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We study the evolution of massive mixed Dirac and Majorana neutrinos in matter under the influence of

a transversal magnetic field. The analysis is based on relativistic quantum mechanics. We solve exactly the

evolution equation for relativistic neutrinos, find the neutrino wave functions, and calculate the transition

probability for spin-flavor oscillations. We analyze the dependence of the transition probability on the

external fields and compare the cases of Dirac and Majorana neutrinos. The evolution of Majorana

particles in vacuum is also studied and correction terms to the standard oscillation formula are derived and

discussed. As a possible application of our results we discuss the spin-flavor transitions in supernovae.
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I. INTRODUCTION

If massive neutrinos possess nonzero transition mag-
netic moments, transitions �L

� $ �R
� that change both

spin and flavor of neutrinos can happen in electromagnetic
fields. Such transitions may be realized, e.g., in astrophys-
ical environments where strong magnetic fields are present.
Oscillations of Dirac neutrinos in an external magnetic
field were studied in Ref. [1]. In this scenario one has a
transition to the sterile neutrino state �R. While consider-
ing oscillations of Majorana neutrinos with transition mag-
netic moments in an external magnetic field (see, e.g.,
Refs. [2–4]), one has transitions between active neutrino
states since �R

� ¼ ð�L
�Þc for a Majorana particle.

Neutrino spin-flavor oscillations in solar magnetic fields
have been earlier studied in connection to the solar neu-
trino problem (see, e.g., Ref. [5]). It was thought that this
neutrino oscillations channel could explain at least partly
the deficit of the electron neutrinos in the measured solar
neutrino flux. It is now clear that such spin-flavor oscilla-
tions cannot play any significant role and the deficit can be
satisfactorily explained in terms of active-active conver-
sions and the Mikheyev-Smirnov-Wolfenstein matter ef-
fect [6].

The influence of strong magnetic fields of neutron stars
on neutrino oscillations was studied in Refs. [7–9]. It was
shown that spin-flavor transition may have important ef-
fects in the neutron star environment. In these investiga-
tions neutrino spin-flavor oscillations were described for
realistic profiles of matter densities and magnetic fields and
the appearance of resonances in neutrino oscillations was
examined. For further details on the neutrino oscillations in

electromagnetic fields as well as neutrino electromagnetic
properties the reader is referred to the recent review [10].
In this paper we shall return to the question of the spin-

flavor oscillations using an approach that differs from the
one usually followed. It is usual to describe neutrino os-
cillations, including the spin-flavor transitions, on the basis
of the quantum mechanical evolution equation. Instead of
this Schrödinger picture, wewill apply relativistic quantum
mechanical picture based on the Dirac theory. In this
approach, we will study spin-flavor oscillations of Dirac
and Majorana neutrinos in matter and in an external mag-
netic field, extending our earlier use of the method [11–14]
to this new problem. We should also mention that the
majority of the previous studies of neutrino spin-flavor
oscillations are restricted to the case of Majorana neutri-
nos. We will investigate both the Dirac and Majorana cases
as the nature of neutrinos is still an open question [15].
The plan of this paper is as follows. We will start by

writing down the relativistic wave equations that take into
account the background matter and external magnetic field.
We formulate the initial condition problem for these sys-
tems (see also Refs. [11–14]). We then derive for both
Dirac and Majorana neutrinos a Hamiltonian analogous
to that of the standard quantum mechanical approach and
solve exactly the resulting evolution equation for relativ-
istic neutrinos. We then analyze the behavior of the tran-
sition probability for Dirac and Majorana neutrinos at
various magnetic field strengths and matter densities. Our
results will be summarized and their applications to some
astrophysical situations discussed in Sec. V.

II. EVOLUTION OF DIRAC NEUTRINOS IN
MATTER AND TRANSVERSAL MAGNETIC FIELD

Let us study the evolution of two neutrino flavor states
��, � ¼ �, �, in a nonmoving and unpolarized matter
under the influence of an external magnetic field. We
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assume that the mass eigenstates c a, a ¼ 1, 2, are related
to the flavor eigenstate neutrinos through the transforma-
tion

�� ¼ X
a¼1;2

U�ac a; ðU�aÞ ¼ cos� � sin�
sin� cos�

� �
; (2.1)

where � is a mixing angle. In this section we shall assume
that the mass eigenstates are Dirac particles. We set the
following initial conditions (see also Refs. [11–14]):

��ðr; 0Þ ¼ 0; ��ðr; 0Þ ¼ �ð0Þ
� eikr; (2.2)

where k ¼ ðk; 0; 0Þ is the initial momentum and �ð0ÞT
� ¼

ð1=2Þð1;�1;�1; 1Þ (see below). This corresponds to a
relativistic neutrino of the flavor �, with its spin directed
oppositely to the particle momentum, i.e., a left-handed
neutrino �L

�. The system is taken not to contain the other

neutrino flavor �� initially.
Note that from the physical point of view it would be

more realistic to choose a localized in space initial condi-
tion rather than that in Eq. (2.2). It is well known, however,
that from the point of view of oscillations the plane wave
and wave packet approaches in practice lead to equivalent
results [16]. Moreover the initial condition problem (2.2)
for the cases of flavor and spin-flavor oscillations in various
external fields was solved in our previous publications
[11–14].

The Dirac equation for the mass eigenstates wave func-
tions is of the form (see Refs. [13,14]),

i _c a ¼ H ac a þ ðVm þ VBÞc b; a � b; (2.3)

where H a ¼ ð�pÞ þ �ma þ gað1� �5Þ=2 is the mass-
diagonal part of the Hamiltonian, ma are the masses asso-
ciated with the states c a, and � ¼ �0�, � ¼ �0, and � ¼
�5�0� are Dirac matrices. The term Vm ¼ gð1� �5Þ=2
describes the interaction of neutrinos with particles in the
background matter. The matrix (gab), given below, is not
diagonal in the mass eigenstate basis. The term VB ¼
��B��3 is the energy operator associated with the inter-
actions of neutrinos with the magnetic field, and the mag-
netic moment matrix (�ab) is, like (gab), in general
nondiagonal. The magnetic field is taken to be transversal
with respect to the initial neutrino momentum, i.e., B ¼
ð0; 0; BÞ. The Vm and VB terms are responsible for the
possible mixing between different neutrino mass
eigenstates.

