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We perform an exploratory study of the allowed parameter range for the CKM-like mixing of

hypothetical quarks of a fourth generation. As experimental constraints we use the tree-level determi-

nations of the 3� 3 Cabibbo-Kobayashi-Maskawa (CKM) elements and flavor-changing neutral current

(FCNC) processes (K,D, Bd, Bs mixing and the decay b ! s�) under the assumption that the 4� 4 CKM

matrix is unitary. For the FCNCs we use some simplifying assumptions concerning the QCD corrections.

Typically small mixing with the fourth family is favored; contrary to expectation, however, we find that

also a quite large mixing with the fourth family is not yet excluded.

DOI: 10.1103/PhysRevD.79.113006 PACS numbers: 12.15.Ff

I. INTRODUCTION

Additional particle generations have been discarded for
a long time. Recently this possibility (see [1] for a review)
gained more interest. In contrast to many previous claims a
fourth family is not in conflict with electroweak precision
tests [2]; see also [3–5] for earlier works. The authors of [2]
have shown that if the quark masses of the fourth genera-
tion fulfill the following relation:

mt0 �mb0 �
�
1þ 1

5
ln

mH

115 GeV

�
� 55 GeV; (1.1)

the electroweak oblique parameters [6] are within the
experimentally allowed regions. This also has the crucial
side effect that a fourth generation softens the current
Higgs bounds; see e.g. [7]. Moreover, an additional family
might solve problems related to baryogenesis. First, it
could lead to a sizable increase of the measure of CP
violation; see [8]. Second it also would increase the
strength of the phase transition; see [9]. In addition, the
gauge couplings can be unified without invoking super-
symmetry [10]. A new family also might cure certain
problems in flavor physics; see e.g. [11–14] for some
recent work and e.g. [15,16] for some early work on fourth
generation effects on flavor physics. In view of the (re)start
of the LHC, it is important not to exclude any possibility
for new physics scenarios simply due to prejudices. In this
work we, therefore, perform an exploratory study of the
allowed parameter range for the CKM-like mixing of
hypothetical quarks of a fourth generation. In Sec. II we

first describe the general parametrization used for the
fourth generation Cabibbo-Kobayashi-Maskawa (CKM)
matrix; next we explain the experimental constraints for
the quark mixing. We then describe the numerical scan
through the parameter space and finally we present the
allowed parameter ranges for the mixing with an additional
family. In Sec. III we perform a Taylor expansion of the
4� 4 CKM matrix à la Wolfenstein, which makes the
complicated general parametrization of VCKM4 much
clearer; in particular, the possible hierarchy of the mixing
is clearly visible. In Sec. IV we discuss some peculiar
parameter ranges, which show huge deviations from cur-
rent knowledge of the three-dimensional CKMmatrix, and
explain why these effects are not seen in the current CKM
fits. Finally we conclude with an outlook on possible
extensions of this exploratory study.

II. CONSTRAINTS ON VCKM4

A. Parametrization of VCKM4

Let the minimal standard model with three generations
of fermions be denoted by SM3. The mixing between
quarks is described by the unitary three-dimensional
CKM matrix [17,18], which can be parametrized by three
angles, �12, �13, and �23 (�ij describes the strength of the

mixing between the ith and jth family) and the
CP-violating phase �13. The so-called standard parametri-
zation of VCKM3 reads

VCKM3¼
c12c13 s12c13 s13e

�i�13

�s12c23�c12s23s13e
i�13 c12c23�s12s23s13e

i�13 s23c13
s12s23�c12c23s13e

i�13 �c12s23�s12c23s13e
i�13 c23c13

0
B@

1
CA (2.1)

with

sij :¼ sinð�ijÞ and cij :¼ cosð�ijÞ: (2.2)

Extending the minimal standard model to include a fourth
family of fermions (SM4) introduces at least 14 new pa-
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rameters. We do not take into account any correlations to
the mixing matrix of the leptons. The seven parameters that
are directly related to the quark sector are:

(i) three additional angles in the CKMmatrix, which we
denote by �14, �24, and �34,

(ii) two additional CP-violating phases in the CKM
matrix: �14 and �24,

(iii) two quark masses of the fourth family: mb0 and mt0 .
For the quark masses we have bounds from direct searches
at Tevatron [19,20]

mb0 > 268 GeV; mt0 > 256 GeV: (2.3)

In [21] it was claimed that in deriving these bounds im-
plicit assumptions about the couplings of the fourth family
have been made. Without these assumptions the mass
bounds can be weaker. We investigate the following mass
parameter range—taking into account the results of [2]

300 GeV � mt0 � 650 GeV; (2.4)

mb0 ¼ mt0 � 55 GeV; (2.5)

245 GeV � mb0 � 595 GeV: (2.6)

Our goal is the determination of the current experimentally
allowed ranges for the parameters �14, �24, �34, �14, and
�24. For our numerical analysis we use an exact parame-
trization of the four-dimensional CKM matrix. The form
suggested by Fritzsch and Plankl [22]1 and simultaneously
by Harari and Leurer [23] turns out to be especially useful,
because in the limiting case of vanishing mixing with the
fourth family the standard parametrization of the 3� 3
CKM matrix is restored. Moreover, this form of the matrix
reveals a particularly convenient structure: the simplicity
of the first row is advantageous because these elements are
experimentally very well constrained, while the compact
form of the last column simplifies the Taylor expansion
presented in Sec. III,

