

dO
¼ 1

2p2
I

X
X

jhXjQjIij2ð2�Þ4�4ðpI � pXÞ

� �½O� fOðXÞ�; (6)

where jIi denotes the initial state containing two particles
with total momentum pI ¼ ðEcm; 0Þ, jXi denotes an arbi-
trary final state with total momentum pX, and the sum over
X includes a sum over states, as well as all final-state
phase-space integrations. Finally,Q stands for the relevant
operator responsible for the underlying hard interaction.

The function fOðXÞ computes the value of the observ-
able for a given final state X, and in general depends on the
four-momenta of all particles in X. The four-momentum
configuration of X can be described by its energy configu-
ration !Xð�Þ and three-momentum configuration kXð�Þ.
If X has n particles with four-momenta pi ¼ ðEi;piÞ, we
have

!Xð�Þ ¼ Xn
i¼1

Ei�ð���iÞ;

kXð�Þ ¼ Xn
i¼1

pi�ð���iÞ;
(7)

where�i � �ðpiÞ is the direction of the three-momentum
pi. More generally, we can think of !ð�Þ and kð�Þ as the
distribution of energy and three-momentum over the solid
angle �, as measured experimentally.

To integrate over ! and k, we define a functional
integration measure as usual by discretization. We divide
� into bins f�kg, and define the set of discrete variables
f!kg and fkkg as the integrals of !ð�Þ and kð�Þ over the
bins f�kg,1

!k ¼
Z
�k

d�!ð�Þ; kk ¼
Z
�k

d�kð�Þ: (8)

Then

D!ð�Þ � D!ð�Þ�½!ð�Þ� ¼ Y
k

d!k�ð!kÞ;

Dkð�Þ � Dkð�Þ�½�ðkð�ÞÞ ���

¼ Y
k

d3kk

ð2�Þ3 �ð�ðkkÞ ��kÞ ¼
Y
k

jkkj2djkkj
ð2�Þ3 :

(9)

The � functional in D!ð�Þ restricts !ð�Þ to be positive,
while the � functional in Dkð�Þ restricts kð�Þ to point
into the direction �.
The integration measure in Eq. (9) still includes unphys-

ical configurations. To only allow physical configurations,
we have to include a mass-shell condition. Taking a fixed
invariant-mass distribution �ð�Þ as boundary condition,
we get

Z
�ð�Þ

D!ð�ÞDkð�Þ �
Z

D!ð�ÞDkð�Þ

� �½!ð�Þ2 � kð�Þ2 ��ð�Þ2�

¼
Z Y

k

d!k

jkkj2djkkj
ð2�Þ3

� �ð!2
k � jkkj2 ��2

kÞ�ð!kÞ;
(10)

where �k ¼
R
�k

d��ð�Þ. This fixes the direction of all

particles, but could include different final states X, as long
as they have the same invariant-mass distribution �ð�Þ. If
we instead restrict the integration to a state X, having n
particles with masses mi, we recover the standard n-body
phase space for X,

Z
X
D!ð�ÞDkð�Þ�

Z Yn
i¼1

d�i

Z
Xð�1;...;�nÞ

D!ð�ÞDkð�Þ

¼
Z Yn

i¼1

d�i

Z Yn
k¼1

d!k

jkkj2djkkj
ð2�Þ3

��ð!2
k�jkkj2�m2

kÞ�ð!kÞ

¼
Z Yn

i¼1

d4pi

ð2�Þ3�ðp
2
i �m2

i Þ�ðp0
i Þ

�
Z
d�X: (11)

On the right-hand side of the first line, we first integrate
!ð�Þ and kð�Þ with the boundary condition that there are
exactly n particles with massesmi moving in the directions
�i, denoted as Xð�1; . . . ;�nÞ, which is then integrated
over the particle’s positions �i. In the second line, in the
discretization only the integrals over those n bins survive
that happen to contain a particle. Together with the �i

integrations, this reduces to the standard n-body phase
space for X. In the following, we will mostly drop the

1This is slightly different from the usual definition of D�ðxÞ
for some field �ðxÞ, where the discrete variables �k ¼ �ðxkÞ are
taken as the values of � at the points xk. The difference is an
irrelevant overall constant. In our case, taking the integrals is the
more natural choice and makes the connection to the usual
phase-space integration simpler.
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dependence of !ð�Þ and kð�Þ on �, but one should
always keep in mind that ! and k are functions of �.
We will still use square brackets to denote functionals f½!�
and f½k�.

Returning to Eq. (6), we now assume that fOðXÞ does not
depend on any internal quantum numbers of X, but only on
the four-momenta of all particles in X.2 In this case, fO can
be written as a functional of the energy and three-
momentum configurations

fO � fO½!;k� with fOðXÞ � fO½!X;kX�: (12)

We now define an energy-momentum flow operator E� �
E�ð�Þ, whose eigenvalues are the energy and three-
momentum configurations of the state jXi in Eq. (7),

E 0ð�ÞjXi ¼ !Xð�ÞjXi; Eð�ÞjXi ¼ kXð�ÞjXi:
(13)

The energy-flow operator E0ð�Þ has been used previously,
for example, to study two-jet event-shape distributions
[14,17,39–42] and jet energy-flow correlations [43–46].
In terms of the energy-momentum tensor

T�� ¼ X
�2L

@L
@ð@��Þ@

��� g��L; (14)

we can write E�ð�Þ as [17,39]

E �ð�Þ ¼ lim
R!1R

2
Z 1

0
dtniT�iðt; RnÞ: (15)

Here, n � nð�Þ is the unit three-vector pointing in the
direction identified by �. Therefore, E�ð�Þ measures the
total four-momentum arriving over time at infinity in the
direction�. An expression for E0ð�Þ similar to Eq. (15) in
terms of an integral over R for t ! 1 was derived in
Refs. [44,47]. An explicit proof of Eq. (15) for E0ð�Þ for
scalars and Dirac fermions can be found in Ref. [17].

Using Eqs. (12) and (13), we can write Eq. (6) as

d�

dO
¼ 1

2p2
I

X
X

hIjQyjXihXjQjIið2�Þ4�4ðpI � pXÞ

� �ðO� fO½!X;kX�Þ
¼ 1

2p2
I

Z
D!Dk

Z
d4xhIjQyðxÞ�½!� E0�

� �½k� E�Qð0ÞjIi�ðO� fO½!;k�Þ
�

Z
D!Dk

��

�!�k
�ðO� fO½!;k�Þ: (16)

In the second line, we shift Qy to position x, turning the
momentum conservation into an integral over x, and re-
write !X and kX in terms of E�. This removes any explicit

dependence on the final state X, allowing us to perform the
sum over all final states

P
XjXihXj ¼ 1.

For the rest of this paper, we will assume for simplicity
that X only contains massless particles. The extension to
the general case is straightforward. In this case, fO �
fO½!� only depends on !, and we can integrate over k
to find

d�

dO
¼

Z
D!

��

�!
�ðO� fO½!�Þ; (17)

where the generic differential cross section ��=�! is
defined as

��

�!
¼ 1

2p2
I

Z
d4xhIjQyðxÞ�½!� E0�Qð0ÞjIi

¼ 1

2p2
I

Z d4p

ð2�Þ4 hIjQ
yð0Þ�½!� E0�QðpÞjIi: (18)

In the second line, we have written the result in terms of
QðpÞ, the Fourier transform of QðxÞ. (To simplify the
notation we use the same symbol for operators in position
and momentum space and simply distinguish them by their
arguments.)
Equation (17) can be regarded as the master formula of

our formalism, and its ingredients are the subject of the
following sections. We first discuss the functional fO½!� in
the next section and then the factorization of ��=�! in
Sec. IV. Then in Secs. V and VI we show how to combine
these two elements to obtain a factorized form of d�=dO
for specific processes and observables.

III. CONSTRUCTING OBSERVABLES

The form of the functional fO½!� depends on the ob-
servable under consideration, and in this section we will
give a few examples of how to construct fO½!� for specific
observables. To get used to our notation, we start with the
simple example of the total four-momentum of the final
state. Next, we consider event shapes that are fully inclu-
sive observables. Finally, we discuss jet observables that
are less inclusive and defined with respect to a specific jet
algorithm.

A. Total four-momentum

The total energy and three-momentum of the state X are

EX ¼ Xn
i¼1

Ei ¼
Z

d�!Xð�Þ;

pX ¼ Xn
i¼1

pi ¼
Z

d�nð�Þ!Xð�Þ;
(19)

where we used that for massless particles kð�Þ ¼
nð�Þ!ð�Þ. Hence, we define

P�½!� ¼
Z

d�n�ð�Þ!ð�Þ; (20)

2Note that most information about internal quantum numbers,
such as the number of b jets, is obtained from four-momentum
information alone.
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where n�ð�Þ ¼ ð1;nð�ÞÞ. From Eqs. (17) and (18) we get

d�

d4P
¼

Z
D!

��

�!
�4ðP� P½!�Þ

¼ 1

2p2
I

Z
d4xhIjQyðxÞ�4ðP� P̂ÞQð0ÞjIi: (21)

In the second step we performed the integration over! and
used that (for massless fields) P�½E0� yields the momen-

tum operator P̂� ¼ ðP̂0; P̂Þ,3

P�½E0� ¼
Z

d�E�ð�Þ ¼ lim
t!1

Z
dxT�0ðt;xÞ ¼ P̂�:

(23)

B. Event shapes

Event shapes are defined with respect to the thrust axis
of an event. Given a final state X, one first calculates the
thrust axis t � tðXÞ, which is defined as the unit three-
vector t that maximizes the sum

Xn
i¼1

jt � pij; (24)

which runs over all particles in X. Given t, one then
calculates the observable of interest. A generic class of
event shapes can be written as

feðXÞ ¼ 1

Ecm

Xn
i¼1

geð	tðpiÞÞjpT
t ðpiÞj; (25)

where the rapidity 	t and transverse momentum pT
t are

measured with respect to t. For example, for thrust [48,49],
jet broadening [50], and the C parameter [51], the function
geð	Þ has the form

gTð	Þ ¼ e�	; gBð	Þ ¼ 1; gCð	Þ ¼ 3

cosh	
:

(26)

The thrust axis can be obtained from the energy con-
figuration of the final state, and can therefore be written as
a functional t½!�. It is defined (for massless particles) as
maximizing the integral

Z
d�jt � nð�Þj!ð�Þ; (27)

which for ! ¼ !X reduces to Eq. (24). Using jpT
t j ¼

E= cosh	t, we can write Eq. (25) in terms of !

fe½!� ¼
Z

dt�ðt� t½!�Þfe½!; t�; (28)

with

fe½!; t� ¼ 1

Ecm

Z
d�geð	tÞ !ð�Þ

cosh	t

; (29)

where the solid angle� is decomposed with respect to the
thrust axis as � ¼ ð	t; �tÞ, and 	t ¼ tanh�1ðcos�tÞ.