The matrix (gab) that describes the interactions of neu-
trinos with matter is in the mass eigenstates basis of the
form

gab ¼ X
�¼��

Uy
a�f�U�b

¼ f�cos
2�þ f�sin

2� � sin� cos�½f� � f��
� sin� cos�½f� � f�� f�sin

2�þ f�cos
2�

 !
:

(2.4)

Wewill denote gaa ¼ ga and g12 ¼ g21 ¼ g. If we identify
the flavor � as � �� or �� and the flavor � as � �e, the

effective potentials f�, � ¼ �, �, are given by (see
Ref. [17]):

f� ¼ ffiffiffi
2

p
GF

X
f¼e;p;n

nfq
ð�Þ
f ;

qð�Þf ¼ ðIðfÞ3L � 2QðfÞsin2�WÞ;
qð�Þf ¼ ðIðfÞ3L � 2QðfÞsin2�W þ 	efÞ;

(2.5)

where nf is the number density, IðfÞ3L the third isospin

component and QðfÞ the electric charge of the background
particle of the type f, �W is the weak mixing angle, andGF

is the Fermi constant. It is assumed in Eq. (2.5) that matter
consists of electrons, protons, and neutrons and that it is
unpolarized and at rest.
As to the interactions of neutrinos with the magnetic

field, we have assumed when writing Eq. (2.3) that the
magnetic moment matrix in the mass eigenstates basis is
antidiagonal, i.e., �aa ¼ 0 and �12 ¼ �21 ¼ � � 0.
Magnetic moment matrices of this type were studied in
our previous works [13,14]. The situation with the values
of Dirac neutrino magnetic moments is disputable [18];
however, the existence of large off-diagonal magnetic mo-
ments of Dirac neutrinos is not excluded. Let us note that
the solution to the Dirac-Pauli equation for a neutrino with
�aa � 0 propagating in an arbitrary moving and polarized
medium was recently obtained in Ref. [19]. However in
that work the case of only one neutrino flavor was studied.
The general solution of Eq. (2.3) has the form [12–14]

c aðr; tÞ ¼ expð�igat=2Þ
Z d3p

ð2
Þ3=2 e
ipr

� X
�¼�1

½að�Þa ðtÞuð�Þa expð�iEð�Þ
a tÞ þ bð�Þa ðtÞvð�Þ

a

� expðþiEð�Þ
a tÞ�; (2.6)

where the energies are given by (see, e.g., Ref. [20])

Eð�Þ
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a þ ðjpj � �ga=2Þ2
q

: (2.7)

In the relativistic limit one has

Eð�Þ
a � jpj þ m2

a

2jpj � �
ga
2
: (2.8)

To obtain Eq. (2.8) we neglect the term �g2a compared to
the neutrino mass squared m2

a. For the situation of neutrino
propagation in the expanding envelope formed after the
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supernova explosion, which is studied below, the effective
potentials are ga � 10�12–10�11 eV. Accounting for the
neutrino mass in the eV range, the approximation made is
always valid.

The expressions for the basis spinors uð�Þa and vð�Þ
a can be

found in Ref. [20]. When one studies the situation where
the initial momentum is very large, k � ma, one can
neglect the neutrino mass dependence of the spinors and
present them in the form

uþ ¼ 1

2

1

1

1

1

0
BBBBB@

1
CCCCCA; u� ¼ 1

2

1

�1

�1

1

0
BBBBB@

1
CCCCCA;

vþ ¼ 1

2

1

1

�1

�1

0
BBBBB@

1
CCCCCA; v� ¼ 1

2

1

�1

1

�1

0
BBBBB@

1
CCCCCA:

(2.9)

Note that the coefficients að�Þa ðtÞ and bð�Þa ðtÞ in Eq. (2.6) are
functions of time due to the presence of the nondiagonal
interactions Vm and VB. Our main goal is to determine

these coefficients so that both Eq. (2.3) and the initial
condition (2.2) are satisfied.
Using Eqs. (2.3) and (2.6) and the orthonormality of the

basis spinors (2.9) we arrive to the following ordinary

differential equations for the coefficients að�Þa and bð�Þa

[13,14]:

i _að�Þa ¼ exp½iðga � gbÞt=2� expðþiEð�Þ
a tÞuð�ÞyðVm þ VBÞ

� X
� 0¼�1

½að� 0Þb uð� 0Þ expð�iEð� 0Þ
b tÞ

þ bð�
0Þ

b vð� 0Þ expðþiEð� 0Þ
b tÞ�;

i _bð�Þa ¼ exp½iðga � gbÞt=2� expð�iEð�Þ
a tÞvð�ÞyðVm þ VBÞ

� X
� 0¼�1

½að� 0Þb uð� 0Þ expð�iEð� 0Þ
b tÞ

þ bð�
0Þ

b vð� 0Þ expðþiEð� 0Þ
b tÞ�: (2.10)

One easily sees that hu�jVmju�i ¼ g, hvþjVmjvþi ¼ g,
hu�jVBju	i ¼ ��B, and hv�jVBju	i ¼ ��B. All the
other scalar products in Eq. (2.10) vanish.
Let us introduce a four-component wave function �0

defined as �0T ¼ ða�1 ; a�2 ; aþ1 ; aþ2 Þ. Then we can rewrite
Eq. (2.10) in the form of a Schrödinger equation:

i
d�0

dt
¼ H0�0; H0 ¼

0 gei!
0t 0 ��Bei!1t

ge�i!0t 0 ��Be�i!2t 0
0 ��Bei!2t 0 0

��Be�i!1t 0 0 0

0
BBB@

1
CCCA; (2.11)

where [see also Eq. (2.8)]

!1 ¼ E�
1 � Eþ

2 þ g1 � g2
2

� 2�þ g1; !2 ¼ Eþ
1 � E�

2 þ g1 � g2
2

� 2�� g2;

!0 ¼ E�
1 � E�

2 þ g1 � g2
2

� 2�þ 2ðg1 � g2Þ;
(2.12)

and � ¼ 	m2=ð4kÞ ¼ ðm2
1 �m2

2Þ=ð4kÞ is the vacuum oscillation phase.
Let us next do the following transformation to the wave function:

�0 ¼ U�; U ¼ diagfeið�þ3g1=4�g2=4Þt; e�ið��3g2=4þg1=4Þt; eið��g1=4�g2=4Þt; e�ið�þg1=4þg2=4Þtg:
This takes the Schrödinger Eq. (2.11) into the form

i
d�

dt
¼ H�;

H ¼ UyH0U� iUy dU
dt

¼

�þ 3g1=4� g2=4 g 0 ��B

g ��þ 3g2=4� g1=4 ��B 0

0 ��B �� ðg1 þ g2Þ=4 0

��B 0 0 ��� ðg1 þ g2Þ=4

0
BBBBB@

1
CCCCCA:

(2.13)

It is in order at this stage to compare the time evolution Eq. (2.13), which we obtained in our approach based on the Dirac
equation, with the one obtained in the conventional quantummechanical formalism. To this end let us introduce a quantum

mechanical wave function �T
QM ¼ ðc L

1 ; c
L
2 ; c

R
1 ; c

R
2 Þ for the neutrino mass eigenstates. Here c L;R

a are one-component

objects. This wave function obeys the Schrödinger equation with the following effective Hamiltonian (see, e.g., Ref. [3]):
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HQM ¼
K1 þ g1 g 0 ��B

g K2 þ g2 ��B 0
0 ��B K1 0

��B 0 0 K2

0
BBB@

1
CCCA;

(2.14)

where Ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

a

p � kþm2
a=ð2kÞ is the kinetic en-

ergy of a massive neutrino. It is easy to see that this matrix
leads to the same dynamics as the Hamiltonian in
Eq. (2.13). Indeed, without changing the dynamics one
can make the following replacement HQM ! HQM �
trðHQMÞ=4 
 I, where I is the 4� 4 unit matrix. The result-
ing Hamiltonian is exactly the same Hamiltonian we have
derived in our approach.