Vð4Þ
CKM ¼

c12c13c14 c13c14s12 c14s13e
�i�13 s14e

�i�14

�c23c24s12 � c12c24s13s23e
i�13 c12c23c24 � c24s12s13s23e

i�13 c13c24s23 c14s24e
�i�24

�c12c13s14s24e
ið�14��24Þ �c13s12s14s24e

ið�14��24Þ �s13s14s24e
�ið�13þ�24��14Þ

�c12c23c34s13e
i�13 þ c34s12s23 �c12c34s23 � c23c34s12s13e

i�13 c13c23c34 c14c24s34
�c12c13c24s14s34e

i�14 �c12c23s24s34e
i�24 �c13s23s24s34e

i�24

þc23s12s24s34e
i�24 �c13c24s12s14s34e

i�14 �c24s13s14s34e
ið�14��13Þ

þc12s13s23s24s34e
ið�13þ�24Þ þs12s13s23s24s34e

ið�13þ�24Þ
�c12c13c24c34s14e

i�14 �c12c23c34s24e
i�24 þ c12s23s34 �c13c23s34 c14c24c34

þc12c23s13s34e
i�13 �c13c24c34s12s14e

i�14 �c13c34s23s24e
i�24

þc23c34s12s24e
i�24 � s12s23s34 þc23s12s13s34e

i�13 �c24c34s13s14e
ið�14��13Þ

þc12c34s13s23s24e
ið�13þ�24Þ þc34s12s13s23s24e

ið�13þ�24Þ

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

:

(2.7)

B. Experimental bounds

In this section we summarize the experimental con-
straints that have to be fulfilled by the quark mixing matrix.
The elements of the 3� 3 CKM matrix have been studied
intensely for many years and precision data on most of
them are available. In principle there are two different
ways to determine the matrix elements. On the one hand,
they enter charged weak decays already at tree level and a
measurement of e.g. the corresponding decay rate provides
direct information on the CKM elements (see e.g. [24] and
references therein). We will refer to such constraints as
tree-level constraints. On the other hand, processes involv-
ing a flavor-changing neutral current (FCNC) are forbidden
at tree level and only come into play at loop level via the
renowned penguin and box diagrams. These processes
provide strong bounds, referred to as FCNC constraints,
on the structure of the CKM matrix and its elements. In
what follows we discuss the implications of these con-
straints in more detail.

Tree-level constraints for the CKM parameters: Since
the (absolute) value of only one CKM element enters the
theoretical predictions for weak tree-level decays, no

Glashow-Iliopoulos-Maiani mechanism (GIM) or unitary
condition has to be assumed. By matching theory and
experiment the matrix element can be extracted indepen-
dently of the number of generations. Therefore, all tree-
level constraints have the same impact on the 4� 4 matrix
as they have on the 3� 3 one.
We take the Particle Data Group values [25] for our

analysis:

Absolute value Relative errorDirect measurement from

Vud0:974 18� 0:000 27 0.028% nuclear beta decay

Vus 0:2255� 0:0019 0.84% semileptonic K decay

Vub0:003 93� 0:000 36 9.2% semileptonic B decay

Vcd 0:230� 0:011 4.8% semileptonic D decay

Vcs 1:04� 0:06 5.8% (semi-)leptonic D decay

Vcb 0:0412� 0:0011 2.7% semileptonic B decay

Vtb >0:74 (single) top-production

In the following, we denote the absolute values in the table
above as jVij ��Vi. Next, we will discuss the bounds
coming from FCNCs.

1In the original paper of Fritzsch and Plankl there is a typo in
the element Vcb: c23 has to be replaced by s23.
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FCNC constraints: It is well known that FCNC pro-
cesses give strong constraints on extensions of the standard
model. In particular information about the CKM elements
Vtx can be obtained by investigating B and K mixing. The
mixing of the neutral mesons is described by box diagrams.
As an example we show the box diagrams for Bd mixing:

b

d

t,c,u

t,c,u
W-

b

db

d t,c,u t,c,uW-
b

d

M12 encodes the virtual part of the box diagrams, which is
very sensitive to new physics contributions. It is related to
the mass difference of the neutral mesons via

�M ¼ 2jM12j: (2.8)

In the SM3 one obtains the following relations:

MK0

12 / �ccð�K0

c Þ2S0ðxcÞ þ 2�ct�
K0

c �K0

t Sðxc; xtÞ
þ �ttð�K0

t Þ2S0ðxtÞ; (2.9)

MBd

12 / �ttð�Bd
t Þ2S0ðxtÞ; (2.10)

M
Bs

12 / �ttð�Bs
t Þ2S0ðxtÞ; (2.11)

with the Inami-Lim functions [26]

S0ðxÞ ¼ 4x� 11x2 þ x3

4ð1� xÞ2 � 3x3 ln½x�
2ð1� xÞ3 ; (2.12)

Sðx; yÞ ¼ xy

�
1

y� x

�
1

4
þ 3

2

1

1� y
� 3

4

1

ð1� yÞ2
�
ln½y�

þ 1

x� y

�
1

4
þ 3

2

1

1� x
� 3

4

1

ð1� xÞ2
�
ln½x�

� 3

4

1

1� x

1

1� y

�
; (2.13)

where xt ¼ m2
t

M2
W

, the CKM elements

�K0

x ¼ VxdV
�
xs; �Bd

x ¼ VxdV
�
xb; �Bs

x ¼ VxsV
�
xb

(2.14)

and the QCD corrections [27–29]

�cc ¼ 1:38� 0:3; �ct ¼ 0:47� 0:04;

�tt ¼ 0:5765� 0:0065:
(2.15)

The full expressions for M12 can be found e.g. in [27,30].

In deriving these expressions unitarity (of the 3� 3 ma-
trix) was explicitly used, i.e.

