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We analyze the newest diffractive deep inelastic scattering data from the DESY collider HERAwith the

help of dipole models. We find good agreement with the data on the diffractive structure functions

provided the diffractive open charm contribution is taken into account. However, the region of large

diffractive mass (small values of a parameter �) needs some refinement with the help of an additional

gluon radiation.
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I. INTRODUCTION

Diffractive deep inelastic scattering (DDIS), observed at
the DESY collider HERA (see [1,2] and references
therein), is one of the most intriguing phenomenons in
the electron-proton collisions. Despite high virtuality of
the photonic probe, the incoming proton scatters intact
despite being separated by a rapidity gap from a diffractive
system, which is additionally formed in the final state. The
understanding of these processes based on quantum chro-
modynamics (QCD) is the biggest challenge in the area of
deep inelastic scattering. In this class of processes, large
photon virtualityQ2, which serves as a hard scale, suggests
that one use perturbative QCD with quarks and gluons as
basic quanta. On the other hand, softness of the proton side
and formation of the rapidity gap refer to fundamental
problems concerning transition into the nonperturbative
domain of QCD. Thus, such important issues like parton
saturation, unitarity, and even confinement, are likely to be
addressed in the theoretical description of diffractive
processes.

The most promising QCD based approach to deep in-
elastic scattering (DIS) diffraction is formulated in terms of
dipole models. In these models, the diffractive, color sin-
glet state is systematically built from parton components of
the light cone wave function of the virtual photon, (see
[3,4] and references therein). The lowest order states is
formed by a quark-antiquark pair (q �q) while in higher
orders more gluons g and q �q pairs are present. In our
analysis we will concentrate on the two first components,
q �q and q �qg, since in the configuration space they can be
treated as simple, quark or gluon, color dipoles. Their
interaction with the proton is described by the dipole
scattering amplitude Nðx; r; bÞ. Here r and b are two-
dimensional vectors of transverse separation and impact
parameter, respectively, and x is the Bjorken variable
which brings the energy dependence into the dipole mod-
els. The main advantage of this approach is the observation
that the dipole scattering amplitude can be extracted from

the DIS data on fully inclusive quantities, like the structure
functions F2 and FL, based on some physically motivated
form with a few parameters to fit [5–8]. Then, it can be
used in the description of diffractive processes [9–14]. The
form ofN which we use in our analysis is motivated by key
features of parton saturation in dense partonic systems. The
most important one is a saturation scale QsðxÞ [5] which
can be extracted from the DIS data on the structure func-
tion F2. The QCD based motivation for the existence of
such a scale is provided by the analysis of the high energy
nonlinear evolution equations of Balitsky and Kovchegov
[15–18].
In this analysis, we consider two important parametri-

zations of the dipole scattering amplitude, called Golec-
Biernat–Wuesthoff (GBW) [5] and color glass condensate
(CGC) [19], in which parton saturation results are built in.
We present a precise comparison of the results of the dipole
models which use these parametrizations with the newest
data from HERA on the diffractive structure functions,
obtained by the H1 [1] and ZEUS [2,20] Collaborations.
We also make a comparison with new data on the diffrac-
tive open charm production [21]. An analysis of exclusive
diffractive processes within the dipole approach was per-
formed in [14]. Previous analyses which use parton satu-
ration results, like those in [9,13,22–24], are based on less
precise diffractive data, and in consequence, they could not
address important questions related to the precise compari-
son presented in this paper.
The comparison we performed prompts us to discuss

some subtle points of the dipole models, mostly related to
the q �qg component, and connect them to the approach
based on the diffractive parton distributions evolved with
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equations. Within the latter approach, the diffractive open
charm production is particularly interesting since it is
sensitive to a diffractive gluon distribution. However, the
accuracy of the existing data on such a production does not
allow one to discriminate between different gluon distri-
butions considered in our analysis.
The outline of this presentation is the following. In

Sec. II we present basic formulas of the color dipole
*golec@ifj.edu.pl
†Agnieszka.Luszczak@ifj.edu.pl

PHYSICAL REVIEW D 79, 114010 (2009)

1550-7998=2009=79(11)=114010(11) 114010-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.114010


approach to diffraction while in Sec. III we discuss the two
parametrizations of the dipole scattering amplitude used in
our analysis. In Sec. IV we perform a comparison of the
dipole model results on the diffractive charm production
with the HERA data. A similar comparison for the total
diffractive structure functions is presented in Sec. V. In the
appendix we derive a formula for the diffractive gluon
distribution from dipole models, which is important for
the discussion of the diffractive charm production.