To describe the evolution of the system (2.13) in a
general case, one has to solve a secular equation which is
the fourth-order algebraic equation (see also below).
Although one can express the solution to such an equation
in radicals, its actual form appears to be rather cumber-
some for arbitrary parameters. If we, however, consider the
case of a neutrino propagating in the electrically neutral
isoscalar matter, i.e., ne ¼ np and np ¼ nn, a reasonable

solution is possible to find. Wewill demonstrate later that it
corresponds to a realistic physical situation. As one can
infer from Eq. (2.5) for the case of the �L

e ! �R
� oscilla-

tions channel, in a medium with this property one has the

effective potentials f� � f� ¼ V� ¼ �GFn=
ffiffiffi
2

p
and

f� � fe ¼ Ve ¼ GFn=
ffiffiffi
2

p
, where n � ne ¼ np ¼ nn.

Using Eq. (2.4) we obtain that g1 ¼ �g2 ¼ g0, where

g0 ¼ �V cos2�, g ¼ V sin2�, and V ¼ GFn=
ffiffiffi
2

p
.

Let us point out that background matter with these
properties may well exist in some astrophysical environ-
ments. The matter profile of presupernovae is poorly
known, and a variety of presupernova models with differ-
ent profiles exist in the literature (see, e.g. Ref. [21]).
Nevertheless, electrically neutral isoscalar matter may
well exist in the inner parts of presupernovae consisting
of elements heavier than hydrogen. Indeed, for example,
the model W02Z in Ref. [21] predicts that in a 15M�
presupernova one has Ye ¼ ne=ðnp þ nnÞ ¼ 0:5 in the

Oþ NeþMg layer, between the Siþ O and He layers,
in the radius range ð0:007–0:2ÞR�.

In this kind of background matter the effective
Hamiltonian in Eq. (2.13) is replaced by

H ¼
�þ g0 g 0 ��B

g �ð�þ g0Þ ��B 0
0 ��B � 0

��B 0 0 ��

0
BBB@

1
CCCA: (2.15)

We now look for the stationary solutions of the
Schrödinger equation with this Hamiltonian. After a
straightforward calculation one finds

�ðtÞ ¼ X
�¼�1

½ðU� �Uy
� Þ expð�iE� tÞ þ ðV� � Vy

� Þ

� expðiE� tÞ��0; (2.16)

where we have denoted

E� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V2 þ 4ð�BÞ2 þ 4�2 � 4�V cos2�� 2VR

q
;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV � 2� cos2�Þ2 þ 4ð�BÞ2

q
: (2.17)

The vectorsU� and V� are the eigenvectors corresponding
to the energy eigenvalues E� and�E�, respectively. They
are given by (� ¼ �)

U� ¼ 1

N�

Z�

sin2�ðE� ��Þ
��B sin2�

��BZ�=ðE� þ�Þ

0
BBB@

1
CCCA;

V� ¼ 1

N�

� sin2�ðE� ��Þ
Z�

�BZ�=ðE� þ�Þ
��B sin2�

0
BBB@

1
CCCA;

(2.18)

where

Z� ¼ V þ �R

2
� E� cos2�;

N2
� ¼ Z2

�

�
1þ ð�BÞ2

ðE� þ�Þ2
�

þ sin2ð2�Þ½ð�BÞ2 þ ðE� ��Þ2�:

(2.19)

It should be noted that Eq. (2.16) is the general solution of
Eq. (2.13) satisfying the initial condition �ð0Þ ¼ �0.
Note that we received the solution (2.16), (2.17), (2.18),

and (2.19) of the evolution Eq. (2.13) under some assump-
tions on the external fields such as isoscalar matter with
constant density and constant magnetic field. We men-
tioned above that our method is equivalent to the quantum
mechanical description of neutrino oscillations [3] which is
valid for a more general case of coordinate dependent
external fields. The advantage of our approach consists in
the fact that one can derive neutrinos’ wave functions for
arbitrary initial momenta, as it was made in Refs. [11,12],
and study the propagation of low-energy neutrinos. The
assumption of constant matter density and magnetic field is
quite realistic for certain astrophysical environments like a
shock wave propagating inside an expanding envelope
after a supernova explosion (see also Sec. V).
Consistently with Eqs. (2.1) and (2.2), we take the initial

wave function �ð0Þ � �0 in Eq. (2.16) as �T
0 ¼

ðc L
1 ; c

L
2 ; c

R
1 ; c

R
2 Þ ¼ ðsin�; cos�; 0; 0Þ. Using Eqs. (2.16),

(2.17), (2.18), and (2.19) one finds the components of the
quantum mechanical wave function corresponding to the
right-handed neutrinos to be of the form
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c R
1 ðtÞ ¼

�B

N2þ

�
cos�

�
eiEþt

Z2þ
Eþ þ�

� sin2ð2�ÞðEþ ��Þe�iEþt
�
� sin� sin2�Zþ

�
e�iEþt þ eiEþt

Eþ ��

Eþ þ�

��
þ fþ ! �g;

c R
2 ðtÞ ¼

�B

N2þ

�
sin�

�
sin2ð2�ÞðEþ ��ÞeiEþt � e�iEþt

Z2þ
Eþ þ�

�
� cos� sin2�Zþ

�
eiEþt þ e�iEþt

Eþ ��

Eþ þ�

��
þ fþ ! �g;

(2.20)

where the fþ ! �g stand for the terms similar to the terms
preceding each of them but with all quantities with a sub-
script þ replaced with corresponding quantities with a
subscript �. The wave function of the right-handed neu-
trino of the flavor �, �R

�, can be written with help of
Eqs. (2.1) and (2.20) as �R

�ðtÞ ¼ cos�c R
1 ðtÞ � sin�c R

2 ðtÞ.
The probability for the transition �L

� ! �R
� is obtained as

the square of the quantum mechanical wave function �R
�.