C. Jet observables

1. General features of jet algorithms

A jet algorithm J acting on a final state X returns the set
of momenta of all particles in the event, grouped together
into the different subsets belonging to each jet plus a set of
particles not belonging to any jet, which we take to be soft:

J ðXÞ ¼ ffp�g1; . . . ; fp�gN ; fp�gsg: (30)

In terms of the energy configuration !, we can write the
action of the jet algorithm as

J ½!� ¼ f!jet
1 ; . . . ; !jet

N ; !softg; (31)

where !jet
i is the part of ! corresponding to jet i, and !soft

is the remaining soft part of! not assigned to any jet, such
that

! ¼ !jet
1 þ � � � þ!jet

N þ!soft: (32)

We formally split the action of the jet algorithm into two
distinct steps. We first define a quantity j that contains all
global information about ! required to construct the indi-
vidual jet configurations !i from !. For example, j con-
tains the total number of jets and the direction of each jet.
That is, j is analogous to the thrust axis in the case of event
shapes. Hence, a jet algorithm J provides a functional
jJ ½!�, which returns the required information j for a given
!. Second, we define functionals J i½!; j�, which project
out the part of ! belonging to the i-th jet. That is, for j ¼
jJ ½!�, by definition

J i½!; jJ ½!�� ¼ !jet
i ; J s½!; jJ ½!�� ¼ !soft: (33)

We stress that J i½!; j� only encodes the actual projection,
which is completely specified by the specifics of the jet
algorithm and the information provided by j. Thus, for a
given j, J i can be applied to any !. For example, by
definition, J i satisfies the consistency conditions

J i½!jet
j ; jJ ½!�� ¼

�
!

jet
i for i ¼ j

0 for i � j:
(34)

For simplicity, we will keep the dependence on J implicit
from now on and simply write j½!�.

3To see this explicitly, consider the current j�ðxÞ � T��ðxÞ
(for fixed �),

Z
d�E�ð�Þ ¼ lim

R!1

Z 1

0
dt

Z
@SðRÞ

dSn � jðt;xÞ

¼
Z 1

0
dt

Z
dxr � jðt;xÞ ¼ lim

t!1

Z
dxj0ðt;xÞ;

(22)

where in the last step we used current conservation @�j
�ðxÞ ¼ 0.
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2. Construction of jet observables

We can now write a generic jet observable as

fO½!� ¼
Z

dj�ðj� j½!�ÞfO½!; j�; (35)

where, in general, fO½!; j� has the form
fO½!; j� ¼ fO½J 1½!; j�; . . . ;JN ½!; j��; (36)

and N is the total number of jets given by j. Most jet
observables only depend on the total four-momentum of
each jet. In this case, using Eq. (20),4 we have

fO½!; j� ¼
�YN
i¼1

Z
d4Pi�

4ðPi � P½J i½!; j��Þ
�

� gOðP1; . . . ; PN Þ: (37)

The function gOðP1; . . . ; PN Þ computes the observable of
interest from the given jet momenta Pi. It is analogous to
the function geð	Þ for event shapes. Some simple examples
would be the total number of jets or the invariant mass of
two jets

gN ðP1; . . . ; PN Þ ¼ N ;

gmij
ðP1; . . . ; PN Þ ¼ ðPi þ PjÞ2:

(38)

Similar to Eq. (37), one can easily define observables
depending on additional information about the individual
jets, for example, one can imagine observables that depend
on a weighted integral of the energies of all particles in a
jet.

3. Examples of jet algorithms

Of course, in practice, how the action of the jet algo-
rithm is separated into j½!� and J i½!; j� depends on the
actual algorithm, and we will briefly discuss a few ex-
amples here. Since most jet algorithms do not have a
simple analytic expression for generic final states, it will
not be possible to obtain j½!� analytically, either.
However, this is not a limitation, because we can always
define j½!� by acting with the full jet algorithm on ! and
only returning the necessary global information. The more
relevant, and perhaps nontrivial, task is to figure out the
information required in j, and to define the projections
J i½!; j� accordingly.

The simplest example is probably the hemisphere jet
algorithm [28–30], for which the number of jets is always
2, and the only relevant global information is the axis
perpendicular to the plane separating the two hemispheres,
which is usually taken to be the thrust axis t. Hence, we can
write j as

j ¼ f2; tg; j½!� ¼ f2; t½!�g; (39)

where by convention we included the number of jets in j.
The corresponding projections J 1 and J 2 return the two
hemispheres defined by the thrust axis

J 1½!; j� ¼ !ð�Þ�ð0 � �t <�=2Þ;
J 2½!; j� ¼ !ð�Þ�ð�=2 � �t <�Þ; (40)

where � � ð�t; �tÞ is given with respect to t. Note that
here we have J s½!; j� ¼ 0. Typical observables con-
structed from these individual jets are their invariant
masses gM2

1;2
ðP1; P2Þ ¼ P2

1;2. Another class of observables

is given by the event shapes in Eq. (29), for which
fO½!; j� � fe½!; t�.
A less trivial example is a cone jet algorithm [27,35–38].

In this case, the necessary global information returned by
j½!� is the number of jets N , and the direction ji of each
jet,

j ¼ fN ; j1; . . . ; jN g: (41)

For instance, in eþe� collisions one can define an N -jet
final state as one admitting a minimum number N of
directions ji such that the total energy outside an opening
half angle R about each direction is less than some fraction
�. For N ¼ 2, and with the additional constraint j1 ¼
�j2, this is equivalent to the original Sterman-Weinberg
jet definition [27]. For a given set j, the projections are then
simply

J i½!; j� ¼ !ð�Þ�ðR� �jiÞ; (42)

where R is the cone radius and� � ð�ji ; �jiÞ is given with
respect to ji for each i.
As with all observables, we require jet algorithms that

are infrared safe, which is not the case for many cone jet
algorithms. An example of an infrared-safe cone jet algo-
rithm is the seedless infrared-safe cone jet algorithm [37].
For illustration of our method, we will use the snowmass
cone algorithm [35,38] as an example, however our ap-
proach can easily be adapted to the seedless infrared-safe
algorithm or any other infrared-safe jet algorithm.
For hadronic collisions, the variables ð	;�Þ, defined

with respect to the beam axis, have simple transformations
under boosts along the beam direction, and so are favored
over ð�;�Þ. In the Snowmass cone algorithm, jets are
defined by cones of constant radius R in ð	;�Þ space.
When applied to massless particles, the directions ji are
given by the solutions of5

4For jet algorithms, Eq. (20) corresponds to the so-called
E-scheme, which defines the total jet momentum as the sum
of the particle momenta.

5For some configurations !, this equation can admit multiple
sets of solutions j, containing a different number of jets. This
happens when there are overlapping cones, and one has to decide
whether to split or merge these.
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0 ¼
Z

d�
!ð�Þ
cosh	

½���ðjiÞ�

� �ðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½	� 	ðjiÞ�2 þ ½���ðjiÞ�2

q
Þ; (43)

where � ¼ ð	;�Þ is now measured with respect to the
beam axis, and �ðjiÞ ¼ ð	ðjiÞ; �ðjiÞÞ are the coordinates
of the i-th jet direction. Equation (43) is the analog of
Eq. (27) for the thrust axis. The corresponding projections
are

J i½!; j� ¼ !ð�Þ�ðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½	� 	ðjiÞ�2 þ ½���ðjiÞ�2

q
Þ:

(44)

Finally, kT jet algorithms [31–34] also fit our general
definition of algorithms. Although their definition contains
a cut on some distance measure, the precise size and shape
of a jet also depends on the details of the energy configu-
ration !. Hence, there is no simple expression for the
projections J i½!; j� for arbitrary ! and j. In principle,
they are well defined (albeit complicated) for a fixed
number of particles, in which case integrals over the energy
configuration reduce to normal phase-space integrals [see
Eq. (11)]. In practical applications, it is easiest to apply the
algorithm numerically.

IV. FACTORIZATION OF ��=�!

In this section, we prove a factorization theorem for the
generic differential distribution ��=�! defined in
Eq. (18). This will allow us to separate the various scales
in the problem and write our result in terms of convolutions
over simpler functions, each of which captures only the
physics at a certain energy scale. The factorization proof
uses arguments similar to those used to prove factorization
for event-shape distributions in Ref. [17]. The central in-
gredient in addition to the usual factorization of soft and
collinear degrees of freedom in SCETwill be the use of the
energy-flow operator E�ð�Þ defined in Eq. (15).

When deriving the factorization formula, we will ignore
all color and spin structure of the SCET operators, and
denote all collinear fields by �, regardless of whether they
correspond to quarks, antiquarks, or gluons. This sche-
matic notation will allow us to focus on the issues directly
related to the proof of factorization. Of course, to obtain
the full result for the cross section, the color and spin
information has to be included, and we illustrate how this
is achieved when discussing explicit examples in Secs. V
and VI.

