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We study a pure gluon plasma in the context of quasiparticle models, where the plasma is considered as

an ideal gas of massive bosons. In order to reproduce SU(3) gauge field lattice data within such a

framework, we review briefly the necessity to use a temperature-dependent gluon mass which accounts for

color interactions between the gluons near Tc and agrees with perturbative QCD at large temperatures.

Consequently, we discuss the thermodynamics of systems with temperature-dependent Hamiltonians and

clarify the situation about the possible solutions proposed in the literature to treat those systems

consistently. We then focus our attention on two possible formulations which are thermodynamically

consistent, and we extract the gluon mass from the equation of state obtained in SU(3) lattice QCD. We

find that the thermal gluon mass is similar in both statistical formalisms. Finally, an interpretation of the

gluon plasma as an ideal gas made of glueballs and gluons is also presented. The glueball mass is

consistently computed within a relativistic formalism using a potential obtained from lattice QCD. We

find that the gluon plasma might be a glueball-rich medium for T & 1:13Tc and suggest that glueballs

could be detected in future experiments dedicated to quark-gluon plasma.
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I. INTRODUCTION

A. Generalities and lattice data

It is expected that, at high enough temperatures or
densities, a phase transition from hadronic matter to
quark-gluon plasma will occur. As early as 1975, Collins
and Perry suggested that the dense nuclear matter at the
center of neutron stars could consist in deconfined quarks
and gluons [1]. In 1980, Shuryak studied the nuclear matter
at high temperatures and introduced the terminology ‘‘-
quark-gluon plasma’’ in analogy with similar phenomena
in atomic physics [2]. Besides its intrinsic interest, know-
ing the equation of state of quark-gluon plasma is needed
to predict the evolution of stars and to know, for example, if
a neutron star can go through a quark phase or just collapse
into a black hole. This knowledge is also important to
predict how our Universe hadronized, since it is also
believed that it was a quark-gluon plasma within a few
�s after the big bang. The hadronic matter/quark-gluon
plasma phase transition, predicted by QCD, is studied
experimentally at the Relativistic Heavy Ion Collider
(RHIC) [3] and will also be studied in the future at the
LHC. The results obtained at the RHIC so far suggest that
quark-gluon plasma behaves like an almost perfect fluid
instead of a weakly interacting gas, indicating that inter-
actions are still quite large after the phase transition, for
T * Tc (Tc denotes the critical temperature of QCD). From
a field-theoretical point of view, studying quark-gluon
plasma is a challenging task since it requires a deep under-

standing of QCD and, more generally, of gauge theories at
finite temperatures. Several frameworks have been devel-
oped and have led to many works: Perturbative methods,
potential models, AdS/QCD duality, lattice QCD, etc.
References about these topics can be found, for example,
in the reviews [4].
In principle, the most powerful technique to study the

properties of quark-gluon plasma nonperturbatively is lat-
tice QCD. The equations of state of an SU(2) and SU(3)
gluon plasma in lattice QCD were obtained in Refs. [5–9].
The equation of state of quark-gluon plasma with non-
vanishing flavor number, Nf � 0, has also been computed

in the more recent Refs. [10–13]. Notice that we focus here
on the case where the chemical potential vanishes, but
some results have already been obtained at nonzero chemi-
cal potential (see, for example, Ref. [14]). In Fig. 1, we
show the equation of state obtained from pure glue SU(3)
lattice computations in the continuum limit [7], but in all
cases (Nf ¼ 0, 1, 2, 3), two important features are ob-

served: (i) Energy and entropy increase sharply just after
the phase transition temperature, while the increase for the
pressure is less pronounced. (ii) Energy and entropy seem
to saturate below the Stefan-Boltzmann constant in the
range T=Tc � 2–5. It has been argued in Ref. [15] that
finite-size effects were partly responsible for that behavior,
but such numerical artifacts cannot explain the whole
deficit. Actually, it can be observed in the lattice compu-
tations of Ref. [16] that the equation of state of the gluon
plasma becomes compatible with the Stefan-Boltzmann
limit at very large temperatures. The ratio of pressure
p=pSB grows, for example, from 0.85 around Tc to a value
compatible with 1 at T=Tc ¼ 3107 [16], which is an in-
crease with a mean slope of order 10�9. Strictly speaking,
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the thermodynamical quantities thus do not saturate below
the Stefan-Boltzmann constant. But, since we are inter-
ested in reproducing the lattice data of Fig. 1 for T=Tc & 5,
and because the saturation rate is so small, we will fit the
lattice data in the following as if that saturation was truly
realized for T=Tc & 5. The error introduced by such an
approximation is indeed completely negligible for our
purpose.

B. Quasiparticle models

There have been many attempts to understand the results
obtained in lattice QCD and to derive the equation of state
of quark-gluon plasma from effective approaches. Indeed,
QCD itself can be perturbatively solved only in the region
of asymptotic freedom, i.e. for very high momenta or
temperatures [17]. But the convergence of the expansion
in the strong coupling constant for the pressure is rather
slow [18], and consequently, phenomenological models
have been developed. There are mainly two frameworks:
strongly interacting quark-gluon plasma models explicitly
taking into account the possible existence of bound states
beyond Tc [19–25], or quasiparticle models, where quark-
gluon plasma is described as an ideal gas of massive
bosons and fermions [6,26–39]. In this paper, we are
mainly concerned with the quasiparticle formulation of a
pure gluon plasma. As we recall in Sec. II, it is necessary in
such a framework to consider a phenomenological
temperature-dependent gluon mass (or thermal gluon
mass) in order to reproduce the lattice data. Various authors
have proposed a procedure to statistically treat systems
whose Hamiltonian depends on temperature: In Ref. [29],
the authors start with the usual partition function and
simply replace the constant gluon mass m by a
temperature-dependent one, mðTÞ, which leads to an in-

variant expression for the pressure, whereas the energy and
entropy are modified in order to satisfy standard thermo-
dynamical relations between those quantities. In Ref. [31],
however, the expression of the entropy is kept unchanged,
whereas both the energy and pressure are supplemented
with an additional term involving @TmðTÞ. Finally, in
Ref. [38], the author proposes to keep the expression for
the energy unchanged, whereas the entropy and pressure
get an additional term which also involves @TmðTÞ. These
three formulations are obviously not equivalent, and there
is still a debate as to which one, if any, is correct. In
Sec. III, we propose a way to clarify the situation starting
from the first principles of statistical mechanics, while in
Sec. IV we show that all these formulations found in the
literature demand similar temperature-dependent gluon
masses to reproduce the lattice data. This implies that, at
a qualitative level, those formulations are rather equally
good. Moreover, we propose a new formulation where the
expressions for the energy, entropy, and pressure are in-
variant but where the Lagrange multiplier � is no longer
equal to T�1 in order to ensure the so-called thermody-
namic consistency, i.e. the fulfillment of the laws of ther-
modynamics. Note that we work in units where
@ ¼ c ¼ kB ¼ 1, kB being Boltzmann’s constant.
Most of the quasiparticle models reach the same con-

clusion about the qualitative behavior of the thermal gluon
mass: Just beyond the critical temperature Tc, the gluon
mass has to be large and has to decrease up to T=Tc ’
1:5–2. Then, for even larger T, it increases essentially
linearly. We interpret the large value of the gluon mass
around Tc as a signal of strong color interactions among
gluons. In Sec. V, we take those interactions into account
by considering the gluon plasma as an ideal gas of glue-
balls and gluons, the color interactions being responsible
for the formation of glueballs. We show that the lattice data
can be reproduced if the ratio between the number of
glueballs and gluons, nðTÞ, decreases monotonically
when T increases so that a small value is reached when
the temperature is larger than the dissociation temperature
of the glueball. The glueball mass and dissociation tem-
perature are computed using a spinless Salpeter equation
(to take relativistic effects into account), the potential is
obtained from lattice QCD [40] and, to be consistent, the
gluon mass is a linear function of T with the same slope as
the one obtained from the asymptotic analysis performed
in the quasiparticle formalism. Finally, some conclusions
and an outlook are given in Sec. VI.