One obtains

P�L
�
!�R

�
ðtÞ ¼ j�R

�j2

¼ ½Cþ cosðEþtÞ þ C� cosðE�tÞ�2
þ ½Sþ sinðEþtÞ þ S� sinðE�tÞ�2; (2.21)

where (� ¼ �)

C� ¼ �B

N2
�

� Z2
�

E� þ�
� sin2ð2�ÞðE� ��Þ

�
;

S� ¼ �B

N2
�

�
sin2ð2�Þ 2�Z�

E� þ�

þ cos2�

� Z2
�

E� þ�
þ sin2ð2�ÞðE� ��Þ

��
:

(2.22)

As a consistency check, one easily finds from Eq. (2.22)
that Cþ þ C� ¼ 0 as required for assuring Pð0Þ ¼ 0.

In the following we will limit our considerations to the
case Eþ � E�, corresponding to the situations where the
effect of the interactions of neutrinos with matter (V) is
small compared with that of the magnetic interactions
(�B) or the vacuum contribution (�) or both (see
Eq. (2.17)). Note that in this case one can analyze the exact
oscillation probability (2.21) analytically, which would be
practically impossible in more general situations.

In the case Eþ � E�, one can present the transition
probability in Eq. (2.21) in the following form:

PðtÞ ¼ P0ðtÞ þ PcðtÞ cosð2�tÞ þ PsðtÞ sinð2�tÞ; (2.23)

where

P0ðtÞ ¼ 1

2
½S2þ þ S2� þ 2SþS� cosð2	�tÞ

� 4CþC�sin2ð	�tÞ�;

PcðtÞ ¼ � 1

2
½ðS2þ þ S2�Þ cosð2	�tÞ þ 2SþS�

� 4CþC�sin2ð	�tÞ�;

PsðtÞ ¼ 1

2
ðS2þ � S2�Þ sinð2	�tÞ;

(2.24)

and

� ¼ Eþ þ E�
2

; 	� ¼ Eþ � E�
2

: (2.25)

As one can infer from these expressions, the transition
probability PðtÞ is a rapidly oscillating function, with the
frequency �, enveloped from up and down by the slowly

varying functions Pu;d ¼ P0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
c þ P2

s

p
, respectively.

The behavior of the transition probability for various
matter densities � and the values of �B and for a fixed
neutrino energy of E ¼ 10 MeV and squared mass differ-
ence of 	m2 ¼ 8� 10�5 eV2 is illustrated in Figs. 1–3.
As these plots show, at low matter densities the envelope

functions give, at each propagation distance, the range of
the possible values of the oscillation probability. At greater
matter densities, where the probability oscillates less in-
tensively, the envelope functions are not that useful in
analyzing the physical situation.
One can find the maximum value of the upper envelope

function, which is also the upper bound for the transition
probability, given as

PðmaxÞ
u ¼

8><
>:
ðSþ � S�Þ2; if B< B0;
CþC�ðS2þ � S2�Þ2
�½CþC�ðS2þ þ S2�Þ þ ðCþC�Þ2 þ ðSþS�Þ2��1; if B> B0;

(2.26)

where the value B0 is the solution of the transcendent
algebraic equation, CþC� ¼ SþS�. The corresponding
maximum values of the averaged transition probablility
P0ðxÞ are given by

PðmaxÞ
0 ¼ 1

2
½ðSþS�Þ2 � 4CþC��; (2.27)

for arbitrary values of B. The values of these maxima
depend on the size of the quantity�B. These dependencies
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are plotted in Figs. 1(d), 2(d), and 3(d). In the case of rapid
oscillations the physically relevant quantities, rather than
the maxima, are the averaged values of the transition
probability, which are also plotted in these figures.

As Figs. 1(d), 2(d), and 3(d) show, the interplay of the
matter effect and the magnetic interaction can lead, for a
given magnetic moment �, to an enhanced spin-flavor
transition if the magnetic field B has a suitable strength
relative to the density of matter �. In our numerical ex-
amples this occurs at �Bmax ¼ 1:1� 10�12 eV for � ¼
10 g=cc, at �Bmax ¼ 6:6� 10�13 eV for � ¼ 50 g=cc,
and at �Bmax ¼ 8� 10�13 eV for � ¼ 100 g=cc. For
these values of �B both the maxima and the average of
the transition probability become considerably larger than
for any other values of �B. Figures 1(b), 2(b), and 3(b)
correspond to the situation of maximal enhancement,
whereas Figs. 1(a), 1(c), 2(a), 2(c), 3(a), and 3(c) illustrate

the situation above and below the optimal strength Bmax of
the magnetic field.
It is noteworthy that the enhanced transition probability

is achieved towards the lower end of the �B region where
substantial transitions all occur, that is, at relatively mod-
erate magnetic fields. At larger values of�B the maximum
of the transition probability approaches towards cos2ð2�Þ.
Indeed, if �B � maxð�; VÞ, the transition probability
can be written in the form (see Ref. [13]) PðtÞ ¼
cos2ð2�Þsin2ð�BtÞ. It was found in Ref. [22] that neutrino
spin-flavor oscillations can be enhanced in a very strong
magnetic field, with the transition probability being practi-
cally equal to unity. This phenomenon can be realized only
for Dirac neutrinos with small off-diagonal magnetic
moments and a small mixing angle. As we can see from
Figs. 1(d), 2(d), and 3(d) the situation is completely differ-
ent for big off-diagonal magnetic moments.
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FIG. 1 (color online). (a)–(c) The transition probability versus the distance passed by a neutrino beam in matter with the density
� ¼ 10 g=cc; (a) �B ¼ 5� 10�13 eV, (b) �B ¼ 1:1� 10�12 eV, (c) �B ¼ 5� 10�12 eV. We take that E� ¼ 10 MeV, 	m2 ¼
8� 10�5 eV2, and � ¼ 0:6, which is quite close to the solar neutrinos’ oscillations parameters. The black line is the function PðxÞ, the
blue and green lines are the envelope functions Pu;dðxÞ, and the red line is the averaged transition probability P0ðxÞ. (d) The

dependence of the maximal values of the functions PðxÞ and P0ðxÞ, blue and red lines, respectively, on the magnetic energy �B for the
given density.
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One should notice that for long propagation distances
consisting of several oscillation periods of the envelope
functions, the enhancement effect would diminish consid-
erably due to averaging. In the numerical examples pre-
sented in Figs. 1–3 the period of the envelope function is of
the order of 103–104 km, which is a typical size of a shock
wave with the matter densities we have used in the plots
(see, e.g., Ref. [23]). Thus the enhanced spin-flavor tran-
sition could take place when neutrinos traverse a shock
wave.

Let us recall that the above analysis was made by
assuming neutrinos to be Dirac particles. We will see
below (see Sec. IV) that the corresponding results are quite
different in the case of Majorana neutrinos.