A. Matching QCD onto SCET in momentum space

Usually, the matching of QCD onto SCET is performed
in position space by expanding the relevant QCD operator
QðxÞ in terms of SCET operators OðxÞ,

Q ðxÞ ¼ X
fni;~pig

e�i
P

~pi�xCfnigðf~pigÞOfni;~pigðxÞ: (45)

Here, CfnigOfni;~pig stands for a sum over several SCET

operators with the same number of collinear directions,
each with its own Wilson coefficient. The Wilson coeffi-
cients are determined by taking matrix elements of both
sides, and expanding the full-theory matrix elements
hQðxÞi in terms of the matrix elements hOðxÞi evaluated
in SCET. Note also that at this point the operators include
all incoming and outgoing fields, whether they are strongly
interacting or not.
The operator Ofni;~pigðxÞ is written in terms of (gauge-

invariant) collinear SCET fields �n;~pðxÞ. Each field de-

pends on a large label momentum ~p� ¼ ~p�n�=2þ ~p
�
?

with n2 ¼ 0 and ~p? �Oð
~p�Þ, and has a residual x
dependence corresponding to a residual momentum k�
Oð
2 ~p�Þ, so the total momentum of the field is p ¼ ~pþ k.
Thus, one can think of the fields�n;~pðxÞ as being written in
label momentum space and residual position space. With
this interpretation, the sum over all labels ni and ~pi in
Eq. (45) corresponds to taking the remaining label Fourier
transform to convert the right-hand side to full position
space.
This separation into discrete label and continuous resid-

ual components is conceptually convenient when formulat-
ing the effective theory, and means that phase space is
divided up as

Z
d4p ¼ X

n;~p

Z
d4k: (46)

The concrete choice of the discrete labels n and ~p is
determined by the external momenta. As is well known,
this choice is arbitrary at subleading order in 
, which can
be exploited to derive constraints from reparametrization
invariance [52,53].
However, in practical applications, especially with more

than one collinear direction, the label choice can easily get
obscured during the calculation. One example is four-
momentum conservation for two back-to-back jets with
collinear momenta p1 ¼ ~p1 þ k1 and p2 ¼ ~p2 þ k2,

Z
d4xeið~p1�~p2þk1�k2Þ�x ¼ �~p1;~p2

Z
d4xeiðk1�k2Þx

¼ �~p1;~p2þ�k

Z
d4xeiðk1�k2þ�kÞx;

(47)

where �k �Oðk1;2Þ. Both equations are correct and corre-

spond to different choices of the label momenta. Using the
first equality, as is often done, may seem somewhat ad hoc,
but one simply makes an implicit choice of, say, ~p2 relative
to ~p1. Of course, this is only justified if ~p2 was not already
chosen somewhere else. Furthermore, at the end of the day,
one often has to recombine some leftover label sums and
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residual integrations, e.g.,

X
n

Z
dk? �

Z
d�; (48)

corresponding to unconstrained phase-space integrations
of external particles.

With several collinear directions, keeping track of all
label choices and dealing with leftover label sums and
residual integrations quickly becomes very cumbersome.
To avoid all of these issues, it is convenient to perform the
matching entirely in momentum space, so Eq. (45) be-
comes

QðpÞ ¼ X
fni;~pig

�Y
i

Z d4ki
ð2�Þ4

�
ð2�Þ4�4

�
p�X

i

ð~pi þ kiÞ
�

� Cfnigðf~pigÞOfni;~pigðfkigÞ: (49)

Here, QðpÞ is the Fourier transform of QðxÞ, and
Ofni;~pigðfkigÞ is written in terms of momentum-space

SCET fields �n;~pðkÞ, which are obtained by taking the

remaining residual Fourier transform of �n;~pðxÞ,

�n;~pðkÞ ¼
Z

d4xeik�x�n;~pðxÞ: (50)

We can imagine that the matching is performed at fixed
total momentum pi ¼ ~pi þ ki of each field in Ofni;~pig. We

then choose the field labels directly during the matching
such that n ¼ p=jpj for each field. With this choice, ~p� �
p� ¼ p0 þ jpj, pþ � kþ ¼ p0 � jpj, and p? ¼ 0. This
allows us to recombine the label sums and residual inte-
grations in Eq. (49) into d4pi integrals

6

X
n;~p

Z d4k

ð2�Þ4 �
Z d4p

ð2�Þ4 ¼
Z dp�dpþd�

ð2�Þ4
ðp� � pþÞ2

8
;

(51)

where � � �ðpÞ is the solid angle corresponding to the
direction of p. We also keep the dependence on the labels
implicit and simply write the fields in the operator in terms
of their total momentum p,

�ðpÞ � �n;~pðkÞ; OðfpigÞ � Ofni;~pigðfkigÞ: (52)

Hence, the final form of the matching becomes

QðpÞ ¼
�Y

i

Z d4pi

ð2�Þ4
�
ð2�Þ4�4

�
p�X

i

pi

�

� CðfpigÞOðfpigÞ; (53)

where here and in the following it is understood that the
Wilson coefficient C only depends on the directions ni ¼

pi=jpij and large components p�
i ¼ p0

i þ pi of the mo-
menta pi.

B. Factorization proof

Starting from the definition of ��=�! in Eq. (18), in the
first step we match QCD onto SCET. According to
Eq. (53), the matching condition takes the form

QðpÞ ¼
� YN
i¼a;b;1

Z d4pi

ð2�Þ4
�
CNðpa; pb;p1; . . . ; pNÞ

�OIðpa; pbÞOFðp1; . . . ; pNÞð2�Þ4

� �4

�
p� pa � pb þ

XN
i¼1

pi

�
: (54)

Here, pa and pb are initial-state collinear momenta, and
the operator OI is responsible for annihilating the initial
state. Similarly, p1; . . . ; pN are N final-state collinear mo-
menta, and the operator OF, defined as

O Fðp1; . . . ; pNÞ ¼
YN
i¼1

�yðpiÞ; (55)

is responsible for creating the final state. Equation (54) is
valid in any region of multibody phase space that is domi-
nated by N jets of collinear particles, corresponding to N
collinear directions, that are well separated from each other
and the beam axis, i.e., the initial collinear directions pa;b.

The dominant power corrections to Eq. (54) scale like
p2
i =pi � pj.

The different collinear fields in OI and OF interact with
each other only through the exchange of soft gluons. These
interactions are eliminated to all orders in �s and leading
order in the power counting by the usual field redefinition
in SCET [8],

�n;~pðxÞ ¼ YnðxÞ�ð0Þ
n;~pðxÞ; (56)

where YnðxÞ denotes the appropriate soft Wilson line along
the direction n in the color representation of �n;~pðxÞ. For
color-singlet fields, YðxÞ ¼ 1. As usual, we will drop the
superscript on the redefined fields and operators hence-
forth. In terms of the redefined fields, the matching condi-
tion in Eq. (54) takes the form

QðpÞ ¼
� YN
i¼a;b;1

Z d4pi

ð2�Þ4
�
CNðpa; pb;p1; . . . ; pNÞ

�
Z d4ks

ð2�Þ4 OIðpa; pbÞOFðp1; . . . ; pNÞ

�OSðksÞð2�Þ4�4

�
p� pa � pb þ ks þ

XN
i¼1

pi

�
;

(57)

where the soft operator OSðksÞ contains the Fourier trans-

6We suppress that, strictly speaking, the integral over p should
be restricted to only include collinear momenta, which is equiva-
lent to excluding the zero-bin region [54] from the integral.
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form of the time-ordered product of all soft Wilson lines,

O SðksÞ ¼
Z

d4xe�iks�xT
�
YnaðxÞYnbðxÞ

�YN
i¼1

Yy
niðxÞ

��
:

(58)

Having factored the operator QðpÞ, we next move our
attention to the �½!� E0� term in Eq. (18). After the field
redefinition, the leading-order SCET Lagrangian with N þ
2 collinear directions can be written as

L SCET ¼ XN
i¼a;b;1

Li þLs; (59)

where Li only contains collinear fields in the direction ni,
and Ls is the purely soft Lagrangian. Since the energy-
momentum flow operator, defined in Eq. (15), is linear in
the Lagrangian of the theory, we have

E �ð�Þ ¼ XN
i¼a;b;1

E�
i ð�Þ þ E�

s ð�Þ; (60)

where E�
i;sð�Þ is defined analogously to Eq. (15), but using

the energy-momentum tensor obtained from the
Lagrangian Li;s only. Thus, E

�
i ð�Þ describes the energy-

momentum flow in the i-th collinear sector, while E�
s ð�Þ

describes the remaining soft energy-momentum flow. This
allows us to write

�½!� E0� ¼
� YN
i¼a;b;1

Z
D!i�½!i � E0

i �
�Z

D!s

� �½!s � E0
s��

�
!�!s �

XN
i¼a;b;1

!i

�
: (61)

Combining Eqs. (57) and (61) with Eq. (18), and letting
�N ¼ fpa; pb;p1; . . . ; pNg denote a point in ð2 !
NÞ-body phase space (with d�N the corresponding
phase-space measure), ��=�! can be written as

��

�!
¼ 1

2p2
I

Z
d�0

Nd�NC
	
Nð�0

NÞCNð�NÞ
Z d4k0s

ð2�Þ4
d4ks
ð2�Þ4

�
� YN
i¼a;b;1

Z
D!i

�Z
D!shIjðOIOFOSÞyð�0

N; k
0
sÞ

�
� YN
i¼a;b;1

�½!i � E0
i �
�
�½!s � E0

s�ðOIOFOSÞ

� ð�N; ksÞjIið2�Þ4�4ð�0
N � ksÞ

� �

�
!�!s �

XN
i¼a;b;1

!i

�
: (62)

Since there are no interactions between the different col-
linear sectors or the soft sector in Eq. (59), we can factorize
the forward matrix element into a product of several matrix
elements.