�X
u þ �X

c þ �X
t ¼ 0: (2.16)

Moreover, in the B system the CKM elements of the differ-
ent internal quark contributions are all roughly of the same
size. Only the top contribution, which has by far the largest
value of the Inami-Lim functions, survives. This is not the
case in the K system. Here the top contribution is CKM
suppressed, while the kinematically suppressed charm
terms are CKM favored. Therefore, both have to be taken
into account. More information about the mixing of neutral
mesons can be found e.g. in [30,31].
For the mixing of neutral mesons we define the parame-

ter � that quantifies the deviation from the standard model
[30]

� ¼ MSM4
12

MSM3
12

¼ j�jei��
: (2.17)

Going over to the SM4, we obtain

MK0;SM4
12 / �ccð�K0

c Þ2S0ðxcÞ þ 2�ct�
K0

c �K0

t Sðxc; xtÞ
þ �ttð�K0

t Þ2S0ðxtÞ þ 2�ct0�
K0

t �K0

t0 Sðxc; xt0 Þ
þ 2�tt0�

K0

t �K0

t0 Sðxt; xt0 Þ þ �t0t0 ð�K0

t0 Þ2S0ðxt0 Þ;
(2.18)

MBd;SM4
12 / �ttð�Bd

t Þ2S0ðxtÞ þ �t0t0 ð�Bd

t0 Þ2S0ðxt0 Þ
þ 2�tt0�

Bd
t �

Bd

t0 Sðxt; xt0 Þ; (2.19)

MBs;SM4
12 / �ttð�Bs

t Þ2S0ðxtÞ þ �t0t0 ð�Bs

t0 Þ2S0ðxt0 Þ
þ 2�tt0�

Bs
t �Bs

t0 Sðxt; xt0 Þ: (2.20)

Note that now also those CKM elements change that
describe the mixing within the first three families! For
simplicity we take the new QCD corrections to be

�t0t0 ¼ �tt0 ¼ �tt and �ct0 ¼ �ct: (2.21)

In addition to the mixing quantities we also investigate the
decay b ! s�. To obtain the SM4 prediction for b ! s�
one has to do the whole analysis of this decay without
invoking the unitarity of the 3� 3 CKM matrix, which is
beyond the scope of this work. As an estimate of the effects
of a fourth generation on b ! s�, we simply define the
ratio of the CKM structure times the corresponding Inami-
Lim function D0

0ðxtÞ [26]2:

2The Inami-Lim function D0
0ðxtÞ is proportional to the Wilson

coefficient C7�ðMWÞ.
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�b!s� :¼ j�SM4
t j2D0

0ðxtÞ2 þ 2Reð�SM4
t �SM4

t0 ÞD0
0ðxtÞD0

0ðxt0 Þ þ j�SM4
t0 j2D0

0ðxt0 Þ2
j�SM3

t j2D0
0ðxtÞ2

; (2.22)

with

D0
0ðxÞ ¼ ��7xþ 5x2 þ 8x3

12ð1� xÞ3 þ x2ð2� 3xÞ
2ð1� xÞ4 ln½x�: (2.23)

Parameters which give a value of�b!s� close to 1 will also
lead only to small deviations of �ðb ! s�ÞSM4=�ðb !
s�ÞSM3 from 1.

Currently, in particular, the hadronic uncertainties are
under intense discussion; see e.g. [32]. Therefore, we use
two sets of bounds for the allowed deviations from the SM3
values, which cover the possible range of uncertainties, a
conservative and an aggressive one:

Conservative bound Aggressive bound

j�Bd
j 1� 0:3 1� 0:1

��
Bd

0� 10� 0� 5�
j�Bs

j 1� 0:3 1� 0:1
��

Bs
free free

Reð�KÞ 1� 0:5 1� 0:25
Imð�KÞ 0� 0:3 0� 0:15
�b!s� 1� 0:15 1� 0:07

In [33] a very strong bound on jVub0Vcb0 j is extracted from
D0 mixing. We redo this analysis and confirm the conclu-
sion of [33], although we are able to soften the bound by a
factor of

ffiffiffi
3

p
. The starting point is the mass difference in the

neutral D0 system, which can be expressed in terms of the
parameter xD

xD ¼ �MD

�D

¼ 2jMD0

12 j
�D

: (2.24)

The Heavy Flavor Averaging Group [34] quotes for an
experimental value of xD

xD ¼ ð0:811� 0:334Þ 	 10�2: (2.25)

Starting with the expression for the box diagram and using
the unitarity condition �D0

d þ �D0

s þ �D0

b þ �D0

b0 ¼ 0 (with
�D0

x ¼ VcxV
�
ux), we obtain

MD0

12 / �2
sS0ðxsÞ þ 2�s�bSðxs; xbÞ þ �2

bS0ðxbÞ þ LD

þ 2�s�b0Sðxs; xb0 Þ þ 2�b�b0Sðxb; xb0 Þ þ LD

þ �2
b0S0ðxb0 Þ; (2.26)

where the proportionality constant is

G2
FM

2
WMD

12�2
f2DBD�ðmc;MWÞ: (2.27)

Lubicz and Tarantino [35] gave a survey of recent lattice
data and provided an averaged decay constant fD0 ¼
212� 14 MeV and bag parameter B ¼ 0:85� 0:09. In
order to compare with the results of [33], we use only the
leading-order expression of the QCD correction factor �,

�ðmc;MWÞ 

�
�ð4Þ
s ðmbÞ

að4Þs ðmcÞ
�
6=25

�
�ð5Þ
s ðMWÞ

�ð5Þ
s ðmbÞ

�
6=23 ’ 0:74:

(2.28)

The first line of (2.26) corresponds to the pure SM3 con-
tribution, the third line is due to contributions of the heavy
fourth generation and the second line is a term arising
when SM3 and b0 contributions mix:

MD0

12 ¼ MD0

12;SM3 þMD0

12;Mix þMD0

12;b0 : (2.29)