II. DIFFRACTIVE STRUCTURE FUNCTIONS IN
DIPOLE MODELS

In the dipole approach to DDIS, the diffractive structure
function FD

2 is a sum of components corresponding to
different diffractive final states produced by a transversely
(T) and longitudinally (L) polarized virtual photon [25].
We consider a two component diffractive final state which
is built from a q �q pair from a transverse and longitudinal
photon and a q �qg system from a transverse photon, see
Fig. 1. Thus, the structure function is given as a sum

FD
2 ðxP; �;Q2Þ ¼ Fðq �qÞ

T þ Fðq �qÞ
L þ Fðq �qgÞ

T ; (1)

where the kinematic variables depend on diffractive mass
M and center-of-mass energy of the ��p systemW through

xP ¼ M2 þQ2

W2 þQ2
; � ¼ Q2

Q2 þM2
; (2)

while the standard Bjorken variable x ¼ xP�. The depen-
dence of FD

2 on the momentum transfer t ¼ ðp� p0Þ2 is
integrated out. The q �q components from transversely and
longitudinally polarized photons are given by

xPF
ðq �qÞ
T ¼ 3Q4

64�4�Bd

X
f

e2f

Z 1=2

zf

dzzð1� zÞ

� f½z2 þ ð1� zÞ2�Q2
f�

2
1 þm2

f�
2
0g; (3)

xPF
ðq �qÞ
L ¼ 3Q6

16�4�Bd

X
f

e2f

Z 1=2

zf

dzz3ð1� zÞ3�2
0; (4)

where f denotes quark flavors, mf is quark mass, and the

diffractive slope Bd in the denominator results from the t
integration of the structure functions, assuming an expo-
nential form for this dependence. From HERA data, Bd ¼
6 GeV�2. The variables

zf ¼ 1

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

f=M
2

q �
;

Q2
f ¼ zð1� zÞQ2 þm2

f;

(5)

and the functions �i take the following form for i ¼ 0, 1:

�i ¼
Z 1

0
drrKiðQfrÞJiðkfrÞ�̂ðxP; rÞ; (6)

where kf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞM2 �m2

f

q
is the quark transverse

momentum while Ki and Ji are the Bessel functions. The
lower integration limit zf in Eqs. (3) and (4) corresponds to

a minimal value of z for which the diffractive state with
mass M can be produced. In such a case kf ¼ 0. At the

threshold for the massive quark productionM2 ¼ 4m2
f and

zf ¼ 1=2, leading to Fðq �qÞ
T;L ¼0. For massless quarks zf¼0.

The quantity �̂ðxP; rÞ in Eq. (6) is called a dipole cross
section and described the interaction of the q �q dipole with
the proton. It brings the energy dependence into the struc-
ture function formulas and is related to the imaginary part
of the dipole scattering amplitude, NðxP; r; bÞ, by the in-
tegral over the impact parameter

�̂ðxP; rÞ ¼ 2
Z

d2bNðxP; r; bÞ: (7)

Notice that for DDIS the Bjorken variable x is substituted
by xP ¼ x=�. For �� 1 this substitution is subleading
from the point of view leading logarithms of energy W
which appear in the QCD computation of this amplitude.
However, for large diffractive masses, � � 1, such a sub-
stitution becomes phenomenologically important.
The q �qg diffractive component from transverse photons,

computed for massless quarks is given by

xPF
ðq �qgÞ
T ¼ 81��s

512�5Bd

X
f

e2f

Z 1

�

dz

ð1� zÞ3
��

1� �

z

�
2

þ
�
�

z

�
2
�Z ð1�zÞQ2

0
dk2 log

�ð1� zÞQ2

k2

�
�2

2;