II. IDEAL QUANTUM GAS OF BOSONS

A. Constant mass

Asmentioned in the Introduction, in the present work we
study a pure gluon plasma in order to understand the
available pure glue lattice data. In this section, we review
briefly the reasons why an ideal gas of bosons with con-
stant masses cannot reproduce lattice data, as well as why

FIG. 1 (color online). Energy density, entropy density, pres-
sure, and interaction measure (or trace anomaly) of the gluon
plasma versus T=Tc, as measured in pure glue lattice QCD at
zero chemical potential [7] (dashed lines). The full horizontal
line shows the Stefan-Boltzmann limit for a gas of massless
transverse gluons.
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other attempts found in the literature, such as setting a
momentum cutoff for the gluons, are not suitable.

From Fig. 1, it is clear that the gluon plasma is not an
ideal gas of massless bosons, which would only lead to the
Stefan-Boltzmann constant. The first natural attempt to
understand the equation of state obtained in lattice QCD
is thus to consider that gluons have a constant nonzero
mass. We give here the expressions of the energy density
e0, entropy density s0, and pressure p0 in such a case, since
they will be useful later. For large enough volume V, the
sum over the possible quantum states is replaced by an
integral, and we have for a vanishing chemical potential
(see, for example, Chapter 5 of Ref. [41] )

e0 � E0

V
¼ d

2�2

Z 1

0
dkk2qð�ðkÞ=TÞ�ðkÞ; (1a)

s0 � S0
V

¼ d

6�2T

Z 1

0
dkk2qð�ðkÞ=TÞ½k@k�ðkÞ þ 3�ðkÞ�;

(1b)

p0 � Ts0 � e0 ¼ d

6�2

Z 1

0
dkk3qð�ðkÞ=TÞ@k�ðkÞ; (1c)

where d is the degeneracy factor, equal to 16 for transverse
gluons (8 colors� 2 polarizations), and where qðxÞ is the
Bose-Einstein distribution

qðxÞ ¼ ½ex � 1��1: (2)

Using the following dispersion relation,

�ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
; (3)

Eqs. (1) can be rewritten as

e0ðm; TÞT�4 ¼ d

2�2

Z 1

A
dxqðxÞx2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � A2

p
¼ d

2�2
hðAÞ;

(4)

s0ðm; TÞT�3 ¼ d

6�2

Z 1

A
dxqðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � A2

p
ð4x2 � A2Þ; (5)

p0ðm; TÞT�4 ¼ d

6�2

Z 1

A
dxqðxÞðx2 � A2Þ3=2; (6)

where

A � AðTÞ ¼ m=T: (7)

The so-called interaction measure (or trace anomaly) is
then found to be

Iðm; TÞT�4 � ðe0 � 3p0ÞT�4

¼ d

2�2
A2

Z 1

A
dxqðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � A2

p
: (8)

Notice that I is positive (it is negative for nonrelativistic
bosons) and does not vanish as soon as the bosons have a
nonzero mass.

This one-parameter—m—model cannot reproduce the
lattice data even if there is some qualitative agreement. In
particular, it cannot reproduce simultaneously some of the
important characteristics summarized in Fig. 2:
(1) For T=Tc & 5, the energy density apparently satu-

rates around 4.712, which is about 10% below the
Stefan-Boltzmann constant d�2=30 ¼ 5:264 (the
gap is even about 20% when one considers Nf �

0 [10]).
(2) Around the critical temperature, the energy density

increases very fast, with a mean slope roughly equal
to 26.

(3) The maximum of the interaction measure is located
at T=Tc ’ 1:1 and its value is about 2.6.

(4) The decay of the interaction measure is given in
good approximation by 3:344ðT=TcÞ�2.

Indeed, a model with constant mass predicts that energy
density, entropy density, and pressure will quickly saturate
at the Stefan-Boltzmann constant. It is already enough to
discard the model if we consider that the saturation occurs
at the smaller value given above, namely, 4.712 instead of
5.264. However, even if we consider that lattice data did not
yet saturate, the following arguments show that a model
with a constant gluon mass is not able to reproduce these
data since the four features enumerated above imply four
very different values of the ratio m=Tc. At T=Tc ¼ 4:5, the
value of the energy (4) is equal to the lattice value 4.712 if
A ’ 1, which implies m=Tc ’ 4:5. But the slope of the
energy (4) can be bounded from above:

@T=Tc
ðe0T�4Þ ¼ d

2�2
ð�@AhðAÞÞð�@T=Tc

AÞ (9)

FIG. 2 (color online). Energy density and interaction measure
of the gluon plasma versus T=Tc, as measured in pure glue lattice
QCD at zero chemical potential [7] (full circles and squares).
The dashed-dotted lines outline the apparent saturation value at
T=Tc & 5 and the behavior near Tc of the energy density. The
solid line is a fit of the interaction measure beyond its maximal
value (dashed line).
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� d

2�2
1:6

m

Tc

�
T

Tc

��2
: (10)

Consequently, around Tc, the derivative of the energy
density is smaller than around 1:3m=Tc, which implies
m=Tc ’ 20 to reproduce the data. The interaction measure
(8) has a maximum located at A ¼ 2:303, and the value of
the maximum is equal to 1:2d=ð2�2Þ ’ 1 (far from 2.6
obtained in lattice QCD). To reproduce the position of
the maximum obtained from lattice data, we find that
m=Tc ’ 2:5. At last, the decay of the interaction measure
predicted by this model for large enough temperature is
d=12A2. Again, to reproduce the data, we need m=Tc ’
1:6. It is a simple exercise to verify that even with a
degeneracy factor d considered as a free constant parame-
ter, one cannot get a good quantitative agreement between
this model and the lattice data in the whole available
temperature range.

B. Momentum cutoff

Another version of this simple model is obtained by
introducing a cutoff K for small momenta in Eqs. (1) as
in Refs. [27,28]. The physical motivation for such a cutoff
is that, near the critical temperature, gluons with low
momenta should be bound into glueballs and should thus
not contribute to thermodynamical quantities related to an
ideal gas of gluons. It is easy to see that this modified
model also predicts a quick saturation of the energy den-
sity, entropy density, and pressure at the Stefan-Boltzmann
constant. Moreover, the additional parameter K does not
help to describe the large value of the derivative of the
energy density around Tc. This can be seen by using argu-
ments similar to the ones given above when K ¼ 0 or by
looking at the various figures of Refs. [27,28]. Another
possibility is to consider a cutoff KðTÞ which depends on
the temperature, as in Ref. [6]. To have a relevant physical
meaning, KðTÞ should be a decreasing function of T since
one expects that, for high enough temperatures, glueballs
will not be present in the plasma (see also Sec. V). Using
arguments similar to the ones developed to get the general
form of mðTÞ in Sec. IVA, one can prove that indeed,
around Tc, we have @TKðTÞ< 0. However, to reproduce
the saturation of the thermodynamical quantities below the
Stefan-Boltzmann constant, the cutoff must increase line-
arly with T for large enough temperatures. Qualitatively,
the shape of KðTÞ would be similar to the one of mðTÞ; see
Fig. 3 below. This behavior of KðTÞ for large T is problem-
atic and its physical meaning is not obvious.