First, for each final-state collinear sector we get the
vacuum expectation value of two collinear fields, with an
insertion of �½!i � E0

i � between the fields, which restricts
the collinear energy configuration to !i. Since the matrix
element conserves four-momentum, we can write it as

h0j�ðp0
iÞ�½!i � E0

i ��yðpiÞj0i
¼ ð2�Þ4�4ðp0

i � piÞJðpi;!iÞ; (63)

which defines the momentum-space jet function Jðpi;!iÞ.
Integrating both sides over pi, we obtain the equivalent
definition in position space in terms of the standard fields
�n;~pðxÞ,

Jðpi;!iÞ ¼
Z

d4xeiki�xh0j�ni;~pi
ðxÞ�½!i � E0

i ��y
ni;~pi

ð0Þj0i:
(64)

Momentum conservation implies that Jðp;!Þ only has
support for configurations ! that satisfy P½!� ¼ p, where
P½!� is defined in Eq. (20). One can also define a jet
function Jð!Þ ¼ R

d4pJðp;!Þ, which has support for
any (physically allowed) !, but we find it conceptually
and notationally easier to keep the total momentum of! as
an explicit separate argument.
At leading order in the power counting, any hadron in

the initial state is bound by collinear interactions only, and
thus does not interact with the soft sector. Hence, we can
factor out the soft matrix element

h0jOy
S ðk0sÞ�½!s � E0

s�OSðksÞj0i
¼ ð2�Þ4�4ðk0s � ksÞð2�Þ4�ðks � P½!s�ÞSð!sÞ; (65)

which defines the soft function Sð!sÞ, and we again used
momentum conservation. Note that OS and S depend on
the N þ 2 collinear directions with respect to which the
Wilson lines are defined, which is hidden in our notation.
The soft function Sð!sÞ is defined with support for any
physical !s, and the total soft momentum is given by ks ¼
P½!s�.
The remaining initial-state matrix element can be writ-

ten as

hIjOy
I ðp0

a; p
0
bÞ�½!a � E0

a��½!b � E0
b�OIðpa; pbÞjIi

¼ ð2�Þ4�4ðp0
a � paÞð2�Þ4

� �4ðp0
b � pbÞIðpa; pb;!a;!bÞ; (66)

and defines the initial-state function Iðpa; pb;!a;!bÞ. In
writing Eq. (66) we already used that the matrix element
will factorize for the two collinear sectors, which allows us
to write two separate momentum-conserving � functions.
As for the jet function, we choose to keep the momenta
pa;b explicit in the definition of Iðpa; pb;!a;!bÞ, so its

support is restricted by momentum conservation to
P½!a þ!b� ¼ pI � pa � pb. For eþe� collisions, the
initial-state function reduces to a calculable leptonic ma-
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trix element, as discussed in Sec. VA. For hadronic colli-
sions, it can be reduced to parton distribution functions, but
also allows one to treat the underlying event or beam
remnants, as discussed in Sec. VI B.

Combining Eqs. (63), (65), and (66), with Eq. (62), we
can perform the integrals over all primed momenta, and
arrive at

��

�!
¼ 1

2p2
I

�YN
i¼1

Z d4pi

ð2�Þ4 D!iJðpi;!iÞ
�Z d4pa

ð2�Þ4
d4pb

ð2�Þ4
�D!aD!bIðpa; pb;!a;!bÞ
� CNðpa; pb;p1; . . . ; pNÞj2

Z
D!sSð!sÞð2�Þ4

� �4

�
pa þ pb � P½!s� �

XN
i¼1

pi

�

� �

�
!�!s �

XN
i¼a;b;1

!i

�
: (67)

As anticipated, the fully differential cross section ��=�!
is given by the product of a hard coefficient jCNj2, N jet
functions Jðpi;!iÞ, an initial-state function
Iðpa; pb;!a;!bÞ, and a soft function Sð!sÞ. Note that
there are no power corrections to Eq. (67) other than
from higher-order SCET operators in the matching of
QCD onto SCET and higher-order contributions to the
Lagrangian, which could in principle be included system-
atically. One should keep in mind that this factorization is
purely academic at this point, because all ingredients de-
pend on the precise energy configuration in each sector of
the theory. The energy configurations are obviously very
different for partonic and hadronic states, and therefore the
functions J, I, and S cannot be calculated perturbatively.
One should think of them as fully exclusive functions.

The importance of Eq. (67) lies in the fact that it estab-
lishes factorization for a generic N-jet like kinematic con-
figuration. In our formalism, the question whether the cross
section d�=dO for a particular observable factorizes is
twofold. First, a given value of the observable has to be
dominated by factorizable kinematic configurations. If this
is the case, one can immediately obtain a factorized form
for d�=dO from Eq. (67) via Eq. (17). This means that any
jet observable (meaning any observable whose definition
restricts it to N-jet configurations) is formally factorizable.
The second, and more important, question then is whether
one is able to determine the relevant functions, J, I, and S,
for a given observable.

For sufficiently inclusive observables, the jet functions,
Jðpi;!iÞ, will be smeared enough, i.e., integrated over !i

with a sufficiently smooth weight function, such that we
can trust their perturbative calculation. Similarly, the soft
function, Sð!sÞ, and (for hadronic collisions) the initial-
state function, Iðpa; pb;!a;!bÞ, have to be smeared
enough (integrated over !s and !a;b) to reduce to non-

perturbative functions that are universal between different
processes. For such observables, one obtains a factoriza-
tion formula in the more traditional sense, which allows for
the perturbative calculation of all ingredients, with the
exception of maybe a traditional soft function or initial-
state parton distribution functions.
To study the structure of the factorization for a specific

observable, and obtain explicit definitions of the relevant
jet, soft, and initial-state functions, it is usually required to
also expand the kinematics of the process, because Eq. (67)
still mixes momentum components with different scaling
in SCET. In this way, one obtains a result that formally is
fully leading order in the power counting. As discussed
above, with our choice of field labels the components
p

i ¼ p0

i � pi are defined with respect to the direction of
the momentum pi itself, so pi? ¼ 0 and ni ¼ pi=pi. Since
p�
i � pþ

i , to leading order the phase space in Eq. (51) is

Z d4pi

ð2�Þ4 ¼
Z dp�

i dp
þ
i d�i

ð2�Þ4
ðp�

i Þ2
8

: (68)

Furthermore, expanding the momentum-conserving �
function, we find

�4

�
pa þ pb � P½!s� �

XN
i¼1

pi

�

¼ �4

�
p�
a

na
2
þ p�

b

nb
2
�XN

i¼1

p�
i

ni
2

�
: (69)

Equation (67) together with Eqs. (68) and (69) provide
the final factorized form of the fully differential cross
section ��=�! for N jets, and is the main result of this
paper. In the remaining part of the paper we will show how
to use this result to understand the factorization properties
of several observables. We will focus mostly on simple
two-jet final states, for which the kinematics is simple
enough to explicitly perform all phase-space integrations
analytically. All our examples, however, follow directly
from our general result, and the extensions to more com-
plicated final states should be obvious.

V. eþe� ! 2 JETS

In this section, we show how to apply the result in
Eq. (67) to the simplest case of two-jet events in eþe�
collisions. The analysis simplifies considerably because of
the absence of strongly interacting particles in the initial
state, and due to the back-to-back nature of the jets and the
corresponding need for only a single collinear direction,
e.g., the thrust axis. We first give explicit definitions of the
operators OI, OF, and OS, including all relevant spin and
color information, and then define all the ingredients in the
factorized form of ��=�!. We then apply this generic
formula to the special cases of event-shape observables in
the limit e ! 1 and to hemisphere jet masses, whose
factorization is well understood [40–42,55,56].
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Factorization for the former was proven using SCET in
Refs. [14,17] and for the latter in Ref. [15], and we show
how to reproduce these results. We then consider the
factorization of generic observables defined for cone jet
algorithms, and obtain the definition of the relevant cone
jet functions and cone soft function. In SCET, cone jets
were previously discussed in Refs. [11,12,57] using
Sterman-Weinberg cones.

A. Generic expression

For eþe� ! 2 jets, including the full spin and color
information, the three SCET operators entering the match-
ing in Eq. (57) are7

O�
I ðpa; pbÞ ¼ �eð�paÞ��eðpbÞ;

Ocd
F�ðp1; p2Þ ¼ �cðp1Þ��

dð�p2Þ;
Ocd

S ðksÞ ¼
Z

d4xe�iks�xT½Yyce
n1 ðxÞYed

n2 ðxÞ�; (70)

where cðpÞ ¼ ½W��cðpÞ denotes a noninteracting collin-
ear quark field of color c and charge eQf (where f denotes

the flavor), moving in the p=jpj direction. Note that we are
distinguishing particle and antiparticles by the sign of the
momentum argument on the field. The soft Wilson lines
along an outgoing collinear direction are8

Yy
n ðxÞ ¼ P exp

�
igs

Z 1

0
dsn � Asðxþ snÞ

�
; (71)

where P denotes path ordering. The Wilson coefficient at
tree level is given by

C2ðpa; pb;p1; p2Þ ¼
ie2Qf

2pa � pb

½1þOð�sÞ�: (72)

Since the initial state is not strongly interacting, the
initial-state function in Eq. (66), including the average
over initial spins, reduces to

I��ðpa;pb;!a;!bÞ¼ 1

4

X
spins

Z d4p0
a

ð2�Þ4
d4p0

b

ð2�Þ4 he
þe�j �eðp0

bÞ

���eð�p0
aÞ�½!a�E0

a�
��½!b�E0

b� �eð�paÞ��eðpbÞjeþe�i
¼ ð2�Þ4�ðpa�peþÞð2�Þ4�ðpb�pe�Þ
��½!a��½!b�L��; (73)

where pe� are the momenta of the incoming leptons and

L�� ¼ p
�
e�p

�
eþ þ p

�

eþp
�
e� � g��ðpe� � peþÞ (74)

is the well-known leptonic tensor. Note that as we do not
consider any initial-state radiation from the incoming lep-
tons, E0

a;b ¼ 0 in Eq. (73).