(8)

where the function �2 takes the form

�2 ¼ k2
Z 1

0
drrK2

� ffiffiffiffiffiffiffiffiffiffiffiffi
z

1� z

r
kr

�
J2ðkrÞ�̂ðxP; rÞ; (9)

where K2 and J2 are the Bessel functions. In papers [9,26],
formula (8) was computed with two gluons exchanged
between the diffractive system and the proton. Then, the
two gluon exchange interaction was substituted by the
dipole cross section �̂ ¼ �̂ðxP; rÞ for the q �q dipole inter-
action with the proton. For example, for the GBW parame-

FIG. 1. The q �q and q �qg components of the diffractive struc-
ture function FD

2 .

K. GOLEC-BIERNAT AND A. ŁUSZCZAK PHYSICAL REVIEW D 79, 114010 (2009)

114010-2



trization of the dipole cross section [26], which we discuss
in the next section, is given by

�̂ � �̂q �q ¼ �0ð1� e�r2Q2
s=4Þ: (10)

However, the q �qg system was computed in the approxi-
mation when parton transverse momenta fulfill the condi-
tion kTq � kT �q 	 kTg. Thus, in the large Nc approx-

imation, it can be treated as a gluonic color dipole gg.
Such a dipole interacts with the relative color factorCA=CF

with respect to the q �q dipole. Therefore, the two gluon
exchange formula should be eikonalized with this color
factor absorbed into the exponent. For the GBW parame-
trization, this leads to the following gluon dipole cross
section in Eq. (9):

�̂ � �̂gg ¼ �0ð1� e�ðCA=CFÞr2Q2
s=4Þ: (11)

In such a case, the color factor CA=CF ¼ 9=4 (for Nc ¼ 3)
disappears from the normalization of the scattering ampli-
tude and we have to rescale the structure function in the
following way:

Fðq �qgÞ
T ! 1

ðCA=CFÞ2
Fðq �qgÞ
T : (12)

By the comparison with HERA data, we will show in the
next section that the latter possibility is more appropriate
for the data description.

We summarize our considerations in Fig. 2, which shows
three components of FD

2 as a function of � for fixed values
of xP and Q2. Each component dominates in different

regions of diffractive mass: Fðq �qÞ
T dominates for M2 �Q2

(�� 1=2), Fðq �qÞ
L is important for M2 � Q2 (� � 1), and

Fðq �qgÞ
T wins for large diffractive mass, M2 	 Q2 (� � 1).

III. DIPOLE SCATTERING AMPLITUDE

We are going to compare the presented dipole descrip-
tion of the diffractive structure functions with the newest
HERA data. For this purpose, we consider two parametri-
zations of the dipole cross section which are based on the
idea of parton saturation in dense gluon systems. The first
one is the GBW parametrization with heavy quarks [5]
which has played an inspirational role in studies of parton
saturation in the recent ten years. The second one is the
CGC parametrization [8,19] which somehow summarizes
the studies within the color glass condensate [27] approach
to parton saturation. Quite surprisingly, these two parame-
trizations give very similar results for the diffractive struc-
ture functions. The main reason is the same normalization
of the dipole cross section, �0. The origin of the same
numerical value, however, is different. For the GBW, pa-
rametrization �0 is fitted to the data for F2 while for the
CGC parametrization it is computed from a diffractive
slope BD, see Eq. (18).
The two considered parametrizations, specified below,

and shown in Fig. 3 describe very well the inclusive DIS
data on the structure function F2. Their use for the DDIS
description is a very important test of the universality of the
dipole approach to DIS diffraction.
(1) The GBW parametrization with heavy quarks has

the following form of the q �q dipole cross section
[5]:

�̂ðxP; rÞ ¼ �0ð1� expð�r2Q2
s=4ÞÞ (13)

where�0 ¼ 29 mb, and the saturation scale is given
by

Q2
s ¼ ðxP=x0Þ�� GeV2; (14)

with x0 ¼ 4 
 10�5 and � ¼ 0:288. The dipole scat-
tering amplitude in such a case reads

N̂ðxP; r;bÞ ¼ �ðb0 � bÞð1� expð�r2Q2
s=4Þ;