C. Temperature-dependent mass

For the reasons mentioned above, various authors have
considered that a temperature-dependent gluon mass is the
most relevant ingredient to be added to this model [29–
34,37,38]. Indeed, since energy density, entropy density,
and pressure are decreasing functions of A, a simple way to

make them saturate below the Stefan-Boltzmann constant
for large T is to have a mass mðTÞ such that A ¼ mðTÞ=T
saturates to a nonvanishing constant in this regime of
temperature. This implies that one must have

mðTÞ � T for T � Tc: (11)

Although mðT * TcÞ is mostly a phenomenological pa-
rameter that has to be fitted in order to reproduce the lattice
results, the thermal gluon mass can be related to another
important parameter characterizing a plasma, that is, the
plasma frequency. In a QED plasma, for example, photons
cannot propagate with a frequency below the plasma fre-
quency. The situation is similar in quark-gluon plasma:
Gluons (plasmons) cannot propagate as free particles if
their energy is too low. In fact, gluons acquire a thermal
mass which is the plasma frequency. Perturbative calcula-
tions confirm that point: To leading order, the thermal
gluon mass, also proportional to the Debye mass at large
temperatures [33], has been found to be proportional toffiffiffiffiffiffiffiffiffiffiffiffi
�sðTÞ

p
T [42,43]. Following standard notation, �sðTÞ ¼

g2ðTÞ=4�, with gðTÞ the strong coupling constant. Higher-
order contributions have been calculated in the literature; it
appears that the perturbative expansion converges very
slowly and thus that the leading-order result is only valid

at very high temperatures [44]. Since
ffiffiffiffiffiffiffiffiffiffiffiffi
�sðTÞ

p � 1=
ffiffiffiffiffiffiffiffiffiffiffi
lnðTÞp

varies more slowly than T, the linear behavior of the
thermal gluon mass is found to be dominant at very large
T in perturbative QCD. The constraint (11) is thus in good
qualitative agreement with already known results.
It is worth mentioning that a resummation of the

leading-order formulas leads to a modification of the ther-
mal gluon mass that improves the convergence of the
results toward the Stefan-Boltzmann limit. See, in particu-
lar, Ref. [45], which focuses on the convergence of the
pressure, and Ref. [46] in which the hard thermal loop

FIG. 3 (color online). Thermal gluon masses obtained by fit-
ting model 1 (circles) and model 2 (triangles) to the lattice data
of Ref. [7]; see Fig. 1. Models 1 and 2 are defined by Eqs. (34)
and (35), respectively, with the dispersion relation (36). The
fitted forms (43) and (44) are also plotted (solid lines).
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perturbation theory is successfully applied to reproduce
lattice data at finite chemical potential within a quasipar-
ticle approach. Higher-order perturbative calculations also
give good results [47].

III. STATISTICAL MECHANICS WITH
TEMPERATURE-DEPENDENT HAMILTONIANS

In a phenomenological model describing the gluon
plasma, it is quite natural to assume that such a plasma
can be seen as some gas of quasiparticles, or quasigluons,
as many authors have done in previous works (see the
Introduction). Standard statistical mechanics is the neces-
sary framework to deal with gases of quasigluons. But, as
we stressed in the previous section, a qualitative descrip-
tion of the pure glue lattice data demands the introduction
of a temperature-dependent mass for the quasigluons. Such
a thermal mass also emerges from QCD itself, as shown
within perturbation theory.

The problem is that standard statistical mechanics only
deals with Hamiltonians, which do not explicitly depend
on temperature. There is a debate in the literature about
how it should be modified in such a case to be consistent.
In this section, we propose an extension of statistical
mechanics aiming at treating temperature-dependent
Hamiltonians. Our procedure not only allows one to re-
cover other existing formalisms in a unified way, it also
leads to another new formulation which preserves the
standard definition of energy, entropy, and pressure. We
first consider classical systems in equilibrium in the ca-
nonical ensemble and restrict our study to reversible pro-
cesses to keep the discussion as simple as possible. Then,
the case of an ideal quantum gas of bosons, relevant for our
study, is presented.

A. General formalism

Let us consider a probability density which is a function
of the HamiltonianHðpi; qi; TÞ: � � �ðHÞ. � is the density
of the probability of finding the dynamical variables of the
system, namely fpi; qig, within some volume of the phase
space. We assume here that the Hamiltonian depends ex-
plicitly on the temperature T. The form of the function �
can be determined using standard procedures; we give here
the main ideas and refer the reader to standard textbooks
for more details like, for example, Ref. [48], pp. 50–55.
Consider two subsystems A and B with Hamiltonians HA

and HB at equilibrium. The probabilities to find the sub-
system A within the phase-space volume d�A and B within
d�B are given, respectively, by dPA ¼ �AðHAÞd�A and by
dPB ¼ �BðHBÞd�B, following the definition of the proba-
bility density. Consider then the system C obtained by
combining the two subsystems A and B. The probability
to find both Awithin d�A andBwithin d�B, hence to findC
within d�C ¼ d�Ad�B, is given by dPC ¼ dPAdPB ¼
�AðHAÞ�BðHBÞd�C. If the system C is also at equilibrium,
we can write that dPC ¼ �CðHCÞd�C. Neglecting the in-

teraction between A and B, we have that HC ¼ HA þHB

and

�CðHA þHBÞ ¼ �AðHAÞ�BðHBÞ: (12)

The intuitive idea underlying this constraint is that the
description of a given system as a whole or as composed
of two subsystems at equilibrium must be equivalent. Such
a functional equation has a unique nontrivial solution:

�AðxÞ ¼ C1e
��x;

�BðxÞ ¼ C2e
��x; and �CðxÞ ¼ C1C2e

��x;
(13)

where C1, C2, and � are arbitrary constants with respect to
the dynamical variables. Consequently, the general form of
the normalized probability density is

�ðHÞ ¼ e��HR
e��Hd�

; (14)

� e��H

Zð�Þ ; (15)

where we have introduced the partition function Z,
although it no longer plays a central role in the present
formulation. For the moment,� is still arbitrary and will be
fixed later. We recall that

R
d� denotes an integration on

the phase space of the system.
Another elegant way to obtain the expression (14) for

the probability density is to use the so-called maximum-
entropy estimate. According to Jaynes [49], this is the least
biased possible estimate on the available information. He
showed that the form (14) maximizes the entropy of the
probability distribution, i.e. the Shannon’s measure [50],
given by

S � �ln� ¼ �
Z

� ln�d�; (16)

where we have introduced the notation �x for the phase-
space average of the quantity x. Notice that, in this for-
mulation, � is a Lagrangian multiplier and, as above, does
not depend on the dynamical variables. One advantage of
this derivation is that it shows straightforwardly the inti-
mate link between entropy and probability density. The
next quantity we consider is the energy, defined as the
averaged Hamiltonian

E � �H ¼
Z

H�d�: (17)

The only unknown in the above relations is �. We
assume that this parameter depends only on the tempera-
ture T in the following way:

T ¼ 1

fð�Þ : (18)

The function fðxÞ is assumed to be positive, monotonic,
and such that fðxÞ 2 ½0;1½, so that the function �ðTÞ can

GLUEBALLS AND STATISTICAL MECHANICS OF THE . . . PHYSICAL REVIEW D 79, 114007 (2009)

114007-5



be unambiguously defined. In order to determine fð�Þ, we
use the laws of thermodynamics, which give a relation
between energy, entropy, and fð�Þ. The first law links
the variation of internal energy E, heat Q, and work W as
follows: dE ¼ �Qþ �W. For reversible processes we
have �W ¼ �pdV. The second law relates the variation
of heat with the variation of entropy: dS ¼ �Q=T (the
equality holds for reversible processes only). Assuming
that both the internal energy and the entropy are functions
of �—thus implicitly of T—and of V, and combining the
first and the second laws of thermodynamics, we obtain

@�Ed�þ @VEdV ¼ Tð@�Sd�þ @VSdVÞ � pdV: (19)

Equating the terms in d� and dV, we find a relation
between energy and entropy,

@�S ¼ fð�Þ@�E; (20)

where we used Eq. (18) and, in the thermodynamical limit,
the following expression for the pressure:

p � Ts� e ¼ ðTS� EÞ=V: (21)

Equation (20) is the relation that allows one to determine
fð�Þ and to know the relation between � and T through
Eq. (18). Indeed, substituting expression (14) into the
definition (16) of the entropy and using Eq. (17), we obtain

S ¼ lnZþ �E: (22)

The derivation with respect to � of the entropy leads to

@�S ¼ @�Z
Z

þ Eþ �@�E ¼ ��@�H þ �@�E: (23)

A comparison between Eqs. (20) and (23) gives an equa-
tion for fð�Þ:

fð�Þ ¼ �

�
1� @�Hðpi; qi; T ¼ 1=fð�ÞÞ

@�EðT ¼ 1=fð�ÞÞ
�
: (24)

This is, in general, a nonlinear first order differential
equation for f. One thus gets fð�; cÞ and, thanks to
Eq. (18), the function �ðT; cÞ. The integration constant c
can be constrained (sometimes even fixed) by imposing
that fð�Þ is positive, bounded, and monotonic for � 2
½0;1½. Moreover, if there exists a temperature T0 such that
@THjT¼T0

¼ 0, the boundary condition needed to uniquely

determine the solution of this equation is obtained by
imposing that�ðT0; cÞ ¼ 1=T0 in order to recover the usual
formalism at this particular temperature. To clarify the
procedure, we give an explicit example in the Appendix.