Using �ðp1Þ ¼ c
�ðp1Þ and �ðp2Þ ¼ �d

�ð�p2Þ in

Eq. (63) (where �, � are spinor indices), the quark and
antiquark jet functions become (with the sum over spins
implicit)

Jc
0c

�0�ðp1;!1Þ¼
Z d4p0

1

ð2�Þ4 h0j
c0
�0 ðp0

1Þ�½!1�E0
1� �c

�ðp1Þj0i

¼�c0c
�
n6 1

2

�
�0�

Jðp1;!1Þ;

�Jd
0d

�0�ðp2;!2Þ¼
Z d4p0

1

ð2�Þ4 h0j �
d0
�0 ð�p0

2Þ�½!2�E0
2�d

�ð�p2Þj0i

¼�d0d
�
n6 2

2

�
��0

�Jðp2;!2Þ;

(75)

where the spin-singlet and color-singlet jet functions are
defined as

Jðp1;!1Þ ¼ 1

4Nc

Z d4p0
1

ð2�Þ4 trh0j �n6 1ðp0
1Þ

� �½!1 � E0
1� �ðp1Þj0i;

�Jðp2;!2Þ ¼ 1

4Nc

Z d4p0
2

ð2�Þ4 trh0j �ð�p0
2Þ

� �½!2 � E0
2� �n6 2ð�p2Þj0i: (76)

Here, tr denotes the trace over spin and color indices and
Nc is the number of colors. At lowest order in perturbation
theory, we have Jðp;!Þ ¼ �Jðp;!Þ ¼ 2��ðpþÞ�ðp�Þ�
�½!ð�Þ � p0�ð���ðpÞÞ�.
From Eq. (65), the soft function is defined as

Sd
0c0cd

n1n2 ð!sÞ ¼ 1

Nc

Z d4k0s
ð2�Þ4

d4ks
ð2�Þ4 h0jO

yd0c0
S ðk0sÞ�½!s � E0

s�
�Ocd

S ðksÞj0i; (77)

where we made explicit the dependence of S on the direc-
tions n1;2 of the Wilson lines in OS, and the factor 1=Nc is

included by convention. Contracting with the trivial color
structure of the jet functions in Eq. (75), we obtain the
color-singlet soft function

Sn1n2ð!sÞ ¼ �c0c�d0dSd
0c0cd

n1n2 ð!sÞ
¼ 1

Nc

trh0j �T½ðYy
n2Yn1Þð0Þ��½!s � E0

s�

� T½ðYy
n1Yn2Þð0Þ�j0i: (78)

Since the spin structure of the jet functions in Eq. (75)
factorizes, we can contract all vector and spinor indices,

7We only give the result for an intermediate photon here, and
include the Z boson contribution later.

8For a discussion of the different choices of boundary con-
ditions for in- and outgoing Wilson lines see, for example,
Ref. [58].
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L��

�
n6 1

2

�
�0�

��
��

�
n6 2

2

�
��0

��
�0�0 ¼ E2

cmð1� cos�1 cos�2Þ;
(79)

where Ecm is the total energy and �1;2 are the angles of p1;2

with respect to the eþe� beam axis in the center-of-mass
frame. Thus, combining all pieces with Eq. (67), we find

��

�!
¼ 8�2�2Q2

fNc

E4
cm

Z d4p1

ð2�Þ4 D!1Jðp1;!1Þ

�
Z d4p2

ð2�Þ4 D!2
�Jðp2;!2ÞH2ðp1; p2Þ

� ð1� cos�1 cos�2Þ
Z

D!sSn1n2ð!sÞð2�Þ4

� �4ðpeþ þ pe� � P½!s� � p1 � p2Þ
� �½!�!1 �!2 �!s�; (80)

where the hard coefficient H2ðp1; p2Þ ¼ 1þOð�sÞ is de-
fined by

jC2ðpeþ ; pe� ;p1; p2Þj2 ¼
�
4��Qf

E2
cm

�
2
H2ðp1; p2Þ: (81)

Equation (80) specializes Eq. (67) to generic two-jet con-
figurations ! in eþe� collisions.

Next, we expand the kinematics. Using Eq. (69), the
momentum-conserving � function becomes

�4

�
p�
eþ

neþ

2
þ p�

e�
ne�

2
� p�

1

n1
2
� p�

2

n2
2

�

¼ 8

E2
cm

�ðp�
1 � EcmÞ�ðp�

2 � EcmÞ

� �ðcos�1 þ cos�2Þ�ð�1 ��2 � �Þ; (82)

where as before in the center-of-mass frame pI ¼ peþ þ
pe� ¼ ðEcm; 0Þ. The � functions allow us to perform the
p�
1 , p

�
2 , and�2 integrations in Eq. (80), and imply that p1

and p2 are back to back, as expected for two-jet events. In
particular, n1 ¼ �n2, so we can write p1;2 in terms of the

components ðpþ; p�;nÞ as

p1 ¼ ðpþ
1 ; Ecm;nð�ÞÞ; p2 ¼ ðpþ

2 ; Ecm;�nð�ÞÞ;
(83)

where � ¼ ð�;�Þ � �1 describes the orientation of the
momenta relative to the beam axis. We also write Sn1n2 �
Snð�Þ. Similar to the Wilson coefficient C2, the hard coef-

ficientH2ðp1; p2Þ does not depend on the small momentum
components pþ

1;2. Since p�
i ¼ Ecm, we define H2ðEcmÞ �

H2ðp1; p2Þ. Combining everything with Eq. (80), using
Eq. (68), and writing the momenta in terms of their com-
ponents, we have

��

�!
¼ H2ðEcmÞ

Z d�

2�

Z dpþ
1

2�
D!1Jðpþ

1 ; Ecm;nð�Þ;!1Þ

�
Z dpþ

2

2�
D!2

�Jðpþ
2 ; Ecm;�nð�Þ;!2Þ d�0

d cos�

�
Z

D!sSnð�Þð!sÞ�½!�!1 �!2 �!s�; (84)

where

d�0

d cos�
¼ ��2

2E2
cm

NcQ
2
fð1þ cos2�Þ (85)

is the Born differential cross section. The exchange of a Z
boson can be included by using

d�0

d cos�
¼ ��2

2E2
cm

Nc

��
Q2

f �
2vevfQf

1�m2
Z=E

2
cm

þ ðv2
e þ a2eÞðv2

f þ a2fÞ
ð1�m2

Z=E
2
cmÞ2

�
ð1þ cos2�Þ

þ
� 4aeafQ

2
f

1�m2
Z=E

2
cm

� 8veaevfaf

ð1�m2
Z=E

2
cmÞ2

�
cos�

�
;

(86)

where ve;f and ae;f are the standard vector and axial

couplings to the Z.
Equation (84) is the penultimate formula for generic

observables in eþe� ! 2 jet events. Each of the ingre-
dients in Eq. (84) is a completely exclusive object that
depends on the energy distribution of the individual par-
tons. The details of how to integrate over the energy
configurations to arrive at perturbative jet functions and a
universal soft function depend on the observable in ques-
tion, but since all observable independent simplifications
have been done, a wide range of factorization theorems can
now be obtained with relative ease. We illustrate this with a
few examples in the following subsections.

B. Event shapes in the limit e ! 1

Combining Eqs. (17) and (28), the differential cross
section in some event shape e is

d�

de
¼

Z
dt

Z
D!

��

�!
�ðt� t½!�Þ�ðe� fe½!; t�Þ:

(87)

For e ! 1, the final state is dominated by two highly
collimated jets, and hence, we can use the result for
��=�! in Eq. (84). The integration over ! is trivial and
sets ! ¼ !1 þ!2 þ!s. Since !1;2 describe collinear

energy configurations along �nð�Þ, we have t½!1 þ
!2 þ!s� ¼ nþOð
2Þ [17]. This allows us to integrate
over t,
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d�

de
¼ H2ðEcmÞ

Z d�

2�

Z dpþ
1

2�
D!1Jðpþ

1 ; Ecm;nð�Þ;!1Þ

�
Z dpþ

2

2�
D!2

�Jðpþ
2 ; Ecm;�nð�Þ;!2Þ d�0

d cos�

�
Z

D!sSnð�Þð!sÞ
� �ðe� fe½!1 þ!2 þ!s;nð�Þ�Þ: (88)

From Eq. (29), we see that fe½!;n� is linear in !, from
which it follows that we can write fe½!1 þ!2 þ!s;n� ¼
fe½!1;n� þ fe½!2;n� þ fe½!s;n�. This implies

�ðe� fe½!1 þ!2 þ!s;n�Þ
¼

Z
de1de2des�ðe� e1 � e2 � esÞ

� �ðe1 � fe½!1;n�Þ�ðe2 � fe½!2;n�Þ
� �ðes � fe½!s;n�Þ; (89)

which separates the ! dependencies in Eq. (88). We stress
that this is not a requirement for the factorization of
d�=de, as demonstrated by Eq. (88). In fact, the full
event-shape functional fe½!� ¼ fe½!; t½!�� is not linear
in ! and does not obey a similar separation, because t½!�
is not linear in !. The crucial ingredient for the factoriza-
tion is the linearity of the energy-momentum tensor and the
resulting separation of the energy-flow operator in
Eqs. (60) and (61). However, without Eq. (89) the jet and
soft functions depend on the full energy distributions !i,
and are therefore neither perturbatively calculable, nor
universal enough to be extracted from data. The important
point about Eq. (89) is that it allows us to perform the !
integrations in Eq. (88), and to define inclusive event-shape
jet and soft functions

Jðe1Þ ¼
Z dpþ

1

2�
D!1Jðpþ

1 ; Ecm;n;!1Þ�ðe1 � fe½!1;n�Þ;

�Jðe2Þ ¼
Z dpþ

2

2�
D!2

�Jðpþ
2 ; Ecm;n;!2Þ�ðe2 � fe½!2;n�Þ;

SðesÞ ¼
Z

D!sSnð!sÞ�ðes � fe½!s;n�Þ: (90)

With the definitions in Eqs. (76) and (78), these are iden-
tical to the definitions given in Ref. [17]. For �Jðe2Þ we used
that fe½!;n� ¼ fe½!;�n� because the sign of the thrust
vector is irrelevant. By rotational invariance, after integrat-
ing over !1;2, the jet functions Jðe1Þ, �Jðe2Þ, do not depend

on the value of n on the right-hand side. This would not be
true if the thrust axis n in fe½!;n� would be different from
the momentum direction n in Jðpþ; Ecm;n;!Þ. Similarly,
after integrating over !s, the soft function SðesÞ is inde-
pendent of n, because the direction of the Wilson lines in
Snð!sÞ coincides with the thrust axis. Thus, using Eq. (90)
and integrating over �, we obtain the final result

d�

de
¼ H2ðEcmÞ�0

Z
de1de2desJðe1Þ �Jðe2ÞSðesÞ

� �ðe� e1 � e2 � esÞ; (91)

where �0 ¼
R
d cos�d�0=d cos� is the total Born cross

section. Equation (91) agrees with the result of Ref. [17].