The perturbative short-distance contribution to MD0

12;SM3 is
numerically very small. The first two terms in the first line
of (2.26) are kinematically suppressed and the third term
suffers a Cabibbo suppression caused by a CKM factor of
order Oð10�8Þ, such that an operator-product expansion
(OPE)-based standard model calculation yields values of
about x � 4 	 10�5. The order of magnitude of this result
complies with early estimates for xD, which relied merely
on perturbation theory calculations and ranged between
roughly 10�6 [36] and 10�4 [37]. It has often been pointed
out that in the case of charmed mesons a substantial
enhancement of the mass and width differences has possi-
bly to be attributed to long-distance (LD) effects, which
cannot be calculated perturbatively; see e.g. [38–42]. The
quoted predictions usually rely on exclusive estimates of
decay widths; they can be considerably increased by
nearby resonances. Typical results are in the range of
xD; yD ’ 10�4 . . . 10�3, which almost reach the order of
magnitude of the experimental values. Bigi and Uraltsev
[38] argue that, albeit the leading 1=mc contributions are
negligibly small and the validity of duality is very ques-
tionable, operators of higher dimension might lead to
values of xD, yD up to 5 	 10�3 in the framework of the
standard OPE techniques, what is already very close to the
experimental values. The short-distance terms of the mixed
part MD0

12;Mix are numerically at most as large as the short-
distance part of the pure SM3 contribution. The s-quark
term of the mixed part is about twice the b-quark term and
it might also be affected by large long-distance effects. For
MD0

12;b0 the OPE is expected to work perfectly and no sizable
unknown nonperturbative effects are likely to appear.
Numerically this term can be much larger than the short-
distance parts of the SM3 and the mixed contribution. The
idea of [33] was to neglect all terms inMD0

12 , exceptM
D0

12;b0 ,
and to equate this term with the experimental number for
xD. Following this strategy we reproduce the bounds given
in [33]. We think, however, that it is not completely ex-
cluded that there might be large nonperturbative contribu-
tions to both MD0

12;SM3 and MD0

12;Mix, each of the size of the
experimental value of xD. This would enhance the possible
range for MD0

12;b0 by a factor of up to 3 compared to [33].
Allowing this possibility we obtain the following, very
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conservative bounds on jVub0Vcb0 j; see also Fig. 1:

jVub0Vcb0 j �
8><
>:
0:003 95 for mb0 ¼ 200 GeV;
0:002 90 for mb0 ¼ 300 GeV;
0:001 93 for mb0 ¼ 500 GeV:

(2.30)

Even as wewere able to soften the bound of [33] by a factorffiffiffi
3

p
, D0 mixing is still by far the strongest direct constraint

on jVub0Vcb0 j. We take the values of Eq. (2.30) for our
conservative bounds, while we take the results of [33] as
the aggressive ones.

C. Scan through the mixing parameters

Subsequently, we will describe the scan through the
nine-dimensional parameter space of the 4� 4 mixing
matrix and the mass regions for mt0 and test whether the
experimental constraints on quark mixing are fulfilled. For
this purpose we use the exact parametrization of VCKM4

described in Sec. II A, Eq. (2.7). For the allowed ranges—
especially on the new parameters related to the fourth
generation—it is crucial how to treat the errors of the
tree-level bounds. We have decided to study two different
treatments of the error ranges. We adopt a conservative and
an aggressive set of bounds. In both the conservative and
the aggressive case, the bound on Vtb is assumed to be
hard. We enforce each of the six other tree-level constraints
to be individually fulfilled at the 2	 level, i.e. our CKM
matrix element VCKM4;i has to be in the range

jVij � 2�Vi < jVCKM4;ij< jVij þ 2�Vi:

Additionally, in order to have a measure for the deviation
from the central values of the tree-level bounds, we define a

2 per degree of freedom (d.o.f.) as


2=d:o:f: ¼ 1

n

X
i¼ud;us;ub;cd;cs;cb

�jVCKM4;ij � jVij
�Vi

�
2
;

where n ¼ 6 is the number of considered degrees of free-
dom. For the conservative constraints we call for

2=d:o:f: < 2 and for the aggressive ones for 
2=d:o:f: <

0:5. The choice for the aggressive bounds has been inspired
by the fact, that one obtains for the best CKM3 fit given by
the Particle Data Group 
2=d:o:f: ¼ 0:4. In other words,
with our aggressive constraints on the tree-level bounds,
we do not want to violate the tree-level constraints signifi-
cantly more than the CKM3 fit. From the tree-level con-
straints and careful checks with larger parameter ranges,
we find that we safely restrict ourselves to the ranges given
in Table I. The phases �13, �14, and �24 have been left
unconstrained. The mass mt0 was scanned from 300 to
650 GeV as described in Eq. (2.4). In this ten-dimensional
space we generate more than 2 	 1010 randomly distributed
points and check whether they meet the tree-level and
FCNC constraints given above.3 To this end, we first
employ the conservative set of bounds. We only store
parameter sets which satisfy these bounds—only 12 817
846 data sets remain afterward. The aggressive bounds are
established by subsequent reduction of the conservative
data, leaving only 150 763 points. To give an impression
how important each constraint is under the assumption of
our preselection, we have used each bound individually
and switched off the others.
We obtain the following result: already the tree-level

constraints reduce the allowed parameter space
dramatically.
Only 13% of the randomly created points in the prese-

lected parameter space actually pass the combined tree-
level bounds. The strongest restrictions stem from jVudj,
which is constrained to a relative error of only 0.028%. As
a consequence, due to Vud ¼ c12c13c14, the allowed ranges
for �12 and �14 are quite small (�13 is tiny; its precise value
does not play a major role for jVudj). Another important
contribution to the rejection rate stems from the 
2 bound.
The FCNC constraints are even more restrictive, e.g. even
in the conservative case only 1.5% of the configurations
pass the �Bd

bound; see Table II for more details.