III. EVOLUTION OF MAJORANA NEUTRINOS
IN VACUUM

We now move to consider Majorana neutrinos, and we
shall start by applying our formalism to the ordinary vac-
uum oscillation of two Majorana neutrinos. The left-

handed chirality component of a flavor neutrino �L
� ¼

ð1=2Þð1� �5Þ�� is related to the wave functions of
Majorana neutrino states through

�L
� ¼X

a

U�aa; (3.1)

where � ¼ �, � is the flavor index and a, a ¼ 1, 2,
correspond to a Majorana particle with a definite mass
ma. In the simplest case the mixing of the flavor states
arises purely from Majorana mass terms between the left-
handed neutrinos, and then the mixing matrix U�a is a 2�
2 and unitary matrix, i.e., a ¼ 1, 2 and, assuming no CP
violation, it can be parametrized in the same way as in
Eq. (2.1).
We study the evolution of this system with the following

initial condition (see also Eq. (2.2)):

�L
�ðr; 0Þ ¼ 0; �L

�ðr; 0Þ ¼ �ð0Þ
� eikr; (3.2)

where k ¼ ð0; 0; kÞ is the initial momentum and �ð0ÞT
� ¼

ð0; 1Þ. The initial state is thus a left-handed neutrino of
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FIG. 2 (color online). The same as in Fig. 1 for the density � ¼ 50 g=cc; (a) �B ¼ 3:5� 10�13 eV, (b) �B ¼ 6:6� 10�13 eV,
(c) �B ¼ 5� 10�12 eV.
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flavor � propagating along the z-axis to the positive
direction.

As both the left-handed state �L
� and Majorana state a

have two degrees of freedom, we will describe them in the
following by using two-component Weyl spinors. The
Weyl spinor of a free Majorana particle obeys the wave
equation (see, e.g., [24]),

i _a þ ð�pÞa þ ima�2

a ¼ 0: (3.3)

The general solution of this equation can be presented as
[25]

aðr; tÞ ¼
Z d3p

ð2
Þ3=2 e
ipr

X
�¼�1

½að�Þa ðpÞuð�Þa ðpÞe�iEat

þ að�Þa ð�pÞvð�Þ
a ð�pÞeiEat�; (3.4)

where Ea ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a þ jpj2p
. The basis spinors uð�Þa and vð�Þ

a

have the form

uþa ðpÞ ¼ ��a

ma

Ea þ jpjwþ; u�a ðpÞ ¼ �aw�;

vþ
a ðpÞ ¼ �aw�; v�

a ðpÞ ¼ �a

ma

Ea þ jpjwþ;
(3.5)

where w� are helicity amplitudes given by [26]

wþ ¼ e�i�=2 cosð#=2Þ
ei�=2 sinð#=2Þ

 !
;

w� ¼ �e�i�=2 sinð#=2Þ
ei�=2 cosð#=2Þ

 !
;

(3.6)

the angles � and # giving the direction of the momentum
of the particle, p ¼ jpjðsin# cos�; sin# sin�; cos#Þ. The
normalization factor �a in Eq. (3.5) can be chosen as

��2
a ¼ 1� m2

a

ðEa þ jpjÞ2 : (3.7)
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FIG. 3 (color online). The same as in Fig. 1 for the density � ¼ 100 g=cc; (a) �B ¼ 4� 10�13 eV, (b) �B ¼ 8� 10�13 eV,
(c) �B ¼ 5� 10�12 eV.
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Let us mention the following properties of the helicity
amplitudes w�:

ð�pÞw� ¼ �jpjw�; i�2w
� ¼ 	w	;

w�ð�pÞ ¼ iw	ðpÞ; ðwþ � wT�Þ � ðw� � wTþÞ ¼ i�2;

ðwþ � wy
þÞ þ ðw� � wy�Þ ¼ 1; (3.8)

which can be immediately obtained from Eq. (3.6) and
which are useful in deriving the results given below.

The time-independent coefficients a�a ðpÞ in Eq. (3.4)
have the following form [25]:

aþa ðpÞ ¼ 1

ð2
Þ3=2
�
ð0Þy
a ð�pÞvþ

a ðpÞ

þ ima

Ea þ jpjv
þy
a ð�pÞð0Þ

a ðpÞ
�
;

a�a ðpÞ ¼ 1

ð2
Þ3=2
�
u�y
a ðpÞð0Þ

a ðpÞ

� ima

Ea þ jpj
ð0Þy
a ð�pÞu�a ð�pÞ

�
;

(3.9)

where ð0Þ
a ðpÞ is the Fourier transform of the initial wave

function a,

ð0Þ
a ðpÞ ¼

Z
d3pe�iprð0Þ

a ðrÞ:

Using Eqs. (3.4), (3.5), (3.6), (3.7), (3.8), and (3.9) we then
obtain the following expression for the wave function for
the neutrino mass eigenstates:

aðr; tÞ ¼
Z d3p

ð2
Þ3 e
ipr�2

a

���
e�iEat �

�
ma

Ea þ jpj
�
2
eiEat

�

� ðw� � wy�Þ þ
�
eiEat �

�
ma

Ea þ jpj
�
2
e�iEat

�

� ðwþ � wy
þÞ
�
ð0Þ
a ðpÞ

� 2
ma

Ea þ jpj sinðEatÞ�2
ð0Þ
a ð�pÞ

�
: (3.10)

From Eqs. (3.8) and (3.10) it follows that a mass eigen-

state particle initially in the left-polarized state ð0Þ
a ðrÞ �

w�ðkÞeikr is described at later times by

aðr; tÞ � �2
a

��
e�iEat �

�
ma

Ea þ jkj
�
2
eiEat

�
eikrw�ðkÞ

� 2i
ma

Ea þ jkj sinðEatÞe�ikrwþðkÞ
�
: (3.11)

Let us notice that the second term in Eq. (3.11) describes an
antineutrino state. Indeed the spinor wþðkÞ satisfies the
relation, ð�kÞwþðkÞ ¼ jkjwþðkÞ, see Eq. (3.8). Therefore
it corresponds to an antiparticle, see Ref. [27]. This term is
responsible for the neutrino-to-antineutrino flavor state
transition �L

� $ ð�L
�Þc.