(15)

where 2�b20 ¼ �0. This form corresponds to a

model of the proton with a sharp edge.
(2) The CGC parametrization with heavy quarks of the

quark dipole scattering amplitude is given by
[8,13,19]

N̂ðxP; r;bÞ ¼ SðbÞNðxP; rÞ; (16)

where the form factor SðbÞ ¼ expð�b2=ð2BdÞÞ with
the diffractive slope from HERA, Bd ¼ 6 GeV�2.
Thus, the dipole cross section (7) is given by the
formula

�̂ðxP; rÞ ¼ 4�BdNðxP; rÞ: (17)

β

x P
F

2D
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xP=0.0042
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FIG. 2 (color online). The three components in Eq. (1) as a
function of � in the massless quark limit with the GBW
parametrization of the dipole cross section. The q �qgT compo-
nent is without the color factor modification.
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We see that the asymptotic value of �̂ for r ! 1 is
the same as for the GBW parametrization, if the
diffractive slope measured at HERA is substituted,

�0 ¼ 4�Bd ¼ 29 mb: (18)

In addition,

NðxP;rÞ

¼
�
N0ðrQs

2 Þ2�seð2ln2ðrQs=2ÞÞ=ð	� lnðxPÞÞ for rQs�2

1�e�4�ln2ð�rQsÞ for rQs>2
;

(19)

where the saturation scale Qs now has the following
parameters: � ¼ 0:22 and x0 ¼ 1:63 
 10�5. The
parameters � ¼ 0:615 and � ¼ 1:006 are chosen
such that N and its first derivative continue at the
point r where NðrÞ ¼ N0 ¼ 0:7. The remaining pa-
rameters are given by 	 ¼ 9:9 and �c ¼ 0:7376.

Both parametrizations provide the energy dependence of
the diffractive structure function through the variable xP.
This dependence is determined from fits of the dipole
model formula for F2 into the data from HERA for the
Bjorken variable x � 0:01. In the case of DDIS, x is
substituted by xP.

IV. DIFFRACTIVE CHARM QUARK PRODUCTION

In the diffractive scattering heavy quarks are produced
in quark-antiquark pairs, c �c and b �b for charm and bottom,
respectively. Such pairs can be produced provided that the
diffractive mass of is above the quark pair production
threshold

M2 ¼ Q2

�
1

�
� 1

�
> 4m2

c;b: (20)

In the lowest order the diffractive state consists of only the
c �c or b �b pair. From now on we consider only charm
production since bottom production is negligible. The
corresponding contributions to FD

2 are given by Eqs. (3)
and (4) with one flavor component. For example, for charm
production from the transverse photons we have

xPF
ðc �cÞ
T ¼ 3Q4e2c

64�4�Bd

Z 1=2

zc

dzzð1� zÞ

� f½z2 þ ð1� zÞ2�Q2
c�

2
1 þm2

c�
2
0g; (21)

wheremc and ec are charm quark mass and electric charge,
respectively. The minimal value of the diffractive mass
equals M2

min ¼ 4m2
c, thus the maximal value of � is given

by

�max ¼ Q2

Q2 þ 4m2
c

: (22)

In such a case, zc ¼ 1=2 in Eq. (21) and Fðc �cÞ
T;L ¼ 0 for �>

�max. This is shown in Fig. 4 (left) for the c �c diffractive
states from transverse (c �cT) and longitudinal (c �cL) pho-

tons. By the comparison with the corresponding curves for
three massless quarks ðq �qT; q �qLÞ, shown in Fig. 4 (right),
we see that the exclusive diffractive charm production
contributes only 1=30 to the total structure function FD

2 .
Thus it can practically be neglected.
The next component is the c �cg diffractive state.