Having done our scan, we have found no accepted
parameter sets beyond the following ranges:

Conservative bound Aggressive bound

�14 � 0:0535 � 0:0364
�24 � 0:144 � 0:104
�34 � 0:737 � 0:736
�14 free free

�24 free free
FIG. 1 (color online). Bound on jVub0Vcb0 j determined from
the measurement of D0 mixing in dependence on the mass of the
b0 quark.

TABLE I. Preselection bounds resulting from tree-level deter-
minations of the CKM elements for the angles of the quark
mixing matrix.

�12 �13 �23 �14 �24 �34

Minimum value 0.222 0.0033 0.038 0 0 0

Maximum value 0.232 0.0048 0.046 0.069 0.19 0.8

3A similar strategy with 60 000 points was pursued in [43].
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This is one of the main results of this work. Typically small
mixing with the fourth family is favored, but there is still
room for sizable effects. To further explain our results, we
note that not all combinations for these new parameters are
allowed. Apart from studying the allowed parameter re-
gions in a one-dimensional projection as presented above,
we show correlations of selected input parameter pairs.
Figures 2–6 correspond to the �14-�24, �24-�34, �13-�14,
�14-�24, and �12-�14 planes. We divide each direction (i.e.
x axis and y axis) of each plot in 300 steps. So that the total
picture consists of 300� 300 ¼ 90 000 color encoded unit
squares. In the upper panels the color encoding counts the
number of accepted sets in each unit square. As a large
range is covered, we chose to plot Figs. 2–4 and 6 loga-
rithmically. The number next to the color scale then gives
the natural logarithm of the number of accepted sets per

unit square. As the distribution in the �14-�24 plane is
somewhat more homogeneous we choose a linear scale
for Fig. 5. The upper left panel in each plot is for the
conservative bounds and the upper right one for the ag-
gressive ones. In the lower panels we present the mass
dependence of the allowed parameter ranges. Obviously,
there is a nontrivial influence of the t0 mass on these ranges.
The left panel corresponds to the conservative and the right
panel to the aggressive bounds. The plots show the distri-
bution of the accepted points in the three mass regions
indicated in the plot. In most cases a lower mass results in a
larger allowed parameter space. But there are also non-
trivial exceptions, cf. Fig. 3. Especially the restriction due
to the D0 mixing bound (as described in Sec. II B) can be
seen clearly as hyperbolic cuts in Fig. 2. The mass depen-
dence in Fig. 5 is not shown as in each case the whole
square is filled.
In Figs. 7–9, the distribution of the accepted points in the

complex �½K0;Bd;Bs� plane is shown. As above, in each plot

the left panel corresponds to the conservative constraints
and the right panel to the aggressive ones. For�K0 and �Bs

a logarithmic scale is chosen and for �Bd
a linear one,

corresponding to the observation that for Bd the points are
somewhat more homogeneously distributed than in the
other two cases. This corresponds to the observation that
the acceptance rate of the Bd bound is very low, only 2.1%
after tree-level bounds, as shown in Table II. The reason for

TABLE II. The impact of the (conservative) constraints on the
five flavor-changing neutral currents. The second row gives the
probability that a random point in the configuration space fulfills
the FCNC bounds. The third row corresponds to the probability
that a set of angles and phases that is in agreement with tree-level
bounds also passes the FCNC bound.

�K0 �Bd
�Bs

�b!s� D0 mixing

Without tree-level bounds 21% 1.5% 29% 16% 46%

With tree-level bounds 27% 2.1% 32% 20% 62%

FIG. 2 (color online). In the upper left and upper right panel, the allowed parameter ranges for �14 on the x axis and �24 on the y axis
are shown for the conservative and the aggressive bounds, respectively. The color encodes the relative occurrence as explained in the
text. In the lower left and right panels the allowed parameter range is shown in dependence on the t0 mass for three different mass
ranges for the conservative and aggressive bounds, respectively.

BOBROWSKI, LENZ, RIEDL, AND ROHRWILD PHYSICAL REVIEW D 79, 113006 (2009)

113006-6



this behavior is the following: Enforcing only the tree-level
bounds and unitarity�Bd

can take values up to 50 times the

standard model prediction. Therefore, the stringent experi-
mental bounds on �Bd

put forward severe restrictions on

the allowed parameter range.

In Fig. 10 the dependence on the t0 mass for the three
FCNC observables is shown. Only for �Bs

, a strong influ-

ence of the mass on the results is seen. For �K0 the
influence is still perceivable but rather weak, whereas
�Bd

seems to be almost independent of mt0 . The complex

FIG. 3 (color online). The allowed parameter ranges in �24 and �34. For further explanation, see the caption of Fig. 2.

FIG. 4 (color online). The allowed parameter ranges in �13 and �14. For further explanation, see the caption of Fig. 2.
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FIG. 5 (color online). The allowed parameter ranges in �14 and �24. For further explanation, see the caption of Fig. 2. Here, the mass
dependence is not explicitly shown, as all combinations are allowed for each mass mt0 .
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FIG. 8 (color online). The results for �Bd
as described in the caption of Fig. 7.
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FIG. 10 (color online). The mt0 dependence of the FCNC �s: from left to right �K, �Bd
, and �Bs
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FIG. 11 (color online). The results for Vtb as described in the caption of Fig. 7. The solid crossed lines give the value for CKM3.
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FIG. 12 (color online). The results for Vts as described in the caption of Fig. 7. The solid crossed lines give the value for CKM3.
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�B planes are particularly interesting since there might be
some hints on new physics effects inBs mixing; see [30,44]
and the Web updates of [45]. In [30] a visualization of the
combination of the mixing quantities�Ms,��s, a

s
sl, which

are known to next-to-leading-order QCD [27,46–48] and of
direct determinations of �s in the complex � plane was
suggested. Combining recent measurements [49,50] for the
phase �s one obtains a deviation from the tiny SM pre-
diction [30] in the range of 2 to 3	:

(i) HFAG: 2:2	 [49],
(ii) CKM-Fitter: 2:1 . . . 2:5	 [51,52],
(iii) UT-Fit: 2:9	 [44].
The central values of these deviations cluster around

�s � �45�: (2.31)

As can be read from Fig. 9 sizable values for�s can also be
obtained in scenarios with additional fermions. Such large
values for �s are not favored but they are possible. An
enhancement of �s to large negative values by contribu-
tions of a fourth family was first discussed in [12].