According to Eqs. (3.1) and (2.1), the wave function of
the left-handed neutrino of flavor � is �L

� ¼ cos�L
1 �

sin�L
2 . From Eqs. (3.1) and (3.11) it then follows that

the probability of the transition �L
� ! �L

� in vacuum is

given by

P�L
�
!�L

�
ðtÞ ¼ j�L

�j2

¼ sin2ð2�Þ
�
sin2ð�tÞ þ 1

4jkj2 cosðjkjtÞ sinð�tÞ

� ½m2
1 sinðE1tÞ �m2

2 sinðE2tÞ�
�
þO

�
ma

jkj
�
4
:

(3.12)

The leading term reproduces the familiar oscillation for-
mula of Pontecorvo describing the transitions between
active neutrinos �L

� $ �L
�. The corrections to

Pontecorvo’s formula were obtained first in Ref. [28],
and in our previous papers [11–14] we derived the analo-
gous corrections for Dirac neutrinos both in vacuum and in
various external fields.
Analogously we can calculate the transition probability

for the process �L
� ! ð�L

�Þc using the second term in

Eq. (3.11),

P�L
�
!ð�L

�ÞcðtÞ ¼ jð�L
�Þcj2

¼ sin2ð2�Þ
4jkj2 ½m1 sinðE1tÞ �m2 sinðE2tÞ�2

þO
�
ma

jkj
�
4
: (3.13)

Note that the next-to-leading term in Eq. (3.12) and leading
term in Eq. (3.13) have the same order of magnitude
�m2

a=jkj2.
Before moving to consider Majorana neutrinos in mag-

netic fields we make a general comment concerning the
validity of our approach based on relativistic classical field
theory. It has been stated [2] that the dynamics of massive
Majorana fields cannot be described within the classical
field theory approach due to the fact that the mass term of
the Lagrangian, Ti�2, vanishes when  is represented
as a c-number function. Note that Eq. (3.3) is a direct
consequence of the Dirac equation if we suggest that the
four-component wave function satisfies the Majorana con-
dition. Therefore a solution to Eq. (3.3), i.e., wave func-
tions and energy levels, in principle does not depend on the
existence of a Lagrangian resulting in this equation. The
wave equations describing elementary particles should
follow from the quantum field theory principles. How-
ever quite often these quantum equations allow classical
solutions (see Ref. [29] for many interesting examples).
We have also demonstrated in Refs. [11–14] that oscilla-
tions of Dirac neutrinos in vacuum and various external
fields can be described in the framework of the classical
field theory. The main result of this section was to show
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that the quantum Eq. (3.3) for massive Majorana particles
can be solved (see Eq. (3.11)) in the framework of the
classical field theory as well.

IV. EVOLUTION OF MAJORANA NEUTRINOS IN
MATTER AND TRANSVERSAL MAGNETIC FIELD

For describing the evolution of two Majorana mass
eigenstates in matter under the influence of an external
magnetic field, the wave Eq. (3.3) is to be modified to the
following form:

i _a þ
�
�p� ga

2

�
a þ ima�2


a � g

2
b

� i�ð�BÞ�2�ab

b ¼ 0; a � b; (4.1)

where �ab ¼ ið�2Þab, and ga and g were defined in con-
nection to Eq. (2.3). Note that Eq. (4.1) can be formally
derived from Eq. (2.3) if one neglects vector current inter-
actions, i.e., replace ð1� �5Þ=2 with ��5=2, and takes
into account the fact that the magnetic moment matrix of
Majorana neutrinos is antisymmetric (see, e.g., Ref. [30]).
We will apply the same initial condition (3.2) as in the
vacuum case. It should be mentioned that the evolution of
Majorana neutrinos in matter and in a magnetic field has
been previously discussed in Ref. [31].

The general solution of Eq. (4.1) can be expressed in the
following form:

aðr; tÞ ¼
Z d3p

ð2
Þ3=2 e
ipr

X
�¼�1

½að�Þa ðp; tÞuð�Þa ðpÞ

� expð�iEð�Þ
a tÞ þ að�Þa ð�p; tÞvð�Þ

a ð�pÞ
� expðiEð�Þ

a tÞ�; (4.2)

where the energy levels are given in Eq. (2.7) (see
Ref. [20]). The basis spinors in Eq. (4.2) can be chosen as

uþa ðpÞ ¼ ��þ
a

ma

Eþ
a þ ðjpj � ga=2Þwþ;

u�a ðpÞ ¼ ��
a w�; vþ

a ðpÞ ¼ �þ
a w�;

v�
a ðpÞ ¼ ��

a

ma

E�
a þ ðjpj þ ga=2Þwþ;

where the normalization factors �ð�Þ
a , � ¼ � are given by

ð�ð�Þ
a Þ�2 ¼ 1� m2

a

½Ea þ ðjpj � �ga=2Þ�2
:

Let us consider the propagation of Majorana neutrinos in
the transversal magnetic field. Using a similar technique as
in the Dirac case in Sec. II and assuming k � ma, we end
up with the following ordinary differential equations for

the coefficients að�Þa ,

i
d�0

dt
¼ H0�0; H0 ¼

0 gei	�t=2 0 �Bei�þt

ge�i	�t=2 0 ��Be�i��t 0
0 ��Bei��t 0 �gei	þt=2

�Be�i�þt 0 �ge�i	þt=2 0

0
BBB@

1
CCCA; (4.3)

where �0T ¼ ða�1 ; a�2 ; aþ1 ; aþ2 Þ and

	� ¼ E�
1 � E�

2 � 2�	 g1 � g2
2

;

�� ¼ E	
1 � E�

2 � 2�� g1 þ g2
2

:

By making the matrix transformation

�0 ¼ U�;

U ¼ diagfeið�þg1=2Þt; e�ið��g2=2Þt; eið��g1=2Þt; e�ið�þg2=2Þtg;
(4.4)

we can recast Eq. (4.3) into the form

i
d�

dt
¼ H�; H ¼ UyH0U� iUy dU

dt
¼

�þ g1=2 g=2 0 �B
g=2 ��þ g2=2 ��B 0
0 ��B �� g1=2 �g=2
�B 0 �g=2 ��� g2=2

0
BBB@

1
CCCA: (4.5)

Let us note that the analogous effective Hamiltonian has
been used in describing the spin-flavor oscillations of
Majorana neutrinos within the quantum mechanical ap-
proach (see, e.g., Ref. [3]) if we use the basis �T

QM ¼
ðc L

1 ; c
L
2 ; ½c L

1 �c; ½c L
2 �cÞ.

Note that the consistent derivation of the master
Eq. (4.1) should be done in the framework of the quantum

field theory (see, e.g., Ref. [2]), supposing that the spinors
a are expressed via anticommuting operators. This quan-
tum field theory treatment is important to explain the
asymmetry of the magnetic moment matrix. However, it
is possible to see that the main Eq. (4.1) can also be
reduced to the standard Schrödinger evolution Eq. (4.5)
for neutrino spin-flavor oscillations if we suppose that the
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wave functions a are c-number objects. That is why one
can again conclude that classical and quantum field theory
methods for studying Majorana neutrinos’ propagation in
external fields are equivalent.