In this approach, the entropy, energy, and pressure are
given, respectively, by their usual expressions (16), (17),
and (21). But, the dependence on T of the Hamiltonian
enforces a particular link between � and T, which can be
found through the resolution of the nontrivial relation (24).
In standard problems, @TH ¼ 0 and one recovers the well-
known link fð�Þ ¼ � ¼ 1=T as a solution of Eq. (24).
This general procedure has the serious advantage of pre-

serving the formal expressions of all the relevant thermo-
dynamical quantities of the problem: The only
modification arises at the level of the definition of�, which
is not a physical parameter in itself. For computational
applications, however, this formalism is rather complicated
since it needs an a priori knowledge of the solution of
Eq. (24) if one wants to extract physical information about
the system under study. Equation (24) can only be solved
once the dependence on the temperature of the
Hamiltonian is explicitly known. However, in the context
of gluon plasma, the thermal mass of the gluons is un-
known and must be determined from lattice data. That is
why it is of interest to find more tractable ways of dealing
with temperature-dependent Hamiltonians. As we show in
the following, our procedure allows one to find such for-
mulations, which correspond to frameworks already in use
in the literature. The study of the formalism developed in
this section will be the subject of a forthcoming paper.

B. Alternative solutions

First, notice that Eq. (23) can be rewritten as

@� ~S � @�

�
Sþ

Z �

�?

	@�Hj�¼	d	

�
¼ �@�E; (25)

where we have introduced a new form, ~S, for the entropy
and where �? is some integration constant. The relation
between the new entropy and the energy is then formally
identical to the one given by Eq. (20), provided we choose
fð�Þ ¼ � as in standard statistical mechanics. The modi-

fied pressure is given by Eq. (21), where S is replaced by ~S.
In this formulation, the standard expressions for the energy
and for � are preserved but the expressions for the entropy
and pressure are modified. We then lose the usual connec-
tion between the probability density and the entropy. This
formalism has been proposed in Ref. [38].
Second, it is readily observed that another equivalent

rewriting of Eq. (23) is

@�S ¼ �@�

�
E�

Z �

�?

@�Hj�¼	d	

�
� �@� ~E; (26)

where we have introduced a new form, ~E, for the energy.
Again, the relation between the new entropy and the energy
is formally identical to the one given by Eq. (20), provided
that we also choose fð�Þ ¼ �. The modified pressure is
given by Eq. (21), where E is replaced by ~E. In this
formulation, the standard expressions for the entropy and
for � are preserved but the expressions for the energy and
pressure are modified. In particular, the energy is no longer
the average of the Hamiltonian. This formalism was first
proposed in Ref. [31] and used in several other works, for
example, in Refs. [32–34,46].
It is worth mentioning a third procedure that has been

used in Ref. [29] and consists in preserving the expression
of the pressure. We mention it for completeness but will
not study it further in the present work. In can be deduced
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from Eq. (21) that

p ¼ T

V
lnZ: (27)

Consequently, one can leave the pressure invariant by
setting fð�Þ ¼ � and by computing Z as usually done.
But in this case, the entropy and the energy will be modi-
fied since the laws of thermodynamics demand that e ¼
s=�� p, with s ¼ ��2@�p: a term in @�H appears be-

cause of the @�p term.

These three alternative solutions are derived from the
laws of thermodynamics, where the usual link fð�Þ ¼ � is
kept, but each one requires the standard form of the ther-
modynamical quantities to be modified. We think that the
formalism developed in the previous section is the most
fundamental one since it only demands a redefinition of �,
which is only a Lagrangian multiplier. Moreover, this
redefinition of � as a function of T is only local since
this is done through the differential equation (24): 1=T �
fð�Þ ¼ � when @THðpi; qi; TÞ ¼ 0. In contrast, the cor-
rections to the thermodynamic quantities obtained from the
alternative formulations derived in this section are non-
local; they involve an integral over some range of tempera-
tures; see Eqs. (25) and (26). This implies that even if
@THðpi; qi; TÞ ¼ 0 in some large interval of temperatures,
the corrections can be quite significant if the integration is
performed over an interval of T for which the Hamiltonian
depends on T. However, the formalism proposed in
Sec. III A is far more complicated to deal with in numeri-
cal, phenomenological, applications when the dependence
on temperature of the Hamiltonian is not known a priori.
That is why the other approaches are useful too: From a
computational point of view, it is easier to compute the
extra integrals appearing in Eq. (25) or (26) than to solve
Eq. (24) if the temperature dependence of the Hamiltonian
on T is not known.

C. Ideal quantum gas of bosons

The derivations presented in Secs. III A and III B also
hold formally in the quantum case, provided that the
average correctly takes into account the statistics of bosons
and fermions. We now focus on the case we are eventually
interested in: a gluon plasma. As we did in the classical
case, we start with the standard expressions for the energy
density, entropy density, and pressure, i.e.

e0 ¼ d

2�2

Z 1

0
dkk2qð��ðk; �ÞÞ�ðk; �Þ; (28a)

s0 ¼ �d

6�2

Z 1

0
dkk2qð��ðk; �ÞÞ½k@k�ðk; �Þ þ 3�ðk; �Þ�;

(28b)

p0 ¼ d

6�2

Z 1

0
dkk3qð��ðk; �ÞÞ@k�ðk; �Þ; (28c)

where �ðk; �Þ � �ðk; 1=fð�ÞÞ. We actually assume that the

temperature dependence of � is known, the relation be-
tween T and� being given by Eq. (18) which was obtained
from the laws of thermodynamics.
It is convenient to write the entropy as follows:

s0 ¼ lnZ0 þ �e0; (29)

where

lnZ0 ¼ � d

2�2

Z 1

0
dkk2 lnð1� e��ðk;�ÞÞ: (30)

The derivative of s0 with respect to � leads to

@�s0 ¼ ��@��þ �@�e0; (31)

where the average is now given by

@�� ¼ d

2�2

Z 1

0
dkk2qð��ðk; �ÞÞ@��ðk; �Þ: (32)

The comparison between Eqs. (20) and (31) leads to the
following expression for fð�Þ:

fð�Þ ¼ �

�
1� @��ðT ¼ 1=fð�ÞÞ

@�e0ðT ¼ 1=fð�ÞÞ
�
: (33)

This formula for f is formally identical to the one obtained
in the classical case; only the definition of the average is
different. The same comments about the boundary condi-
tion can be made.
It is also possible to recover, in the quantum case, the

other formalisms proposed in the literature. In the formu-
lation where the expression of the energy density is pre-
served, the expression for the new entropy density is still
given by Eq. (25) but the average is now defined by
Eq. (32) and the pressure can be obtained through
Eq. (21). A similar remark applies for the formalism which
preserves the expression of the entropy; see Eq. (26).
Consequently, what we call model 1 in the next sections
is defined by the equations

eð1Þ ¼ e0; sð1Þ ¼ s0 þ Bð1Þ; p ¼ p0 þ Bð1Þ

�
;

(34a)

with

Bð1Þð�Þ ¼
Z �

�ð1Þ
?

	@��j�¼	d	: (34b)

Model 2 is similarly defined by

eð2Þ ¼ e0 � Bð2Þ; s ¼ s0; p ¼ p0 þ Bð2Þ; (35a)

with

Bð2Þð�Þ ¼
Z �

�ð2Þ
?

@��j�¼	d	: (35b)

In both models 1 and 2 we have � ¼ 1=T as usual, and e0,
s0, and p0 are given by Eqs. (28). The integration constants
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�ð1Þ
? and �ð2Þ

? are arbitrary parameters. The function �ðk; �Þ
is given by

�ðk; �Þ ¼ �ðk; 1=TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2ðTÞ

q
; (36)

with mðTÞ the thermal gluon mass. If that function was
unambiguously known, models 1 and 2 would lead to
inequivalent results, and the general solution (33) should
be used instead. However,mðTÞ is a parameter of the model
that can be fitted on some lattice data. Its behavior at large
T should nevertheless be coherent with Eq. (11), in agree-
ment with perturbative QCD. Thus it can be expected that
all the presented formalisms should lead to very similar
results, provided that the gluon mass and the integration

constants �ðiÞ
? are properly chosen. In particular, models 1

and 2 are compared in Sec. IV, where we show that they
lead to similar temperature-dependent gluon masses and
that they are both able to reproduce the lattice data with
excellent accuracy. Consequently, from a practical point of
view, they are both rather equivalent because there are not
many constraints on this thermal gluon mass.