C. Double differential hemisphere mass distribution

Combining Eqs. (17) and (37), the double differential
hemisphere mass distribution is

d2�

dM2
1dM

2
2

¼
Z

d4P1

Z
d4P2

d2�

d4P1d
4P2

� �ðM2
1 � P2

1Þ�ðM2
2 � P2

2Þ; (92)

where the cross section differential in the total momentum
of each jet for the hemisphere jet algorithm is

d2�

d4P1d
4P2

¼
Z
dt

Z
D!

��

�!
�ðt� t½!�Þ

��4ðP1�P½J 1½!;t��Þ�4ðP2�P½J 2½!;t��Þ:
(93)

Here, P½!� is given in Eq. (20) and J i½!; t� in Eq. (40).
Combining these we have

P�
hemi 1½!; t� � P�½J 1½!; t��

¼
Z

d�n�ð�Þ!ð�Þ�ð0 � �t <�=2Þ;
P
�
hemi 2½!; t� � P�½J 2½!; t��

¼
Z

d�n�ð�Þ!ð�Þ�ð�=2 � �t � �Þ: (94)

In general, Eq. (93) will receive contributions from final
states containing several distinct collinear momenta, cor-
responding to SCEToperators with N  2. However, if the
final states are restricted to the kinematic region of small
hemisphere invariant masses M2

i ¼ P2
i �Oð
2E2

cmÞ, cor-
responding to two collimated jets, the operator with N ¼ 2
collinear directions gives the dominant contribution, with
the corrections suppressed by powers of 
. Thus, we can
apply the result for ��=�! in Eq. (84) in this region.
The integral over t can be performed as in the previous

subsection, which sets t ¼ nþOð
2Þ. As Eq. (94) is
linear in !, we then have

Phemi i½!;n� ¼ Phemi i½!1 þ!2 þ!s;n�
¼ Phemi i½!1;n� þ Phemi i½!2;n�

þ Phemi i½!s;n�: (95)

To understand the size ofPhemii½!j� for i ¼ j and i � j, we

need to think about states in SCET in more detail. Since the
direction n labelling the collinear fields in SCET is a
conserved quantum number, there exists a basis for the
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physical states that have a fixed value of n as well. This
implies that for a given SCET state with momentum p, one
has to identify the value of the direction n as well. Of
course, to have the same final states as in full QCD, one
needs

P
njp; niSCET ¼ jpiQCD, i.e., one has to be careful

not to double count the physical states. Certainly, a conve-
nient choice is to define the SCET states such that for every
momentum p there is only a single value n. For our
problem, the simplest choice is to assign the label n1 ¼
ð1;nÞ to all states with momentum in hemisphere 1, and
n2 ¼ ð1;�nÞ to all states in hemisphere 2. This choice
implies

Phemi i½!j�i;n� ¼ 0 and Phemi i½!i;n� ¼ pi; (96)

where pi ¼ P½!i� is the total momentum of !i, i.e., the
momentum in Jðpi;!iÞ. The power counting of SCET
implies that ‘i ¼ Phemi i½!s� � 
2E2

cm, where ‘i can be
interpreted as the total soft momentum in each hemisphere.
Thus, using Eq. (83) we can expand

M2
i ¼ P2

i ¼ p2
i þ 2pi � ‘i þ ‘2i

¼ Ecmðpþ
i þ ni � ‘iÞ þOð
4E2

cmÞ: (97)

Since our observablesM2
i only depend on p

þ
i and ni � ‘i,

we can do the remaining integrations in Eq. (84), and
define the corresponding jet and soft functions

JðEcmp
þ
1 Þ ¼

1

2�Ecm

Z
D!1Jðpþ

1 ; Ecm;n;!1Þ;

�JðEcmp
þ
2 Þ ¼

1

2�Ecm

Z
D!2

�Jðpþ
2 ; Ecm;n;!2Þ;

Shemið‘þ1 ; ‘þ2 Þ ¼
Z

D!sSnð!sÞ�ð‘þ1 � n1 � Phemi 1½!s;n�Þ
� �ð‘þ2 � n2 � Phemi 2½!s;n�Þ: (98)

Again, after integrating over !1;2;s, the jet functions, Jðp2
1Þ

and �Jðp2
2Þ, and the hemisphere soft function, Shemið‘þ1 ; ‘þ2 Þ,

do not depend on n due to rotational invariance. The SCET
hemisphere soft function has been discussed previously in
Refs. [15,16,59,60]. The above definition provides an op-
erator definition of Shemið‘þ1 ; ‘þ2 Þ in SCET, and is equiva-
lent to the definition in Ref. [41]. Putting everything
together, we obtain for the double differential hemisphere
mass distribution

d2�

dM2
1dM

2
2

¼ H2ðEcmÞ�0

Z
d‘þ1 d‘þ2 JðM2

1 � Ecm‘
þ
1 Þ

� �JðM2
2 � Ecm‘

þ
2 ÞShemið‘þ1 ; ‘þ2 Þ; (99)

which agrees with the massless limit of the result in
Ref. [15].

D. Two-jet cone algorithms

As the last example in this section, we consider the cross
section for two-jet final states obtained from an infrared-

safe cone jet algorithm. Since the discussion follows
closely that of the previous two subsection, we keep it
short, mainly highlighting the differences. Combining
Eqs. (17) and (37) with N ¼ 2 we have

d�

dO
¼

Z
dj1dj2

Z
D!

��

�!
�ðj1 � j1½!�Þ�ðj2 � j2½!�Þ

�
Z

d4P1�
4ðP1 � Pcone½!; j1�Þ

Z
d4P2

� �4ðP2 � Pcone½!; j2�Þ�ðO� gOðP1; P2ÞÞ; (100)

where ji½!� denotes the i-th jet direction returned by j½!�,
and the functionals for the total jet momenta are now
defined, for example, using Eq. (42)

P
�
cone½!; ji� � P�½J i½!; j��

¼
Z

d�n�ð�Þ!ð�Þ�ðR� �jiÞ: (101)

As before, Eq. (100) receives in general contributions from
operators with N  2. However, if the final state is re-
stricted to two jets with small invariant masses, M2

i ¼
P2
i �Oð
2E2

cmÞ, the result for ��=�! in Eq. (84) for N ¼
2 gives the dominant contribution, with corrections sup-
pressed by powers of 
. The restriction on the kinematics
of the final state is now provided by the jet algorithm, or by
the combination of jet algorithm and observable.
For a good jet algorithm, the result of j½!� should not

depend on!s up to power corrections. This is equivalent to
the requirement that the jet algorithm should not be infra-
red sensitive. Furthermore, since !i describes a collinear
energy configuration along ni, by a similar argument as in
the case of thrust, up to power corrections, the direction of
the jets is aligned with the direction of the collinear fields.
Therefore,

j i½!1 þ!2 þ!s� ¼ ni þOð
kÞ: (102)

The power of k depends on the details of the algorithm,
e.g., for the hemisphere jet algorithm, where j is the thrust
axis, we had k ¼ 2.
To define the states in SCET, we assign the label ni to

states with momentum lying in the i-th cone, so there is
again no overlap between states with the same momentum
but different n inside the cones. The precise definition of
states with momentum outside any of the cones is not
important at this point. With this definition,
Pcone½!j�i;ni� ¼ 0, and since Eq. (101) is linear in !,

we have

Pcone½!1 þ!2 þ!s;ni� ¼ Pcone½!i;ni� þ Pcone½!s;ni�
� qi þ ‘i; (103)

where qi ¼ Pcone½!i;ni� and ‘i ¼ Pcone½!s;ni� are
the total collinear and soft momentum in each cone.
Equation (102) implies that qi þ ‘i are aligned along ni

up to power corrections. In addition, note that q�i � q�i ðRÞ
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is a function of the cone size R (and the used jet algorithm).
For R ¼ � the cones become hemispheres, and thus
q�i ð�Þ ¼ p�

i , while at lowest order in perturbation theory,
q�i ðRÞ ¼ p�

i �Oð�sÞ. Thus, for large enough R,
q�i =p�

i � 1 with the corrections calculable in perturbation
theory. (Generically, we expect the perturbative corrections
to contain logarithms of �=R. Similar phase-space loga-
rithms have been studied for the case of Sterman-Weinberg
jets in Ref. [57].) Hence, as q�i obeys the same power
counting as p�

i for reasonable R, any observable that does
not vanish at leading order in the SCET power counting

can be written as

gOðP1; P2Þ � gOðqþ1 þ ‘þ1 ; q
�
1 ; q

þ
2 þ ‘þ2 ; q

�
2 ;nÞ

þOð
mÞ; (104)

where, m is not necessarily the same as k and also depends
on the observable.
Since Eq. (104) only depends on q�i , the result for

d�=dO can be expressed in terms of the cone jet and
soft functions

Jconeðqþ1 ; q�1 Þ ¼
Z dpþ

1

2�
D!1Jðpþ

1 ; Ecm;n;!1Þ�ðqþ1 � n1 � Pcone½!1;n�Þ�ðq�1 � n2 � Pcone½!1;n�Þ;

�Jconeðqþ2 ; q�2 Þ ¼
Z dpþ

2

2�
D!2

�Jðpþ
2 ; Ecm;n;!2Þ�ðqþ2 � n1 � Pcone½!2;n�Þ�ðq�2 � n2 � Pcone½!2;n�Þ;

Sconeð‘þ1 ; ‘þ2 Þ ¼
Z

D!sSnð!sÞ�ð‘þ1 � n1 � Pcone½!s;n�Þ�4ð‘þ2 � n2 � Pcone½!s;�n�Þ;

(105)

where as before n1;2 ¼ ð1;�nÞ, and the functions on the
left-hand side do not depend on n. Combining Eq. (84)
with Eq. (100) and using the above definitions, we obtain
the final result for the factorized differential cross section

d�

dO
¼ H2ðEcmÞ

Z d�

2�

d�0

d cos�

Z
dqþ1 dq

�
1 Jconeðqþ1 ; q�1 Þ

�
Z

dqþ2 dq�2 �Jconeðqþ2 ; q�2 Þ

�
Z

d‘þ1 d‘
þ
2 Sconeð‘þ1 ; ‘þ2 Þ

� �ðO� gOðqþ1 þ ‘þ1 ; q
�
1 ; q

þ
2 þ ‘þ2 ; q

�
2 ;nð�ÞÞÞ:

(106)

To our knowledge, factorization for jet distributions has not
received much attention in the literature (however, see
Refs. [57,61]), and this is the first time any factorization
theorem for jet observables based on jet algorithms has
been proven in the framework of SCET.