Let us again consider the situation when ne ¼ np ¼
nn ¼ n, which results in g1 ¼ �g2. In this case the eigen-
values of the Hamiltonian (4.5) � ¼ �E� are given by

E� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4ð�BÞ2 þ 4�2 � 4VR

q
;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�cos2�Þ2 þ ð�BÞ2

q
;

(4.6)

where V ¼ GFn=
ffiffiffi
2

p
as in Sec. II. The time evolution of the

wave function is described by the formula

�ðtÞ ¼ X
�¼�1

½ðU� �Uy
� Þ expð�iE� tÞ þ ðV� � Vy

� Þ

� expðiE� tÞ��0; (4.7)

where U� and V� are the eigenvectors of the Hamiltonian

(4.5), given as

U� ¼ 1

N�

�x�
�y�
1

�z�

0
BBB@

1
CCCA; V� ¼ 1

N�

�y�
x�
z�
1

0
BBB@

1
CCCA; (4.8)

where

x� ¼
�BðE� þ�Þ

��

V sin2�;

y� ¼ �B

E� þ�� V cos2�=2

�
1þ ðE� þ�Þ

2��

V2sin2ð2�Þ
�
;

z� ¼ V sin2�

2ðE� þ�þ V cos2�=2Þ
�
1þ 2ð�BÞ2ðE� þ�Þ

��

�
;

�� ¼ V

2
½2E� ðE� þ�Þ � V2=2þ�V cos2�� cos2�

þ �RVðE� þ�� V cos2�=2Þ: (4.9)

The normalization coefficient N� in Eq. (4.8) is given by

N� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2� þ y2� þ z2�

q
.

Proceeding along the same lines as in Sec. II, we obtain
from Eqs. (3.1), (4.7), (4.8), and (4.9) the probability of the
process �L

� ! �R
� as,

P�L
�
!�R

�
ðtÞ ¼ ½Cþ cosðEþtÞ þ C� cosðE�tÞ�2

þ ½Sþ sinðEþtÞ þ S� sinðE�tÞ�2; (4.10)

where

C� ¼ � 1

N2
�

½sin2�ðx� þ y�z� Þ þ cos2�ðy� � x�z� Þ�;

S� ¼ 1

N2
�

ðy� þ x�z� Þ: (4.11)

Consistently with Eq. (3.2), we have taken the initial wave
function as

�T
0 ¼ ðsin�; cos�; 0; 0Þ: (4.12)

With help of Eqs. (4.9) and (4.11) it is easy to check that
Cþ þ C� ¼ 0 guaranteeing Pð0Þ ¼ 0.
Note that formally Eq. (4.10) corresponds to the transi-

tions �L
� ! �R

�. However, virtually it describes oscillations

between active neutrinos �L
� $ ð�L

�Þc since �R
� ¼ ð�L

�Þc for
Majorana particles.
As in the previous case of Eq. (2.21), Eq. (4.10) can be

treated analytically for relatively small values of the effec-

tive potential V. The ensuing envelope functions Pu;d ¼
P0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
c þ P2

s

p
depend on the coefficients C� and S� in

the same way as in Eq. (2.24). The transition probabilities
at various values of the matter density and the magnetic
field are presented in Fig. 4.
Despite the formal similarity between Dirac and

Majorana transition probabilities (see Eqs. (2.22) and
(4.11)) the actual dynamics is quite different in these two
cases, as one can see by comparing Figs. 1(d), 2(d), 3(d),
and 4, panels (b), (d), and (f). In particular, in the Majorana

case PðmaxÞ
u ¼ 4jCþC�j for arbitrary B, to be compared

with Eq. (2.26), while the function PðmaxÞ
0 has the same

form as in the Dirac case given in Eq. (2.27). In contrast
with the Dirac case, the averaged transition probability
does not achieve its maximal value at some moderate
magnetic field Bmax value, but both Pmax

u and Pmax
0 are

monotonically increasing functions of the strength of the
magnetic field with 1 and 1=2 as their asymptotic values,
respectively. We can understand this behavior when we
recall that, at �B � maxð�; VÞ, the effective Hamiltonian
Eq. (4.5) becomes

H1 ¼ i�B�2; i�2 ¼
0 0 0 1
0 0 �1 0
0 �1 0 0
1 0 0 0

0
BBB@

1
CCCA: (4.13)

The Schrödinger equation with the effective Hamiltonian
(4.13) has the formal solution

�ðtÞ ¼ expð�iH1tÞ�ð0Þ
¼ ½cosð�BtÞ þ �2 sinð�BtÞ��ð0Þ: (4.14)

Using Eqs. (3.1), (4.12), and (4.14) we then immediately
arrive to the following expression for the transition proba-
bility, PðtÞ ¼ j�R

�j2 ¼ sin2ð�BtÞ, which explains the be-

havior of the function PðmaxÞ
u at strong magnetic fields. Note

that the analogous result was also obtained in Ref. [22].
Finally, it is worth of noticing that in contrast to the

Dirac case, the behavior of the transition probability in the
Majorana case is qualitatively similar for different matter
densities and different magnetic fields (see Fig. 4, panels
(a), (c), and (e)).
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FIG. 4 (color online). (a), (c), and (e) The transition probability versus the distance passed by a neutrino beam. The neutrino
parameters have the same values as in Figs. 1–3, E� ¼ 10 MeV, 	m2 ¼ 8� 10�5 eV2, and � ¼ 0:6. The magnetic energy is equal to
�B ¼ 10�12 eV. The black line is the function PðxÞ, the blue and green lines are the envelope functions Pu;dðxÞ, and the red line is the
averaged transition probability P0ðxÞ. (b), (d), and (f) The dependence of the maximal values of the functions PðxÞ and P0ðxÞ, blue and
red lines, respectively, on the magnetic energy for the given density. Panels (a) and (b) correspond to the matter density � ¼ 10 g=cc,
(c) and (d)—to � ¼ 50 g=cc and (e) and (f)—to � ¼ 100 g=cc.
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The problem of Majorana neutrinos’ spin-flavor oscilla-
tions was studied in Refs. [8,9] with help of numerical
codes. For example, in Ref. [8] the evolution equation for
three neutrino flavors propagating inside a presupernova
star with zero metallicity, e.g., corresponding to W02Z
model [21], was solved for the realistic matter and mag-
netic field profiles. Although our analytical transition
probability formula (4.10) is valid only for the constant
matter density and magnetic field strength, it is interesting
to compare our results with the numerical simulations of
Ref. [8]. In those calculations the authors used magnetic
fields B� 1010 G and magnetic moments �10�12�B that
give us the magnetic energy�B� 10�11 eV. This value is
the maximal magnetic energy used in our work.