Unfortunately, formula (8) for the q �qg production is only
known in the massless quark case and cannot be used for
heavy quarks. Thus, we have to resort to the collinear
factorization formula, given by Eq. (23), in which the
charm-anticharm pair is produced via the photon-gluon
fusion: ��g ! c �c [23]. If such an approach is applied to
diffractive scattering, gluon is a ‘‘constituent of a
Pomeron.’’ The diffractive state consists of additional par-
ticles X (called ‘‘Pomeron remnant’’) in addition to the
heavy quark pair, which is well separated in rapidity from
the scattered proton. The collinear factorization formula
for the charm contribution to the diffractive structure func-
tions is taken from the fully inclusive case [28] in which
the standard gluon distribution is replaced by the diffrac-
tive gluon distribution gD:

xPF
Dðc �cXÞ
2;L ¼ 2�e2c

�sð
2
cÞ

2�

�
Z 1

a�

dz

z
C2;L

�
�

z
;
m2

c

Q2

�
xPg

DðxP; z; 
2
cÞ;
(23)

where a ¼ 1þ 4m2
c=Q

2 and the factorization scale 
2
c ¼

4m2
c with the charm quark mass mc ¼ 1:4 GeV. The lead-

ing order coefficient functions are given by

C2ðz; rÞ ¼ 1

2
fz2 þ ð1� zÞ2 þ 4zð1� 3zÞr� 8z2r2g

� ln
1þ �

1� �
þ 1

2
�f�1þ 8zð1� zÞ

� 4zð1� zÞrg; (24)
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FIG. 3 (color online). The dipole cross section as a function of
r for x ¼ 10�2 . . . 10�6 (from right to left) and for the GBW
(continuous lines) and CGC (dashed lines) parametrizations.
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CLðz; rÞ ¼ �4z2r ln1þ �1� �þ 2�zð1� zÞ; (25)

where r ¼ m2
c=Q

2 and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4rz=ð1� zÞp

. The lower
integration limit in Eq. (23) results from the condition for
the heavy quark production in the fusion: ��g ! c �c,

ðzxPpþ qÞ2 � 4m2
c; (26)

where we assume that the gluon carries a fraction z of the
Pomeron momentum xPp.

The c �cX contribution given by Eq. (23) is shown in
Fig. 4 as the solid lines. As seen in the top figure, this
component becomes significant for �< 0:1. By a com-
parison with the massless quark contributions (the bottom
figure) we see that diffractive charm production contributes
up to 30% to the diffractive structure function FD

2 for small
values of �. The presented results were obtained assuming
the diffractive gluon distribution which results from the
dipole models, given by Eq. (A4) in the appendix, with the

GBW parametrization of the dipole cross section with the
color factor modification (A6). The CGC parametrization
gives a similar result.
In Fig. 5 we show the collinear factorization predictions

for the diffractive charm production confronted with the
new HERA data [21] on the charm component of the
reduced cross section:

�Dðc �cÞ
r ¼ FDðc �cÞ

2 � y2

1þ ð1� yÞ2 F
Dðc �cÞ
L : (27)

The solid curves, which are barley distinguishable, corre-
spond to the result with the GBW and CGC parametriza-
tions of the diffractive gluon distributions. The dashed
lines are computed for the gluon distribution from a fit to
the H1 data [29] based on the DGLAP equations. The
present accuracy of the charm data does not allow one to
discriminate between these two approaches although the
data seem to prefer the gluon distribution from the DGLAP
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FIG. 4 (color online). Left: the c �cT and c �cL components of FD
2 from the dipole model with the GBW parametrization together with

the c �cX contribution from the collinear factorization approach (23) with the diffractive gluon distribution (A4). Right: the c �cX
component in a different scale against the massless q �qT, q �qL, and q �qg components.
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H1:  Q2=35 GeV2
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FIG. 5 (color online). A comparison of the collinear factorization predictions with the GBW and CGC gluon distributions (solid
lines) with the HERA data on the open diffractive charm production. The dashed lines are computed with the gluon distribution
obtained in the DGLAP fit [29] to the H1 data on the diffractive structure functions.
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H1: 35 GeV2
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FIG. 6 (color online). The fractional charm contribution, fc �cD given by Eq. (28), is shown as a function of �, for two values of
xP ¼ 0:004 and 0.018. The solid lines are computed for the c �cX contribution with the GBW and CGC diffractive gluon distributions
while the dashed lines are found for the diffractive gluon distribution obtained in the DGLAP fit [29] to the H1 Collaboration data.
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FIG. 7 (color online). A comparison of �D
r from the two considered dipole models with the newest ZEUS Collaboration data [20].