For many observables, such as the transverse momentum
distribution, the dependence on the soft momenta and the
small components qþi is power suppressed, which allows
us to integrate over these to obtain

d�

dO
¼ H2ðEcmÞ

Z d�

2�

d�0

d cos�

Z
dq�1 Jconeðq�1 Þ

�
Z

dq�2 �Jconeðq�2 ÞScone�ðO� gOðq�1 ; q�2 ;nð�ÞÞÞ;
(107)

where
R
dlþdl�Sconeðlþ; l�Þ � Scone is perturbatively cal-

culable up to small power corrections, and we defined

Jconeðq�1 Þ ¼
Z

dqþ1 Jconeðqþ1 ; q�1 Þ;

�Jconeðq�2 Þ ¼
Z

dqþ2 �Jconeðqþ2 ; q�2 Þ:
(108)

VI. TOWARD pp ! 2 JETS

In the previous section we have focused on two-jet
production in eþe� collisions. In this section, we extend
these results to include hadrons in the initial state. Jet
production in hadronic collisions is in several ways more
complicated than for eþe� collisions. First, there are sev-
eral different partonic processes contributing to pp ! 2
jets. Second, the operators describing the short distance
process now contain strongly interacting particles for both
initial and final states, giving rise to a more involved color
and Dirac structure. Finally, there are several additional
matrix elements required to describe the long distance
physics. These are the parton distribution function describ-
ing how the initial-state partons are distributed inside the
incoming proton, as well as new soft functions.
In this paper, we will only consider the simplest partonic

process qq0 ! qq0, and work only to tree level in the
matching from QCD onto SCET. This simplifies the dis-
cussion dramatically, since only a single operator contrib-
utes at this order. Furthermore, due to the absence of
gluons in the initial or final state, the only additional non-
perturbative ingredients are the parton distributions of
finding a quark inside the proton and the new soft function.
The complete analysis of pp ! 2 jets is considerably more
involved and will be discussed elsewhere [62].

A. Matching onto SCET at tree level

At tree level, only a single operator is required in SCET
to describe the partonic process qq0 ! qq0, schematically
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Oðpa; pb;p1; p2Þ ¼ C4ðpa; pb;p1; p2ÞOIðpa; pbÞ
�OFðp1; p2ÞOSðksÞ; (109)

where we define theWilson coefficientC4 to contain all the
kinematic and Dirac factors. The operatorsOI,OF, andOS

are defined as

Ocd
I��ðpa; pbÞ ¼ c

�ðpaÞd
�ðpbÞ;

Oef
F��ðp1; p2Þ ¼ �e

�ðp1Þ �f
�ðp2Þ;

Oecfd
S ðksÞ ¼

Z
d4xe�iks�xT½ðYy

n1T
A ~YnaÞecðxÞ

� ðYy
n2T

A ~YnbÞfdðxÞ�; (110)

where subscripts denote spinor and superscripts color in-
dices. The Wilson lines for the outgoing fields are defined
as in Eq. (71), while for the incoming fields they are

~Y nðxÞ ¼ P exp

�
igs

Z 0

�1
dsn � Asðxþ snÞ

�
: (111)

The Wilson coefficient is given by

C4ðpa; pb;p1; p2Þ ¼ ig2s
t̂
ð��Þ��ð��Þ��; (112)

where we stress again that we are only working to tree level
in the matching. The variable t̂ is one of the usual
Mandelstam variables defined in terms of the partonic
momenta

ŝ¼ ðpa þpbÞ2; t̂¼ ðpa �p1Þ2; û¼ ðpa �p2Þ2:
(113)

B. New nonperturbative matrix elements

There are two sources of additional matrix elements that
cannot be calculated perturbatively. First, the operator OI

now includes strongly interacting degrees of freedom, and
the matrix elements involving the initial-state protons are
no longer calculable. Second, the soft operator contains
four Wilson lines, rather than just two as for eþe� colli-
sions. This implies that a new soft function is required. In
this section we define all required nonperturbative matrix
elements needed for the process pp ! 2 jets via the par-
tonic process qq0 ! qq0.

Since the initial-state hadrons are moving along differ-
ent light cones, they are described by two sets of SCET
Lagrangians, which do not interact with each another.
Therefore, the physics of the two initial states completely
factorizes, in the same way as the final-state partons in
different directions factorize from one another, and we can
write jIi ¼ jPaijPbi and OIðpa; pbÞ ¼ Oa

I ðpaÞOb
I ðpbÞ,

such that we can factorize the initial-state matrix element
as

hIjOy
I ðp0

a; p
0
bÞ�½!a � E0

a��½!b � E0
b�OIðpa; pbÞjIi

¼ hPajOay
I ðp0

aÞ�½!a � E0
a�Oa

I ðpaÞjPai
� hPbjOby

I ðp0
bÞ�½!b � E0

b�Ob
I ðpbÞjPbi: (114)

For the case considered here, the operators Oa
I and Ob

I

contain just a single quark field, ðOa
I Þc� ¼ c

�ðpaÞ and
ðOb

I Þd� ¼ d
�ðpbÞ. The resulting matrix elements define

the parton distribution functions to find the quarks q and
q0 in the initial protons Pa;b.

Z d4p0
a

ð2�Þ4 hPaj �c0
�0 ðp0

aÞ�½!a � E0
a�c

�ðpaÞjPai

¼ 1

2Nc

�c0c
�
n6 a

2

�
��0

fq=Pðpa;!aÞ; (115)

and similarly for fq0=Pðpb;!bÞ. (Note that since we are

distinguishing particles and antiparticles by the sign of
their momentum, there is no antiquark distribution on the
right-hand side.) Combining these results gives the initial-
state function

Ic
0cd0d

�0��0�ðpa; pb;!a;!bÞ ¼ 1

4N2
c

�c0c�d0d
�
n6 a

2

�
��0

�
n6 b

2

�
��0

� fq=Pðpa;!aÞfq0=Pðpb;!bÞ:
(116)

In most cases of experimental interest, the observable is
independent of !a;b and the plus- and transverse compo-

nents of the collinear momentum, which means we can
integrate over these to obtain the standard parton distribu-
tion function [10,13,63]

fq=PðxaÞ ¼
Z d4pa

ð2�Þ4 D!afq=Pðpa;!aÞ�ðp�
a � xaEcmÞ;

(117)

while everywhere else up to power corrections we can use

pa ¼ xaEcm

na
2
; pb ¼ xbEcm

nb
2
; (118)

with na ¼ ð1;nPa
Þ and nb ¼ ð1;nPb

Þ now aligned along

the direction of the incoming protons.
While the dependence on ! in our generalized distribu-

tions fq=Iðp;!Þ is not of relevance for most processes of

interest, it describes the energy configuration of the rem-
nant of the proton after the hard scattering. Thus, this
matrix element provides a field-theoretical definition of
the beam remnant. In particular, this means that the effect
of the beam remnant is properly taken into account in our
factorization proof in Sec. IV. In principle, operators OI

with more than one collinear field in the directions na and
nb can be included as well, and would describe multiple
scatterings of partons originating from the initial protons.
These additional hard scatterings give rise to what is
usually referred to as the underlying event [64,65]. Thus,
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these effects are also taken into account in our factorization
proof. Moreover, our formalism provides a field-theoretic
basis to study the underlying event. The details are left for
future work.

Since we only work to tree level in the matching from
QCD to SCET, there is only a single soft function required

for the process qq0 ! qq0. After contracting with the color
structures of the initial-state function and the q and q0

quark jet functions Je
0e

�0�ðp1;!1Þ and Jf
0f

�0�ðp2;!2Þ [defined
in the first line of Eq. (75)], we obtain

Snanbn1n2ð!sÞ ¼ 2

NcCF

Z d4k0s
ð2�Þ4

d4ks
ð2�Þ4 h0jO

ycedf
S ðk0sÞ�½!s � E0

s�Oecfd
S ðksÞj0i

¼ 2

NcCF

h0j �T½ð ~Yy
naT

BYn1Þceð0Þð ~Yy
nbT

BYn2Þdfð0Þ��½!s � E0
s�T½ðYy

n1T
A ~YnaÞecð0ÞðYy

n2T
A ~YnbÞfdð0Þ�j0i: (119)

C. Generic expression

Combining Eqs. (67), (75), (112), (115), and (119), the qq0 ! qq0 contribution to ��=�! for 2-jet production can be
written as

��

�!
¼ 1

2E2
cm

� Y
i¼a;b;1;2

Z d4pi

ð2�Þ4 D!i

�
1

4N2
c

fq=Pðpa;!aÞfq0=Pðpb;!bÞJðp1;!1ÞJðp2;!2ÞH4ðpa; pb;p1; p2Þ

� NcCF

2

Z
D!sSnanbn1n2ð!sÞð2�Þ4�4ðpa þ pb � P½!s� � p1 � p2Þ�½!�!a �!b �!1 �!2 �!s�; (120)

where (at tree level in the matching)

H4ðpa; pb;p1; p2Þ ¼ g4s
t̂2

1

4
tr½n6 a��n6 1��� 14 tr½n6 b�

�n6 2�
�� ¼ 2g4s

t̂2
ðna � nbn1 � n2 þ na � n2nb � n1Þ: (121)