In Figs. 11–13 we present the values for the CKMmatrix
elements Vtb, Vts, and Vtd in the complex plane. As in the
Figs. 7–9 the left panel is for the conservative case and the
right panel for the aggressive one. For comparison the SM3
expectations are given as thin red lines. Obviously, large
deviations from the SM expectations are possible. The

peculiar structure of the allowed range for Vtd arises al-
ready after imposing unitarity and tree-level constraints.
The nontrivial mass dependence for the aggressive case is
shown in Fig. 14. In Fig. 15 we show the mass dependence
of the acceptance rate. The number of accepted data points
per 50 GeV normalized to the total number of accepted
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FIG. 13 (color online). The results for Vtd as described in the caption of Fig. 7. The solid crossed lines give the value for CKM3. The
peculiar ring structure already arises after enforcing unitarity and tree-level bounds.

FIG. 14 (color online). The dependence of the CKM elements Vtb (left panel), Vts (middle panel), and Vtd (right panel) on the mass
region.
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FIG. 15 (color online). Relative distribution of the accepted
12 817 846 and 150 763 points using the conservative and the
aggressive bounds, respectively. The relative occurrence is
shown on the y axis and mt0 on the x axis.
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points is plotted versus the mass mt0 . It can be seen that the
acceptance rate reduces with growing t0 mass. Because our
test points are randomly distributed over the whole mass
region, an acceptance rate independent from the mass
would feature a constant functional behavior; this is clearly
not observed. One can also notice a small difference in the
acceptance rate for conservative and aggressive bounds.

III. TAYLOR EXPANSION OF VCKM4

The hierarchy of the mixing between the three quark
families can be visualized by the Wolfenstein parametri-
zation [53]. It is obtained from the standard parametriza-
tion by performing a Taylor expansion in the small CKM
element Vus � 0:2255. Following [54] we define

Vub ¼ s13e
�i�13 ¼: A�4ð~�þ i~�Þ; (3.1)

Vus ¼ s12ð1þOð�8ÞÞ ¼: �; (3.2)

Vcb ¼ s23ð1þOð�8ÞÞ ¼: A�2: (3.3)

Note that due to historical reasons the element Vub is
typically defined to be of order �3, while it turned out
that it is numerically of order �4:

jVubj ¼ 0:003 93 ¼ 1:51�4 ¼ 0:34�3: (3.4)

Up to terms of order �6 the Taylor expansion of the CKM
matrix assumes the form

VCKM3 ¼
1� �2

2 � �4

8 � �6

16 � A�4ð~�� i~�Þ
��þ A2 �5

2 � A2�6ð~�þ i~�Þ 1� �2

2 � �4

8 � A2�4

2 þ A2�6

4 � �6

16 A�2

A�3 � A�4ð~��þ i~��Þ �A�2ð1� �2

2 þ �3ð~�þ i~�Þ � �4

8 Þ 1� A2�4

2

0
BB@

1
CCA: (3.5)

This result can be obtained from the standard Wolfenstein
parametrization by replacing

� ¼: �~�; � ¼: �~�: (3.6)

For the case of four generations we have to determine first
the possible size, i.e. the power in � of the new CKM
matrix elements. With the results of the previous section
we obtain:

Conservative bound Aggressive bound

jVub0 j � 0:0535≈1:05�2 � 0:0364 ≈ 0:7�2≈3:2�3

jVcb0 j � 0:144 ≈ 0:6�1 ≈ 2:8�2 � 0:104 ≈ 0:46�1 ≈ 2�2

jVtb0 j � 0:672 ≈ 3:0�1 � 0:671 ≈ 3:0�1

We propose a parametrization of these matrix elements that
manifestly respects the above bounds:

(i) For the mixing of first and fourth family we define

Vub0 ¼ s14e
�i�14 :¼ �2ðx14 � iy14Þ

) s14 ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x214 þ y214

q

) c14 ¼ 1� �4 x
2
14 þ y214

2
þOð�8Þ; (3.7)

which is a good estimate for both, conservative and
aggressive bounds, since the parameters x14 and y14
can safely be assumed to be smaller than 1.

(ii) The estimate for the matrix element Vcb0 is more
complicated. The conservative bound suggests a
size of order �, whereas the aggressive bound might
justify a leading power �2. In what follows we opt

for the more solid Oð�Þ variant. We define

Vcb0 ¼ c14s24e
�i�24 :¼ðx24� iy24Þ�1

) s24e
�i�24 ¼ðx24� iy24Þ�þ1

2
ðx214þy214Þ

�ðx24� iy24Þ�5þOð�7Þ
) c24¼ 1þ1

2
ð�x224�y224Þ�2�1

8
ðx224þy224Þ2�4

þ1

6

�
3

8
ð�x224�y224Þ3þ3ð�x214�y214Þ

�ðx224þy224Þ
�
�6þOð�7Þ: (3.8)

(iii) Finally, the element jVtb0 j is not constrained to be
significantly smaller than 1 and we cannot restrict
the mixing angle �34. Thus, we keep cosine c34 and
sine s34 in the expansion.