IV. APPLICATION TO THE GLUON PLASMA

A. General features of mðTÞ
In this section, we give some general characteristics of

the function mðTÞ. Let us consider model 1, where the
expression of the energy is conserved (a similar conclusion
can be obtained with model 2 by using the expression of
the entropy). From the lattice data, we know that the slope
of the energy near the critical temperature is positive and
rather large (see Fig. 2). From Eq. (4) we find

@T=Tc
ðe0T�4Þ ¼ d

2�2
ð@AhðAÞÞð@T=Tc

AÞ 	 0: (37)

Since @AhðAÞ � 0, we find that mðTÞ=T is a decreasing
function of the temperature,

@T=Tc

mðTÞ
T

� 0: (38)

From Eq. (4), it is easy to see that in order to reproduce the
saturation of the energy for T=Tc * 4, the thermal mass
mðTÞ should be a linear function of T: mðTÞ ¼ �mT, i.e.
A ¼ �m, with �m ¼ 0:973. We can also show that the large
mean slope of the energy near the critical temperature
implies that the derivative of mðTÞ should be negative in
this region. Indeed,

@T=Tc
ðe0T�4Þ � d

2�2
maxð�@AhðAÞÞmaxð�@T=Tc

AÞ:
(39)

From the expression (4) of hðAÞ, it is readily computed that
maxð�@AhðAÞÞ ¼ M ’ 1:6. Let us assume that @TmðTÞ 	
0 everywhere; then

maxð�@T=Tc
AÞ ¼ max

�
mðTÞ
Tc

�
Tc

T

�
2 � Tc

T
@TmðTÞ

�

� max

�
mðTÞ
Tc

�
Tc

T

�
2
�

� max

�
~mðTÞ
Tc

�
Tc

T

�
2
�
; (40)

where ~mðTÞ ¼ �mT for T > ~T and ~mðTÞ ¼ �m ~T for T < ~T
and where ~T is the temperature at which the thermal mass
should be linear ( ~T=Tc � 2–3). Consequently, we obtain

@T=Tc
ðe0T�4ÞjT=Tc’1 �

d

2�2
M �m

~T

Tc

�
Tc

T

�
2
��������T=Tc’1

& 1:3
~T

Tc

& 4; (41)

since T=Tc ’ 1, ~T=Tc ’ 2–3, �m ’ 1, and M ’ 1:6. This
upper bound on the derivative of the energy is much lower
than the value given by the lattice data. Large values for
this derivative can only be obtained if @TmðTÞ< 0 near the
critical temperature.
In consequence, we have analytically shown that an

agreement with lattice QCD can be obtained, provided that

@TmðT * TcÞ< 0 and mðT � TcÞ ¼ 0:973T: (42)

B. Numerical results

In the previous section, we have shown that the shape of
mðTÞ is rather constrained by the lattice data within the
frameworks of models 1 and 2. Let us now explicitly
extract mðTÞ numerically from these data.
We begin by considering model 1, where the form of the

energy density is preserved and consequently given by
Eq. (28a), in which the dispersion relation (36) is chosen.
At a given temperature T
, the thermal gluon mass mðT
Þ
can be obtained by numerically solving the equation

eð1ÞðT
; mðT
ÞÞ ¼ e0ðT
; mðT
ÞÞ ¼ elatðT
Þ, where elatðT
Þ
is the lattice energy density at the considered temperature.
The computed gluon mass is plotted in Fig. 3 and can be
well fitted by the following form:

mð1ÞðTÞ
Tc

¼ m0

T

Tc

þ m1

ðT=Tc �m2Þm3
; (43a)

with

m0 ¼ 0:873; m1 ¼ 0:612;

m2 ¼ 0:983; m3 ¼ 0:411:
(43b)

The observation of Fig. 3 and of the fitted form (43)
clearly shows the different behaviors predicted in
Sec. IVA. First, the linear increase of mðTÞ is obvious for
T=Tc 	 2:5, and corresponds to region III in Fig. 3.
However, the slope m0 differs from the asymptotic value
of 0.973 predicted in the previous section by about 10%.
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This can be understood by remarking that m3 is rather
small while m1 is of the same order of magnitude as m0:
The term supplementing the linear one in Eq. (43a) still
brings a non-negligible contribution at large temperature,
causing the fitted slope m0 to be smaller than in the case of
a genuine linearly rising mass; see Eq. (42). Second, mðTÞ
strongly decreases for T=Tc ’ 1:0–1:2, corresponding to
region I in Fig. 3. The fitted form we get is actually singular
near the critical temperature, the parameter m3 playing the
role of a critical exponent. Third, there exists an intermedi-
ate zone between the singular and the linear behaviors, in
which mðTÞ reaches a minimum. This zone corresponds to
region II in Fig. 3.

In model 2, the form of the energy density is no longer
preserved as in model 1, but the entropy density is. That is
why the thermal gluon mass at a given temperature T
 can
be numerically computed in a very similar way by solving

the equation sð2ÞðT
; mðT
ÞÞ ¼ s0ðT
; mðT
ÞÞ ¼ slatðT
Þ.
We recall that s0 is given by Eq. (28b). The computed
thermal gluon mass is plotted in Fig. 3 and can be accu-
rately fitted by the following form:

mð2ÞðTÞ
Tc

¼ k0
T

Tc

þ k1
ðT=Tc � k2Þk3

; (44a)

with

k0 ¼ 0:724; k1 ¼ 0:982;

k2 ¼ 0:973; k3 ¼ 0:345:
(44b)

Equation (44) is formally equivalent to (43); only the
values of the numerical coefficients are slightly different.
Thus the same comments as for model 1 can be made. It is
worth noting that the regions where the linear increase and
strong decrease occur are identical within models 1 and 2.
A physical interpretation of the thermal gluon mass can
thus be given independently of the considered model.

The thermal gluon mass has been fitted on one of the
three thermodynamical quantities available in lattice QCD:
energy density for model 1, and entropy density for
model 2. The remaining quantities can now be numerically
computed within both models by using Eqs. (34) and (35)
with the dispersion relation (36), provided that the integra-
tion constants ensuring an optimal agreement with lattice
QCD are known. The following fitted values,

Tc�
ð1Þ
? ¼ 0:435 and Tc�

ð2Þ
? ¼ 0:445; (45)

lead to an excellent agreement with the available lattice
data, as can be seen in Figs. 4 and 5.

The interaction measures computed with model 1 and
model 2 are quasi-indistinguishable from each other and
from the lattice data. Again, both formalisms lead to nearly
identical results. That is why, for clarity, we have only
plotted the results of model 1 in Fig. 5: The curves com-
puted with model 2 would have been indistinguishable
from those of model 1. Notice that in our approach, the

thermal gluon mass is fitted so that the asymptotic behavior
of the interaction measure corresponds to lattice QCD,
which is e� 3p / T2 (see Fig. 2). Such a quadratic in-
crease is compatible with previous theoretical results [51]
and with the more recent unquenched lattice study [52]. It
is worth mentioning that other approaches rather favor e�
3p / T [53–55]. The interaction measure is thus a quantity
that deserves further study since there is not yet a general
agreement concerning its asymptotic growth.
The values we find for the integration constants are

almost equal: Their average value is Tc
�� ¼ 0:44, corre-

sponding to the temperature �T=Tc ’ 2:27. This is the typi-

cal temperature at which mð1Þð �TÞ ¼ mð2Þð �TÞ, as can be seen

FIG. 4 (color online). Interaction measure of the gluon plasma
computed with model 1 (solid line) and model 2 (dashed line),
and compared to the lattice data of Ref. [7] (circles). Model 1 is
defined by Eqs. (34) with the gluon mass (43) and model 2 is
defined by Eqs. (35) with the gluon mass (44). The dispersion
relation (36) and the values (45) for the integration constants are
used.