As discussed before, most observables are independent of the energy configurations !a and !b, i.e., fO½!a þ!b þ
!1 þ!2 þ!s� ¼ fO½!1 þ!2 þ!s�. Therefore we can drop these beam remnant configuration in the � functional for!
and integrate over them in the parton distribution functions. Furthermore, inserting

1 ¼ E2
cm

Z 1

0
dxa

Z 1

0
dxb�ðp�

a � xaEcmÞ�ðp�
b � xbEcmÞ; (122)

and using Eqs. (117) and (118), the expression for ��=�! becomes

��

�!
¼ CF

16Nc

Z 1

0
dxadxbfq=PðxaÞfq0=PðxbÞ

Z d4p1

ð2�Þ4D!1Jðp1;!1Þ
Z d4p2

ð2�Þ4D!2Jðp2;!2ÞH4

�
Ecmxa

na
2
;Ecmxb

nb
2
;p1;p2

�

�
Z
D!sSnanbn1n2ð!sÞð2�Þ4�4

�
Ecmxa

na
2
þEcmxb

nb
2
�P½!s��p1�p2

�
�½!�!s�!1�!2�; (123)

where na;b ¼ ð1;nPa;b
Þ are now aligned with the directions of the incoming protons. As in Sec. V, this can be simplified

further by expanding the kinematics. After some algebra, we obtain

��

�!
¼

Z d�p

2�

Z 1

0
dxadxb

Z dpþ
1

2�
D!1Jðpþ

1 ; p
�
1 ;n1;!1Þ

Z dpþ
2

2�
D!2Jðpþ

2 ; p
�
2 ;n2;!2Þfq=PðxaÞfq0=PðxbÞ

� d�0

d cos�p

Z
D!sSnanbn1n2ð!sÞ�½!�!s �!1 �!2�; (124)

where the angular integral is defined in the center-of-mass
frame of the partonic collision. Both the large p�

i compo-
nents and the directions ni are functions of the partonic
center-of-mass angular variables,�p, and the energy frac-
tions of the incoming partons, xa;b. They are defined by

p�
1 ð�p; xa; xbÞ ¼ Ecm

2
½xað1þ cos�pÞ þ xbð1� cos�pÞ�;

p�
2 ð�p; xa; xbÞ ¼ Ecm

2
½xað1� cos�pÞ þ xbð1þ cos�pÞ�;

nið�p; xa; xbÞ ¼ nð�iÞ; (125)
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where �i ¼ ð�i; �iÞ are given by

cos�1 ¼
xað1þcos�pÞ�xbð1� cos�pÞ
xað1þcos�pÞþxbð1� cos�pÞ ; �1 ¼�p

cos�2 ¼
xað1�cos�pÞ�xbð1þcos�pÞ
xað1�cos�pÞþxbð1þcos�pÞ ; �2 ¼�pþ�:

(126)

Finally, the differential cross section d�0=d cos�p is given
by

d�0

d cos�p
¼ ��2

sCF

2Nc

1

xaxbE
2
cm

4þ ð1þ cos�pÞ2
ð1� cos�pÞ2

; (127)

which agrees with the well-known expression in terms of
the Mandelstam variables ŝ, t̂, û

d�0

dt̂
¼ ��2

sCF

Nc

ŝ2 þ û2

ŝ2 t̂2
: (128)

D. Jet observables

As an example how to use Eq. (124), we derive a
factorized cross section for infrared-safe cone jet observ-
ables, which was also studied in Ref. [61]. The required
steps are very similar to the derivation given in Sec. VD,
and we only highlight the differences that arise from hav-
ing protons in the initial state. First, ��=�! depends on
the parton distribution functions fq=PðxaÞ and fq0=PðxbÞ.
Second, while for eþe� collisions one often uses the
variables � and � to denote the direction of jets, in pp
collisions it is more appropriate to use the rapidity instead
of the angle �, due to the easier transformation properties
under boosts along the beam direction. This gives cone jet
functions Jcone that have exactly the same form as in
Eq. (124) but use the corresponding cone projections in
place of Eq. (42) to define the functionals Pcone½!; ji� in
Eq. (101). The final difference is that the cone soft function
now explicitly depends on the orientation of the directions
ni relative to the beam axis, since it contains Wilson lines
in both the directions of the incoming protons and the
outgoing jets. In particular, this implies that the nonpertur-
bative physics described by this cone soft function depends
on the rapidities of the outgoing jets. The experimental
determination of the soft function is thus considerably
more difficult for hadronic collisions than for eþe�
collisions.

Keeping in mind these differences, we can follow the
same steps as in Sec. VD to obtain the factorization
formula for generic two-jet observable using cone jets:

d�

dO
¼

Z d�p

2�

Z 1

0
dxadxbfq=PðxaÞfq0=PðxbÞ d�0

d cos�p

�
Z

dqþ1 dq�1 Jconeðqþ1 ; q�1 Þ

�
Z

dqþ2 dq
�
2 Jconeðqþ2 ; q�2 Þ

�
Z

d‘þ1 d‘þ2 Sconen1n2
ð‘þ1 ; ‘þ2 Þ

� �ðO� gOðqþ1 þ ‘þ1 ; q�1 ; qþ2 þ ‘þ2 ; q�2 ;n1;n2ÞÞ;
(129)

where the cone soft function is now defined as

Sconen1n2
ð‘þ1 ; ‘þ2 Þ ¼

Z
D!sSnanbn1n2ð!sÞ

� �ð‘þ1 � n1 � Pcone½!s;n1�Þ
� �ð‘þ2 � n2 � Pcone½!s;n2�Þ: (130)

As for eþe�, many jet observables only depend on the
large momentum components and the direction of the jets.
In this case, we can perform the integrals over pþ

i and ‘þi .
Integrating over ‘þi we defineZ

d‘þ1 d‘þ2 Sconen1;n2
ð‘þ1 ; ‘þ2 Þ � Sconen1;n2

; (131)

which is now perturbatively calculable up to small power
corrections. We obtain

d�

dO
¼

Z d�p

2�

Z 1

0
dxadxbfq=PðxaÞfq0=PðxbÞ d�0

d cos�p

�
Z

dq�1 Jðq�1 Þ
Z

dq�2 Jðq�2 ÞSconen1;n2

� �ðO� gOðq�1 ; q�2 ;n1;n2ÞÞ; (132)

where the jet functions integrated over pþ
i are defined as in

Eq. (108).

VII. CONCLUSIONS AND OUTLOOK

We have developed a new formalism for obtaining fac-
torization theorems for almost any observable of interest at
high energy colliders. We argued that any observable dif-
ferential cross section can be written in terms of two
building blocks, a fully differential cross section describing
the energy and momentum distribution of a given event,
together with the restriction of how to obtain the desired
observable from this distribution. For events containing
only massless particles in the final state, the only informa-
tion required to define observables O is the energy con-
figuration ! of the event, and we therefore focused on the
cross section fully differential in !, which we denoted as
��=�!. By integrating this energy distribution with an
appropriate functional fO½!�, the differential cross section
d�=dO in any observable O can be obtained.
Our main result is the proof of factorization for the fully

differential cross section, ��=�!, using soft-collinear ef-
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fective theory. It relies on the fact that ��=�! can be
written directly in terms of a matrix element of well-
defined operators in SCET using the energy-flow operator.
The linearity of the energy-flow operator allowed us to
factorize ��=�! into simpler building blocks, each of
which is defined by matrix elements of operators in the
effective theory and contains a single scale allowing for a
systematic program of logarithmic resummation. After the
factorized form of ��=�! for a given process is deter-
mined once and for all, it can be used to study the facto-
rization properties of specific observables. The question of
whether a given differential cross section d�=dO factor-
izes in the traditional sense depends on whether the form of
fO½!� is such that it smears the individual matrix elements
in ��=�! into objects that can be either calculated per-
turbatively or determined experimentally from other
processes.

Using our formalism, we were able to directly study the
factorization properties of the fully differential cross sec-
tion, independent from the observable-specific functional
fO½!�. While the question of whether the differential cross
section in a given observable factorizes in the traditional
sense still needs to be asked on an observable-by-
observable basis, this disentanglement demonstrates to
what length the steps taken in factorization proofs are
observable independent. It turns out that it is the observable
independent analysis that requires most of the calculational
work. The fact that we can study factorization on an
observable independent level could potentially be relevant
for Monte Carlo event generation. It should be possible to
make a connection between our factorized result for
��=�! for generic N-jet production and the N-body par-
tonic calculations that were introduced in Refs. [66,67] as
input for an event generation framework. If so, our results
could be used to provide improved theoretical inputs for
event generation. However, more work in this direction is
needed.

To demonstrate the simplicity with which factorization
formulas for specific observables can be obtained from the

factorized result for ��=�!, we have applied our results to
several simple observables in eþe� ! 2 jets. We first
reproduced the known results for event shape and hemi-
sphere mass distributions, and then obtained factorization
formulas for generic observables defined in terms of the
total jet momenta obtained from cone jet algorithms, which
so far have not been studied in SCET. We have also ex-
plored some of the issues arising in jet production in
hadronic collisions by studying the partonic subprocess
qq0 ! qq0 using tree level matching from QCD onto
SCET. In particular, we showed that the more complicated
structure requires a soft function that is more complicated
from the case of eþe� scattering. We also showed how
parton distribution functions arise in our formalism, and
commented on how it could be used to study beam rem-
nants and underlying events.
It should be clear from these examples how our generic

N-jet formalism can be applied to the study of observables
in more complicated processes, such as processes with
heavy vector bosons and more than two jets in the final
state, which are crucial for many measurements at the
upcoming LHC. It is these more complicated processes
where the power of our new formalism becomes increas-
ingly pronounced. While the number and complexity of
Dirac and color structures grows quickly for any exhaus-
tive study of factorization with two or more final-state jets,
the application of our formalism is straightforward and in
fact facilitates recycling the bulk of the work needed or
already known in the literature for a particular observable,
to be used for other observables of interest.
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