It is obvious that already at Oð�6Þ the expansion gets
confusing; see (3.8). For the Taylor expansion to provide
an intuitive picture of the hierarchy of the elements and the
still possible effects of the mixing with the fourth genera-
tion wewant to keep the matrix clearly arranged. Therefore
we expand the CKM4 matrix up to and including order �4.
The matrix elements take the form

Vud ¼ 1� �2

2
� 1

8
ð4x214 þ 4y214 þ 1Þ�4; Vus ¼ �;

Vub ¼ Að~�� i~�Þ�4; Vub0 ¼ ðx14 � iy14Þ�2; (3.9)

HOW MUCH SPACE IS LEFT FOR A NEW FAMILY OF . . . PHYSICAL REVIEW D 79, 113006 (2009)

113006-11



Vcd ¼ ��þ 1

2
ðx24 � iy24Þð�2x14 þ x24 � 2iy14 þ iy24Þ�3;

Vcs ¼ 1� 1

2
ðx224 þ y224 þ 1Þ�2 þ 1

8
ð�x424 � 2ðy224 � 1Þx224 � 8iy14x24 � y424 � 4A2 þ 2y224 � 8x14ðx24 � iy24Þ

� 8y14y24 � 1Þ�4;

Vcb ¼ A�2; Vcb0 ¼ ðx24 � iy24Þ�;

(3.10)

Vtd ¼ s34ð�x14 þ x24 � iðy14 � y24ÞÞ�2 þ Ac34�
3 þ 1

2
½Að�2i~�� 2~�Þc34 þ s34ðx14 þ iy14Þðx224 þ y224 þ 1Þ��4;

Vts ¼ �s34ðx24 þ iy24Þ�� Ac34�
2 þ 1

2
s34ð�2x14 þ x24 � 2iy14 þ iy24Þ�3 � 1

2
½Ac34ðx224 þ y224 � 1Þ��4;

Vtb ¼ c34 � As34ðx24 þ iy24Þ�3 � 1

2
ðA2c34Þ�4;

Vtb0 ¼ s34 � 1

2
½s34ðx224 þ y224Þ��2 � 1

8
½s34ðx424 þ 2y224x

2
24 þ y424 þ 4x214 þ 4y214Þ��4;

(3.11)

Vt0d ¼ c34½�x14 þ x24 � iðy14 � y24Þ��2 � As34�
3 þ 1

2
½2Aði~�þ ~�Þs34 þ c34ðx14 þ iy14Þðx224 þ y224 þ 1Þ��4;

Vt0s ¼ �c34ðx24 þ iy24Þ�þ As34�
2 þ 1

2
c34ð�2x14 þ x24 � 2iy14 þ iy24Þ�3 þ 1

2
As34ðx224 þ y224 � 1Þ�4;

Vt0b ¼ �s34 � Ac34ðx24 þ iy24Þ�3 þ 1

2
A2s34�

4;

Vt0b0 ¼ c34 � 1

2
½c34ðx224 þ y224Þ��2 � 1

8
½c34ðx424 þ 2y224x

2
24 þ y424 þ 4x214 þ 4y214Þ��4:

(3.12)

The terms s34ð�x14 þ x24 � iðy14 � y24ÞÞ�2 in Vtd and
�s34ðx24 þ iy24Þ� in Vts indicate possible new leading
order effects in the standard CKM3 matrix elements due
to mixing with the fourth family.

IV. UNEXPECTED PARAMETER REGIONS

In the experimentally allowed regions of the parameter
space we typically find regions, where the mixing with the
fourth family is very small and the CKM elements of the
first three families are close to the minimal standard model
values. There are also some allowed regions with large
deviations from the standard expectations. In order to
clarify the appearing cancellations that veil these unex-
pected effects in current analyses of the standard CKM
matrix, we discuss three sample sets of values for VCKM4.
Our three parameter sets read:

Set I Set II Set III

�12 0.226 606 0.227 264 0.228 225

�23 0.040 389 0.041 408 3 0.039 522

�13 0.004 055 9 0.003 821 91 0.003 827 55

�14 0.027 752 7 0.018 224 8 0.023 289 5

�24 0.017 655 3 0.078 955 5 0.110 918

�34 �0:531 735 0.366 353 0.677 976

�13 3.314 63 0.317 332 1.255 37

�14 0.925 439 0.283 57 0.502 528

�24 2.698 29 0.383 156 0.238 529

mt0 325.553 GeV 653.842 GeV 389.238 GeV

First we have a look at the CKM elements Vtx obtained
with these three parameter sets. We give their complex

values, as well as the ratio of their absolute value compared
to the SM3 values from [25]:

Set I Set II Set III

Vtd 0:0212þ 0:0107i 0:0052� 0:0005i 0:0089� 0:0059i

jVtdj=jVSM3
td j 2.72 0.60 1.22

Vts �0:0391þ 0:0064i �0:0653� 0:0109i �0:0987� 0:0182i

jVtsj=jVSM3
ts j 0.97 1.63 2.47

Vtb 0:8609þ 0:0001i 0:9317� 0:0004i 0:7755� 0:0006i

jVtbj=jVSM3
tb j 0.86 0.93 0.78

These results significantly differ from the values obtained
from SM3 CKM fits. In order to clarify the question why
these huge effects cannot be seen in the standard CKM fits
[44,45] we have a closer look at e.g.�Bd

. This quantity was
defined as

�Bd
¼ M

Bd

12;SM4

MBd

12;SM3

¼ M
tt;Bd

12;SM4 þM
ðtt0þt0t0Þ;Bd

12;SM4

MBd

12;SM3

: (4.1)

The tt part of the SM4 value M
tt;Bd

12;SM4 looks formally equal
toMBd

12;SM3, but the values of the CKM elements Vtx can be
very different for SM3 and SM4. We further rewrite �Bd

as

�Bd
¼ 1þM

tt;Bd

12;SM4 �M
Bd

12;SM3

MBd

12;SM3

þM
tt0þt0t0;Bd

12;SM4

MBd

12;SM3

: (4.2)