FIG. 5 (color online). Same as Fig. 1, but the results obtained
with model 1 are also plotted for comparison. Model 1 is defined
by Eqs. (34) with the gluon mass (43), the dispersion relation
(36), and the value (45) for the integration constant.
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in Fig. 3. This is not a coincidence: Models 1 and 2 are

designed to reproduce the same data. Then, if mð1Þð �TÞ ¼
mð2Þð �TÞ, the only way for both models to give identical

results is to have BðiÞð ��Þ ¼ 0, thus �ð1Þ
? ¼ �ð2Þ

? ¼ ��, in
rough agreement with the fitted values (45). The integra-
tion constant is thus not really a free parameter since its
value can be constrained by the thermal gluon mass once
model 1 and model 2 are compared.

Finally, it is important to stress that the terms BðiÞ, given
by Eqs. (34b) and (35b), are not small corrections as one
might have thought. Without these terms, even the quali-
tative behavior of the various thermodynamical quantities
is wrong.

C. Color interactions above Tc

We have considered, up to now, that the gluon plasma is
an ideal boson gas, where gluons are transverse and free
but have a temperature-dependent mass mðTÞ. From
Sec. IVA we can conclude that reproducing the lattice
QCD results demands first that mðT � TcÞ � T and sec-
ond that mðT * TcÞ decreases fast enough (see Fig. 3).
Such a nontrivial behavior can be intuitively explained by
invoking color interactions above Tc. It is indeed widely
accepted that, at the critical temperature Tc, the medium
undergoes a phase transition and becomes deconfined. It
does not mean, however, that the color interactions vanish:
They are actually screened because of the great amount of
color charges in the medium, and the residual potential is
no longer confining as for T ¼ 0. These residual color
interactions can be rather important for T=Tc ’ 1–2, as
suggested by several lattice QCD studies [40].

One can think about the mean field approximation to
have a first guess about the influence of screened color
interactions. In this picture, the gluon dispersion relation
should be modified as follows:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2ðTÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �m2ðTÞ

q
þ �VðTÞ; (46)

where �VðTÞ is the effective mean potential energy felt by a
gluon, and where �mðTÞ is a priori different from mðTÞ.
When T becomes very large, it can reasonably be assumed
that �VðTÞ vanishes. Consequently, one has �mðT � TcÞ ¼
mðT � TcÞ ¼ �mT. Our main physical assumption is then
the following: Since �mðTÞ is the thermal gluon mass in a
temperature range when the gluons are free, it can be seen
as the rest mass of a free gluon for any T 	 Tc. Let us
now consider that �VðT * TcÞ � �mðT * TcÞ, i.e. that the
color interactions become dominant near Tc. Then, by
squaring Eq. (46), one gets m2ðTÞ¼ �m2ðTÞþ �V2ðTÞþ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ �m2ðTÞp

�VðTÞ, and consequently m2ðT * TcÞ �
�V2ðT * TcÞ since the potential term dominates the right-
hand side.

We are thus led to the following interpretation for mðTÞ:
At large T (region III in Fig. 3),mðTÞ tends to the rest mass
of a free gluon in the gluon plasma according to the

perturbative QCD result. But near Tc (region I in Fig. 3),
the behavior ofmðTÞ is dominated by the existence of non-
negligible screened color interactions. Region II in Fig. 3
is, finally, a transition regime in which these interactions
progressively vanish. According to this scenario, screened
color interactions play an important role for T=Tc ’ 1–2,
and one may wonder whether glueballs can form or not at
these temperatures. The next section is devoted to answer
to this question. Notice that the possible glueball formation
above Tc has already been suggested in Ref. [37] as a
mechanism explaining the sudden increase of the effective
gluonic degrees of freedom near Tc, which is observed in
this last work.

V. EXISTENCE OF GLUEBALLS ABOVE Tc

A. Effective Hamiltonian for glueballs

In a constituent gluon (or quasiparticle) picture, such as
the one we develop here, a glueball is a bound state of at
least two gluons. Let us focus on two-gluon glueballs.
Being the lightest and presumably the most strongly bound
ones, they should be the easiest glueballs to produce in the
gluon plasma. In a deconfined medium, a binary gluon
state may exist in several colored configurations following

the decomposition 8 � 8 ¼ 1 � 8 � 8 � 10 � 10 � 27. As
the strength of color interactions is proportional to the
color Casimir operator of the gluon pair, the last three
configurations are irrelevant as far as glueball formation
is concerned since they lead to interactions which are either

vanishing ð10; 10Þ or repulsive 27 [20,56]. However, both
the singlet and octet configurations lead to attractive inter-
actions, the interactions in the singlet channel being twice
as large as those in the octet one. The most favored glueball
from an energetic point of view is thus a two-gluon bound
state with the gluon pair in a color singlet. The dynamics of
the gluon pair also comes into play at this stage: The most
strongly bound gluon pairs will be those with a minimal
value of the radial quantum number (n ¼ 0) and of the
orbital angular momentum. If the gluons were longitudinal,
the minimal value of the square orbital angular momentum
would be hL2i ¼ 0 for the 0þþ state. However, we have
seen that the large-T behavior of the gluon plasma is
compatible with transverse gluons. In this case, hL2i ¼ 2
is the minimal allowed value, corresponding to the 0
þ
glueballs as shown in Ref. [57].
Denoting the static potential between a color-singlet

quark-antiquark pair by Vðr; TÞ, a relativistic
Hamiltonian describing the aforementioned lightest glue-
balls is the following spinless Salpeter one:

HG ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ �m2ðTÞ

q ��������hL2i¼2
þ 9

4
Vðr; TÞ; (47)

where p2 ¼ p2
r þ hL2i=r2, and where
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�mðTÞ
Tc

¼ �m
T

Tc

¼ 0:973
T

Tc

(48)

is the free gluon mass introduced in the previous section.
The 9=4 factor comes from the color Casimir operator.
Such a Casimir scaling for the static energy between
sources in various color representations has been con-
firmed by the lattice study [58]. We choose for �m the value
that reproduces that saturation value of the thermodynam-
ical quantities following the analysis of Sec. IVA. Notice
that, since Tc is estimated to be around 270 MeV by pure
glue lattice calculations [8], one has

�mðTÞ ¼ 0:263
T

Tc

GeV: (49)

We point out that building an effective glueball
Hamiltonian by starting from a best-known quark-
antiquark one has already led to a successful description
of glueballs at T ¼ 0 [57]. That is why we find it relevant
to apply it in this case also. A last remark has to be made:
Our framework leads, by construction, to the same mass for
the scalar and pseudoscalar glueballs. At T ¼ 0 this de-
generacy can be lifted by the introduction of instanton-
induced forces [57]. Such forces are not taken into account
by the present model, and one can expect that the ground
state of Hamiltonian (47), whose mass is denotedMGðTÞ, is
rather an average mass of the scalar and pseudoscalar
glueballs. Although the current understanding of this topic
is far from being complete, we can nevertheless mention
that instanton effects might be less important at high
temperatures following Ref. [59]. Actually, we have
checked that the results that we obtain in the following
do not demand an accurate knowledge of MGðTÞ.

A key ingredient in Hamiltonian (47) is the potential
energy Vðr; TÞ between a static quark-antiquark pair. It is
well known from lattice QCD that this potential is compat-
ible with a funnel shape ar� b=r at T ¼ 0 [60], but the
situation is less clear when T > 0. The potential energy
that is the most readily obtained in lattice QCD is the
quark-antiquark free energy Fðr; TÞ [8,61]. We recall
that, thermodynamically speaking, the free energy of a
system is the energy that is available in the system to
produce a work once the energy losses due to the increase
of the entropy have been subtracted. As also noticed in
Ref. [20], in a potential approach, however, the potential
energy of the system should be the total energy that it
contains, no matter whether it will be lost or not in heat
transfers. Such a potential energy corresponds to the inter-
nal energy of the system, usually denoted by U ¼ Fþ TS,
where S is the entropy. The internal energy of a quark-
antiquark pair is thus the quantity we choose as the poten-
tial term. It has been computed in lattice QCD in
Refs. [40]; we give a plot of these results in Fig. 6.
Notice that those Nf ¼ 0 computations are the most rele-

vant for our purpose since we consider a genuine gluon
plasma.