The solid lines correspond to the GBW parametrization of the dipole cross section with the color factor modifications (11) and (12),
while the dotted lines correspond to the CGC parametrization. The dashed lines show the results without the charm contribution.
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fit which is much more concentrated in the large z region as
compared to the dipole model gluon distributions, see
Fig. 11 in the appendix.

The importance of diffractive charm is illustrated in
Fig. 6 where the fractional charm contribution

fc �cD ¼ �Dðc �cÞ
r =�D

r ; (28)

to the total diffractive cross section, discussed in the next
section, is shown as a function of � against the H1
Collaboration data [21]. For small values of �, the charm
contribution equals on average approximately 20–30%,
which is comparable to the charm fraction in the inclusive
cross section for similar values of Q2 [30].

V. COMPARISON WITH THE HERA DATA

In Figs. 7 and 8 we show a comparison of the dipole
model predictions with the ZEUS Collaboration data [20]

on the reduced cross section

�D
r ¼ FD

2 � y2

1þ ð1� yÞ2 F
D
L : (29)

We included the charm contribution in the above structure
functions. The solid lines correspond to the GBW parame-
trization of the dipole cross section with the color factor
modifications (11) and (12) of the q �qg component, while
the dashed lines are obtained from the CGC parametriza-
tion. We see that the two sets of curves are barely distin-
guishable. This somewhat surprising results could be
attributed to the same normalization of the dipole cross
section in both models, �0 ¼ 29 mb. Let us emphasize
again that this numerical value was obtained in two differ-
ent ways, (see Sec. III for more details). The color factor
modification of the q �qg component in the GBW parame-
trization is necessary since the curves without such a
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FIG. 8 (color online). The same as in Fig. 7 but for higher values of Q2. The dashed lines show the contribution without charm.
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modification significantly overshoot the data (by a factor of
2 or so) in the region of small � where the q �qg component
dominates.

The comparison of the predictions with the data also
reveals a very important aspect of the three component
dipole model (1). In the small � region, the curves are
systematically below the data points, whose effect may be
attributed to the lack of higher order components in the
diffractive state, i.e. with more than one gluon or q �q pair.
This is also seen for the H1 Collaboration data [1] shown in
Fig. 9. For small values of � both the solid (GBW) and
dashed (CGC) curves are below the data. It is also impor-
tant that the charm contribution, described in Sec. IV, is
added into the analysis. Without this contribution the com-
parison would be much worse than that shown here.

This effect may be attributed to the lack of higher order
components in the diffractive state, i.e. with more than one
gluon or q �q pair. They may be added in the DGLAP based

approach to inclusive diffraction which sums additional
partonic emissions in the diffractive state in the transverse
momentum ordering approximation. A comprehensive dis-
cussion of the DGLAP based fits to the diffractive HERA
data is presented in [29]. We only recall here that in this
approach the diffractive structure functions are twist-2
quantities with the logarithmic dependence onQ2 for fixed
xP and �. They are related to the diffractive parton dis-
tributions by the standard collinear factorization formulas,
e.g. in the leading logQ2 approximation we have

FD
2 ðxP; �;Q2Þ ¼ X

f

e2f�ðqDf þ �qDf Þ; (30)

where qDf and �qDf are diffractive quark/antiquark distribu-

tions. We additionally assume flavor democracy for these
distributions to account for vacuum quantum number ex-
change responsible for diffraction
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qDf ¼ �qDf ¼ 1

2Nf

�D; (31)

where �D is a diffractive singlet quark distribution. This
distribution is evolved in Q2 by the DGLAP equations
together with the gluon distribution gD. In contrast to the
dipole model case, the xP dependence of the diffractive
parton distributions is fitted to data, as well as their form in
� at some initial scale Q2

0. In Fig. 10 we show the result of

such an analysis (dashed lines) applied to the ZEUS data
[2]. In the small �� region, the DGLAP fit curves are
going through the experimental points with larger logarith-
mic slope, @FD

2 =@ lnQ
2, than in the dipole approach. This

illustrates the importance of more complicated diffractive
states than the q �qg state.