It was found in Ref. [8] that spin-flavor conversion is
practically adiabatic for low-energy neutrinos correspond-
ing to E� � 5 MeV inside the region where Ye � 0:5 and
the averaged transition probability for the channel �� !
��e is close 0.5. This big transition probability is due to the
RSF-H and RSF-L resonances at the distance � 0:01R�.
Even so that we study two neutrino oscillations scheme, we

obtained the analogous behavior of PðmaxÞ
0 (see Fig. 4).

However, in our case this big transition probability is due
to the presence of the strong magnetic field (see
Refs. [10,22]). We cannot compare our transition proba-
bility formula (4.10) with the results of Ref. [8] for higher
energies, E� > 25 MeV, since spin-flavor oscillations be-
come strongly nonadiabatic for these kinds of energies and
one has to take into account the coordinate dependence of
the matter density which should decrease with radius as
1=r3 [32].

V. SUMMARY

We have studied in this work the propagation of massive
flavor-mixed Dirac and Majorana particles in matter under
the influence of an external magnetic field in an approach
based on relativistic quantum mechanics. The magnetic
moment matrix is assumed to be both in the Dirac and
Majorana case nondiagonal in the mass eigenstate basis.
Starting with Lorentz invariant wave equations, the inter-
actions of neutrinos with matter and magnetic fields in-
cluded, we derived the effective Hamiltonians and solve
the evolution equations for the electrically neutral matter
with nn ¼ np. We then found the probabilities for the spin-

flavor oscillation �L
� ! �R

� (�L
� ! ð�L

�Þc for Majorana neu-

trinos) and examined their dependence on the matter den-
sity and the strength of the magnetic field.

We also studied in our approach the evolution of mixed
massiveMajorana neutrinos in vacuum, which is an exactly
solvable problem. We derived the wave functions of the
neutrinos and the transition probabilities for the process
�� ! ��. We included the terms quadratic in neutrino

masses and discussed the origin of these corrections of
the standard formula for the probability.

These corrections to the Pontecorvo formula, see
Eq. (3.12), are rapidly oscillating functions suppressed by
the ratio ma=jkj, which is small for the relativistic neutri-
nos. It was revealed in our previous works [11–14] that the
analogous terms originate from the accurate account of the
Lorentz invariance in the study of oscillations of Dirac
neutrinos. It is also known that in describing of evolution
of Majorana neutrinos in vacuum the transitions of the
types �L

� ! �L
� and �L

� ! ð�L
�Þc are possible [33], with

the transition probability of the latter case being sup-
pressed by the factor ma=jkj. The transitions �L

� ! ð�L
�Þc

can be interpreted as neutrino-to-antineutrino oscillations
and manifest in the possible neutrinoless double beta decay
[34]. In our work on the basis of the relativistic quantum
mechanics we derived the transition probability for
neutrino-to-antineutrino oscillations which is consistent
with the results of Ref. [33].
Our results can be used for analyzing the behavior of

neutrinos in supernovae, in particular, in the so-called zero
metallicity presupernovae, where the condition nn ¼ np is

fulfilled [21] outside the Siþ O layer. It is known that
these stars can possess very strong magnetic fields, up to
1015 G, or even stronger [35].
We found that large rates of transitions that change

neutrino flavors and chiralities are possible both in the
Dirac and Majorana cases with a typical oscillation lengths
of the order of 103–104 km for matter densities of the order
of 10–100 g=cc, for typical supernova neutrino energies of
10 MeV, and for �B of the order of 10�13–10�12 eV. The
parameters of a shock wave, the density and width, can
vary in a rather wide range, but typically they fit with the
parameter values we used in our analysis [36]. In particu-
lar, the width of the shock wave can be of about the same
size as the oscillation length of the spin-flavor oscillations.
It would thus be possible that the transition probability
achieves its maximum value (can be as high as 0.8 in some
cases) when neutrinos pass through the shock wave on their
way towards the outer layers of the star. If the flight
distance were many oscillation lengths, the probability
would be averaged to a smaller value. The results of our
work can have the implication to the r-process nucleosyn-
thesis since it is sensitive to the amount of neutrinos of
various species emitted in a supernova [37].
In the Dirac case the maximum value of the transition

probability is achieved for a specific value of �B, while in
the Majorana case the transition probability can be large
for a wide range of�B values. Supposing that the neutrino
magnetic moment is 3� 10�12�B, allowed by the present
astrophysical and cosmological data [38], the largest tran-
sition in the Dirac case would occur when the strength of
the magnetic field is in the range 108–109 G. Although a
magnetic field on the surface of a neutron star is typically
stronger, 1012–1013 G, at outer parts of the envelope it may
have a suitable value for a large transition to take place.
The difference between the dynamics of Dirac and
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Majorana particles under the influence of the same external
fields can be a smoking gun to reveal the nature of
neutrinos.

Note that in the majority of the previous works devoted
to the spin-flavor oscillations the analytical transition
probability formulae were obtained only for Majorana
neutrinos. The case of Dirac particles was studied only in
connection with small off-diagonal magnetic moments.
Our work studies the opposite situation of big off-diagonal
elements of the magnetic moments matrix. The effect of
the appearance of the big transition probability at moderate
magnetic field strength has never been described earlier. As
for Majorana neutrinos the enhancement of the transition
probability in strong magnetic fields is in agreement with
the previous studies [10,22]. Note that spin-flavor oscilla-
tions of Majorana neutrinos can be also resonantly en-
hanced in the moderate magnetic field, see Ref. [5].
However this effect does not happen in isoscalar matter
with ne ¼ np ¼ nn. The condition for the resonant

spin-flavor precession reads [7], GFðne � nnÞ ¼
�	m2 cos2�=4k, which is not fulfilled in isoscalar matter.

The obtained analytical formulae for the transition prob-
abilities, Eqs. (2.21) and (4.10), are valid in the important
case when Ye ¼ 0:5, which is realized in the zero metal-
licity presupernova stars. These kinds of stars were quite

common for early stages of the galaxies formation. We
obtained that spin-flavor oscillations of Dirac neutrinos can
be strongly influenced by the moderate magnetic field of a
neutron star and the big transition probability can exist not
only for Majorana neutrinos [8,9]. Thus spin-flavor oscil-
lations of Dirac neutrinos can significantly change the relic
supernova neutrino background [39]. Although now no
signal of relic neutrinos was observed [40], there are still
some efforts to calculate the flux of relic ��e for the
KamLAND and Super-Kamiokande detectors [41]. The
reliable simulation of the supernova explosion does not
exist yet. For example, the propagation of a shock wave
can significantly change magnitude and shape of the mag-
netic field which are very important in our calculations.
Nevertheless it is believed that the future galactic super-
nova neutrino burst might give some clues to the physics of
relic supernova neutrinos [9].
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