It can be checked in Figs. 6 and 7 that the lattice data are
accurately fitted by the following form:

Vðr; TÞ ¼ �aðTÞe�bðTÞr þ cðTÞ; (50a)

where

aðTÞ ¼ a0
lnð T

a1Tc
Þ þ a2 ln

�
T

a1Tc

�
; bðTÞ ¼ b0 þ b1

T

Tc

;

cðTÞ ¼ c0
lnð T

c1Tc
Þ ; and (50b)

a0 ¼ 0:459 GeV; a1 ¼ 0:915; a2 ¼ 1:159 GeV;

b0 ¼ 0:111 GeV; b1 ¼ 0:489 GeV;

c0 ¼ 0:341 GeV; c1 ¼ 0:808: (50c)

FIG. 6 (color online). Internal energy of a static quark-
antiquark pair computed in lattice QCD for different values of
T=Tc and for Nf ¼ 0 (circles). Lattice data are taken from

Refs. [40] and compared to the fitted form (50) for some values
of T=Tc (solid lines).

FIG. 7 (color online). Values of aðTÞ, bðTÞ, and cðTÞ obtained
by a fit of the lattice QCD data to the form (50a) (circles),
compared to the analytical curves (50b) (solid lines).
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It has to be stressed that the form (50) is the one that gives
the best fit of the lattice data but is not motivated by any
physical theory predicting such a form. We just use it as a
convenient parametrization of the lattice QCD results. It
clearly appears from Eq. (50a) that the potential energy is
no longer confining. Exponential potentials indeed only
admit a finite number of bound states.

B. Numerical results

All the terms appearing in Hamiltonian (47) are now
explicitly known, and its ground state mass can be numeri-
cally computed. To this aim, we use the Lagrange mesh
method, which is a numerical procedure allowing, in par-
ticular, to accurately solve eigenequations associated with
relativistic Hamiltonians [62]. The evolution of the lowest-
lying glueball mass with the temperature is given in Fig. 8.
The numerically computed evolution of the glueball mass
with T is accurately fitted by the form

MGðTÞ ¼ 9
4cðTÞ þ 2 �mðTÞ þ 2bðTÞ"ðTÞ for T � 1:13Tc;

(51a)

where

"ðTÞ ¼ "0T=Tc � "1
T=Tc � "2

; (51b)

"0 ¼ 0:818; "1 ¼ 0:921; "2 ¼ 0:958: (51c)

The glueball mass we find is around 1.8 GeV at T � Tc,
and then increases to reach a maximal value of about
2.8 GeV. Notice that the mass near the critical temperature
is similar to the one obtained at zero temperature [63]. To
our knowledge, the behavior of the scalar glueball mass
versus the temperature has not been studied much in the
literature. We can nevertheless quote the lattice study of
Ref. [64] which finds a reduction of 20% of the scalar

glueball mass when one goes from T ¼ 0 to T ¼ Tc, and
the more recent work [65] which finds an almost constant
glueball mass from T ¼ 0 to T ¼ Tc. Beyond the qualita-
tive behavior of MGðTÞ, an important result we find is that
the ground state is bound up to T ¼ 1:13Tc and then
dissociates in the medium above this temperature.
Numerically, the dissociation temperature is reached
when the binding energy of the system vanishes. Our
model thus predicts the existence of glueballs in the tem-
perature range T=Tc ¼ 1–1:13, but the existence of bound
states is a very stringent criterion: Glueball resonances can
indeed appear in the continuum even if the gluons are not
bound. Following the lattice results of Ref. [65], glueball
resonances can even be expected up to 1:9Tc.
Since glueballs can be present in the deconfined me-

dium, we propose to recompute the thermodynamical
properties of the gluon plasma by assuming that it is a
mixing between an ideal gas of transverse gluons and an
ideal gas of glueballs, with the glueball abundance nðTÞ
depending on the temperature. This last approach will be
referred to as model 3; it shares with model 1 the property
that � ¼ 1=T and that the form of the energy is preserved.
Its spirit is a bit similar to the hadronic resonance gas
model, assuming that the hot hadronic medium can be
described as an ideal gas made of all possible resonance
species (see Refs. [66,67] for more information). We ac-
tually consider that the screened color interactions ‘‘gen-
erate’’ color-singlet scalar and pseudoscalar glueballs in
the first stage, and that these glueballs behave as free
particles in the gluon plasma in the second stage.
Consequently, if

e0ðd;m;�Þ ¼ d

2�2

Z 1

�m

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ð�mÞ2p
ek � 1

dk (52)

is the energy density of an ideal gas of bosons with massm
and with d degrees of freedom, then the total energy
density of the mixed gluon-glueball gas is

eð3Þ ¼ ½1� nðTÞ�e0ð16; �mT; 1=TÞ
þ nðTÞe0ð2;MGðTÞ; 1=TÞ; (53a)

where 2 degrees of freedom are associated with the glue-
ball gas, accounting for the lowest-lying 0
þ states. A
priori, nðTÞ should vanish above 1:13Tc because glueballs
are then not bound anymore. However, two-gluon reso-
nances can, in principle, appear in the continuum above the
dissociation temperature. The simplest way to take this
phenomenon into account is to allow nðTÞ to be nonzero
above the dissociation temperature. In this sector, formula
(51a) remains well defined, roughly simulating a gluon pair
in the continuum.
The unknown function nðTÞ can be computed by fitting

Eq. (53a) to the lattice energy. The result is given in Fig. 9;
it appears that the numerically computed curve is accu-
rately described by the following form:

nðTÞ ¼ e�n0ðT=Tc�1Þn1 ; (53b)

FIG. 8 (color online). Numerically computed lowest-lying
glueball mass, which is the ground state mass of Hamiltonian
(47) versus T=Tc (solid line). The fitted form (51) is also plotted
for comparison (dashed line). The curve stops at the glueball
dissociation temperature, namely, 1:13Tc.
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with n0 ¼ 3:358 and n1 ¼ 0:541. The glueball abundance
is nearly 100% at T ¼ Tc, then decreases to reach 33% at
1:13Tc, the dissociation temperature of the two-gluon glue-
balls. But as we said previously, resonances are still ex-
pected to form in the continuum, justifying a nonzero
glueball abundance at higher temperatures. Finally, nðTÞ
is less than 5% at 1:9Tc. Such a negligible value is coherent
with the fact that glueball resonances are expected to
disappear above that temperature [65]. We have checked
that the quantitative behavior of nðTÞ is not very sensitive
to the glueball mass MGðTÞ. The key result of model 3 is
rather that e0ð16; �mT; 1=TÞ alone is unable to fit the avail-
able data and, consequently, that an additional term ac-
counting for glueballs is needed.

The entropy density can be computed from Eqs. (20) and
(53a). It reads

sð3Þ ¼
Z 1=Tc

1=T
�@�e

ð3Þð1=�Þd�: (53c)

The upper bound of this last integral ensures that sð3ÞðTcÞ ¼

0, in qualitative agreement with lattice QCD. Finally, the
pressure can be computed thanks to the definition (21) as

pð3Þ ¼ Tsð3Þ � eð3Þ: (53d)

The results are plotted in Figs. 10 and 11 and compared to
lattice QCD. As it was the case for models 1 and 2, model 3
leads to an excellent agreement with the lattice data,
although relying on a different physical picture of the
gluon plasma.

VI. CONCLUSIONS AND OUTLOOK

It is now widely accepted that the equation of state of the
gluon plasma, coming from pure gauge lattice QCD com-
putations, can be accurately reproduced by modeling the
gluon plasma as a gas of transverse gluons with a
temperature-dependent mass. As we have outlined in the
beginning of this paper, such a quasiparticle model is in-
deed in disagreement with lattice QCD if a constant gluon
mass is used. One is thus led to deal with temperature-
dependent Hamiltonians. In that case, standard formulas in
statistical mechanics have to be modified in order to en-
force the thermodynamical consistency, but the procedure
to achieve such a task varies from one work to another. In
the frameworks that can be found in the literature so far, the
standard expression of only one thermodynamical quantity
can be preserved in order to enforce the thermodynamic
consistency, i.e. to satisfy the laws of thermodynamics. The
expressions of the other quantities have to be modified:
Either the pressure [29], the entropy [31], or the energy
[38] is kept invariant.
In this work, we have clarified the situation by showing

that all the existing formulations can be derived in a simple
unified way. In the process, we have uncovered a new
possible formulation for which the standard form of each
thermodynamical quantity is preserved but for which � is
no longer equal to 1=T. The function �ðTÞ has to be
extracted from a first order nonlinear differential equation
expressing the fulfillment of the laws of thermodynamics.