VI. CONCLUSIONS

We presented a comparison of the dipole model results
on the diffractive structure functions with the HERA data.
We considered two of the most popular parametrizations of
the interaction between the diffractive system and the
proton (the GBW and CGC parametrizations) which are
based on the idea of parton saturation. The three compo-
nent model with the q �q and q �qg diffractive states describe
reasonable well the recent data. However, the region of

small values of � needs some refinement by considering
components with more gluons and q �q pairs in the diffrac-
tive state. This can be achieved in the DGLAP based
approach which sums partonic emissions in the diffractive
state in the transverse momentum ordering approximation.
We extracted the diffractive gluon distribution from the
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dipole model formulas to use it for the computation of the
charm contribution to FD

2 . We found good agreement with
the HERA data on the diffractive open charm production
both for the gluon distributions from the considered dipole

models and the DGLAP fits from [29]. The latter state-
ment, however, is possible to make only due to the present
accuracy of the charm data. The results presented in this
work might be a starting point for the future collider LHeC
at CERN.
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APPENDIX: DIFFRACTIVE GLUON
DISTRIBUTION FROM DIPOLE MODELS

A comprehensive discussion of the derivation of the
diffractive parton distributions in dipole models can be
found in [31]. Here we only recall the derivation of the
diffractive gluon distribution gDðxP; z; Q2Þ which supple-
ments that in [31]. We start from Eq. (8) which we reduce
to the collinear factorization form. Let us substitute ð1�
zÞQ2 ! Q2 in there. We numerically checked that such a
substitution practically does not change the diffractive
structure function. Then the logarithmic derivative of

Fðq �qgÞ
T reads

@Fðq �qgÞ
T

@ lnQ2
¼ 81��s

512�5xPBd

X
f

e2f

Z 1

�

dz

z

��
1� �

z

�
2 þ

�
�

z

�
2
�

� z

ð1� zÞ3
Z Q2

0
dk2�2

2: (A1)

On the other hand, from the DGLAP evolution equation we
have for the diffractive singlet quark distribution (31)

@�D

@ lnQ2
� �sðQ2Þ

2�

Z 1

�

dz

z
Nf

��
1� �

z

�
2

þ
�
�

z

�
2
�
gDðxP; z; Q2Þ; (A2)

where we neglected on the right hand side a contribution
with the singlet quark distribution which is much smaller
than the gluonic one when � � 1. Thus from Eq. (30) we
find for the diffractive structure function

@FD
2

@ lnQ2
¼ ��s

2�

X
f

e2f

Z 1

�

dz

z

��
1� �

z

�
2

þ
�
�

z

�
2
�
gDðxP; z; Q2Þ: (A3)

For small � we have: Fðq �qgÞ
T � FD

2 , thus by the comparison
with Eq. (A1), we find the following diffractive gluon

distribution:

gDðxP; z; Q2Þ ¼ 81

256�4xPBd

z

ð1� zÞ3
Z Q2

0
dk2�2

2; (A4)

where

�2 ¼ k2
Z 1

0
drrK2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z=ð1� zÞp

krÞJ2ðkrÞ�̂ðxP; rÞ: (A5)

For the GBW parametrization of the dipole cross section,
we additionally rescale the gluon distribution,

gD ! 1

ðCA=CFÞ2
gD; (A6)

and use formula (11) for the dipole cross section. For the
CGC parametrization this rescaling has been already taken
into account. In Fig. 11 we show the gluon distributions
computed for the GBW parametrization with the color
factor modification (solid lines) and for the CGC parame-
trization (dashed lines). There is practically no difference
between them for the indicated scales. For Q2 > 4m2

c, the
Q2 dependence of the gluon distribution (A4) is already
very weak and close to the asymptotic limit obtained for
Q2 ! 1. We also show in this figure the gluon distribu-
tions found in a DGLAP fit with higher twist to the recent
H1 data [29] (dotted lines) with a strong dependence onQ2

due to the DGLAP evolution.
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parametrization while the dashed lines to the CGC parametriza-
tion. The dotted lines show the gluon distributions from the
DGLAP fit [29] to the H1 Collaboration data.
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