FIG. 9 (color online). Glueball abundance computed by fitting
Eq. (53a) to lattice QCD versus T=Tc (solid line). The fitted form
(53b) is plotted for comparison (dashed line).

FIG. 10. Same as Fig. 4, but this time lattice data are compared
to model 3 (solid gray line) defined by Eqs. (53).

FIG. 11 (color online). Same as Fig. 5, but this time lattice data
are compared to model 3 (solid gray line) defined by Eqs. (53).
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We think that this last formalism is the most fundamental
one, since it only demands a change in the definition of the
Lagrangian multiplier �, which has no physical meaning
a priori. Moreover, the corrections to standard statistical
mechanics implied by this new formulation are only local
in T—i.e. they vanish in regions where the Hamiltonian
does not depend on T—while corrections found in other
formulations are nonlocal in T. However, this new formu-
lation is far more complicated to deal with in numerical
applications when the dependence of the Hamiltonian on
temperature is not known. That is why the other ap-
proaches are also useful to study quark-gluon plasma.

Consequently, we focused on two formulations: The
ones that preserve the form of the energy and of the
entropy. It can be analytically shown that, independently
of the considered formulation, reproducing the lattice data
leads to constraints on the thermal gluon mass mðTÞ. It
must be strongly decreasing just after the critical tempera-
ture and grow linearly asymptotically. A numerical fit of
the thermal mass on the available data confirms this be-
havior and eventually leads to an excellent agreement with
lattice QCD. Both frameworks lead to nearly indistinguish-
able results, as expected, and to very similar thermal gluon
mass.

Mean-field-inspired arguments show that the singular
behavior of the thermal gluon mass near Tc accounts for
residual color interactions, which are still strong in the
early stages after deconfinement. The potential energy
coming from such screened color interactions has already
been computed in lattice QCD, allowing us to build a
consistent Hamiltonian describing the interactions between
two transverse gluons in a color singlet, which is the
channel in which the color interactions are the strongest.
It appears that the two-gluon ground state, corresponding
to the scalar and pseudoscalar glueballs, remains bound up
to T ¼ 1:13Tc. We then proposed a final description of the
gluon plasma, in which this medium is seen as an ideal
mixture of free gluons and colorless glueballs. The agree-
ment with lattice QCD is as good as with the previous
approaches, with a glueball abundance that is very large
near the critical temperature, takes the lower value of 33%
at the dissociation temperature of the lightest glueballs,
and becomes negligible after 1:9Tc, where even continuum
glueball resonances are expected to disappear [65]. This
interpretation of the gluon plasma draws a bridge between
the quasiparticle approach and other models focusing on
the existence of bound states after deconfinement [20].

From an experimental point of view, the main result of
the present study is the prediction that the gluon plasma,
and thus presumably quark-gluon plasma, might be a
glueball-rich medium in the early stages after deconfine-
ment. This brings support to previous studies arguing that
an important amount of glueballs can be formed in rela-
tivistic heavy ion collisions [68,69]. The experimental
detection of the scalar glueball in quark-gluon plasma

could be achieved through the scenario developed in
Refs. [70] which roughly suggests that, although the bare
scalar glueball would be nearly stable in quark-gluon
plasma, it should mix with scalar mesons. Then, such a
‘‘physical’’ glueball, denoted as G, could decay mostly in
the channels G ! �� and G ! 

 through its mesonic
component, leading to an enhancement of the number of
events versus the two-photon (or two-pion) invariant mass.
In our model, the bare glueball mass is mostly located
around 2.8 GeV; a peak in the 

 or �� channels can
thus be expected not too far from 2.8 GeV, depending on
the strength of the meson-glueball coupling.
We finally stress that, if quarks were included in our

model, the number of bound states above the critical
temperature would increase since mesons, diquarks,
quark-gluon states, etc. can also form. We leave the ex-
tension of our approach to the full quark-gluon plasma for
future work. The effects of a nonzero chemical potential
will also be left for subsequent studies.
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APPENDIX: DETERMINATION OF �ðTÞ FOR
TEMPERATURE-DEPENDENT HAMILTONIANS:

AN EXAMPLE

In order to illustrate the general procedure given in
Sec. III A, we study the particular case of a classical ideal
gas with temperature-dependent mass mðTÞ, or equiva-
lently mðfð�ÞÞ because of the definition (18). The
Hamiltonian reads

H ¼ k2

2mðfð�ÞÞ ; (A1)

and one finds that, for a system of N particles,

Z ¼ VN

�
2�mðfð�ÞÞ

�

�
3N=2

; (A2)

where V is the volume of the system. The normalized
probability density is thus known and we can be compute

E ¼ 3N

2�
and @�H ¼ � 3N

2�

m0ðfð�ÞÞf0ð�Þ
mðfð�ÞÞ ; (A3)

where the prime denotes a partial derivation with respect to
the argument of the considered function. These last two
equalities allow one to rewrite Eq. (24) as

�
m0ðfð�ÞÞ
mðfð�ÞÞ f

0ð�Þ þ fð�Þ � � ¼ 0: (A4)
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Let us consider the following form for mðTÞ to illustrate
the procedure:

mðTÞ ¼ m0e
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4�=T

p
Þ=2; (A5)

with � 	 0. The equation for fð�Þ then reads

��2f0ð�Þ ¼ ðfð�Þ � �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�fð�Þ

q
: (A6)

To uniquely determine the function f, we need a boundary
condition. For T ! 1, the mass tends to m0 which is
constant. In this limit, one recovers the standard statistical
mechanics and fð�Þ ¼ � ¼ 1=T. Consequently, the
boundary condition is fð0Þ ¼ 0. The unique solution of
the nonlinear differential equation (A6) is then

fð�Þ ¼ �þ ��2: (A7)

The relation between � and T is then given by

� ¼ �1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�=T

p
2�

: (A8)

For T � 4� (or � ! 0), we just recover the standard
relation � ¼ 1=T. In this formalism, we also find that

E

N
¼ 3�

�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�=T

p : (A9)

We can now compare this last energy formula with the
energy obtained within models 1 and 2. For model 1, where
the expression for the energy is preserved, we simply have
the standard expression E=N ¼ 3T=2, while for model 2,
where the expression for the entropy is preserved, the
energy takes the form (remember that in this formalism
� ¼ 1=T)

E

N
¼ 3T

2
�

Z �

�

@�Hj�¼	d	 ¼ 3T

2
þ 3

2

Z �

�


@	mð	Þ
mð	Þ

1

	
d	

¼ 3T

2
þ 3�

2

�
ln

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4�	
p

�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�	

p
��

	¼1=T

	¼1=T

: (A10)

The correction to the energy (E=N � 3T=2) can be com-

pared for each formalism. Of course, for model 1, this
correction is vanishing; in this case corrections would be
associated with the entropy. Consequently, in Fig. 12, we
compare only corrections to the energy obtained with
model 2 and with the new formalism proposed in this paper
together with the evolution of the mass as functions of the
temperature T=�.
We notice that the corrections to the energy frommodel 2

(and corrections to the entropy from model 1) are nonlocal
since they involve integrals over some range in tempera-
ture; see Eqs. (25) and (26). This means that those correc-
tions are still significative in regions where the mass is
essentially constant (in this example the corrections are
logarithmic in T), while the corrections to the energy from
the new formalism are essentially localized around the
region where the mass depends significantly on the tem-
perature. This is indeed what we expect: If the Hamiltonian
does not essentially depend on T over some large interval
of temperature, the statistical mechanics in this interval of
T should be essentially the same as the standard statistical
mechanics.
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