The first correction term to ‘‘1’’ is due to the difference of
the CKM elements Vtx in the three and four generation
standard model, while the second correction is due to new
virtual loop effects of the t0 quark. The three parameter
sets, discussed in this section, were chosen in such a way
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that large cancellations appear mimicking the SM3 per-
fectly. Therefore, these big effects are invisible in CKM
fits. With our special parameter sets we numerically obtain
the following values for the three contributions to �:

Set I:

�K0 ¼ 1þ ð0:0139� 0:0854iÞ þ ð�0:0362þ 0:0416iÞ
¼ 0:98 	 e�i2:5� ; (4.3)

�Bd
¼ 1þ ð�1:6939� 5:4548iÞ þ ð1:7352þ 5:3184iÞ
¼ 1:05 	 e�i7:5� ; (4.4)

�Bs
¼ 1þ ð�0:3415þ 0:2492iÞ þ ð0:3608� 0:3662iÞ
¼ 1:03 	 e�i6:5� ; (4.5)

�b!s� ¼ 1� 0:2959þ 0:3715 ¼ 1:0756; (4.6)

��
s ¼ �0:114276 ¼ �6:5�: (4.7)

Huge cancellations appear, in the case of the imaginary
part of Bs mixing up to 500%. Taking experimental and
theoretical uncertainties into account, the final results are
still perfectly consistent with the SM3 expectation. For the
next parameter set we get:

Set II:

�K0 ¼ 1þ ð�0:0016� 0:0017iÞ þ ð�0:0246� 0:0071iÞ
¼ 0:97 	 e�i0:5� ; (4.8)

�Bd
¼ 1þ ð�0:7383� 0:1732iÞ þ ð0:4631þ 0:0826iÞ
¼ 0:73 	 e�i7:1� ; (4.9)

�Bs
¼ 1þ ð1:2044� 0:6715iÞ þ ð�1:3434� 0:0354iÞ
¼ 1:11 	 e�i39� ; (4.10)

�b!s� ¼ 1þ 1:3044� 1:3879 ¼ 0:9165; (4.11)

��
s ¼ �0:687 ¼ �39�: (4.12)

This set was chosen by looking for large values of �s. As
discussed in Sec. II C there are currently some experimen-
tal hints for such a deviation from the standard model. Here
we confirm the statement from [12] that such a value could
be explained by a forth generation of quarks. As a final
example we present a parameter set yielding a value for
jVtbj as small as 0:78.

Set III:

�K0 ¼ 1þ ð0:0108þ 0:0919iÞ þ ð�0:0388� 0:0106iÞ
¼ 0:98 	 eþi4:8� ; (4.13)

�Bd
¼ 1þ ð�0:1691þ 0:3448iÞ þ ð0:1681� 0:4824iÞ
¼ 1:01 	 e�i7:8� ; (4.14)

�Bs
¼ 1þ ð2:4697� 1:1837iÞ þ ð�2:8227þ 0:8334iÞ
¼ 0:74 	 e�i28� ; (4.15)

�b!s� ¼ 1þ 2:6661� 2:7172 ¼ 0:9489; (4.16)

��
s ¼ �0:4961 ¼ �28�: (4.17)

A small value of Vtb would also lead to a smaller rate for
e.g. the single top production at Tevatron. See e.g. [55] for
a recent measurement of this rate.
Note that the effects described in the chosen sets are very

sensitive to small variations in the mixing angles and
phases of the fourth family. This is obvious as the large
cancellations described above require very specific pa-
rameter sets. The dependence on the t0 mass, in contrast,
is moderate.

V. CONCLUSION

We have investigated the experimentally allowed pa-
rameter range for a 4� 4 quark mixing matrix, making
some simplifying assumptions concerning the QCD cor-
rections. Moreover we have not taken into account any
correlations with the lepton mixing matrix. As a result we
find that the tree-level constraints for the 3� 3 CKM
matrix and the FCNC bounds from K, D0, Bd, and Bs

mixing as well as the decay b ! s� are typically fulfilled
if we have a small mixing with the fourth family, which
allows us to perform a Taylor expansion of the 4� 4 CKM
matrix. Unexpectedly we were also able to find experimen-
tally allowed parameter sets, having a sizable mixing with
the fourth generation. In this case also the usual 3� 3
CKM matrix elements can change considerably: Vtd and
Vts can differ by up to a factor 3 compared to the SM3
value and Vtb can be as low as 0.75; see also [56] for the
possibility of Vtb being unequal to one. These dramatic
effects are not seen in the CKM fits. This is due to large
cancellations between the effect of changed matrix ele-
ments Vtx and effects of virtual heavy b0 and t0 quarks. An
example of such a cancellation was also discussed in [57].
We have also shown that there are parameter ranges con-
sistent with all experimental bounds, which yield large
effects for�s. Because of these interesting results, it seems
worthwhile to extend the current exploratory analysis. First
more flavor observables, like asymmetries, b ! slþl� (see
e.g. [58,59]), Bs ! ��; . . . should be considered.
Moreover, the electroweak precision observables have to
be included in more detail, here, in particular, the observ-
able Rb seems to be promising; see e.g [60]. Another
important improvement will be the exact treatment of the
perturbative QCD corrections, in particular, in the decay
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b ! s�. Finally one also has to take into account correla-
tions to the lepton mixing matrix.

Refined direct measurements of the CKM matrix ele-
ments will provide more insight into a possible fourth
generation. In particular, future experiments could help
to determine the hardly known CKM elements Vcd and
Vcs as well as nonperturbative parameters like form factors
and decay constants. Probably the most stringent bounds
on the mixing with the fourth generation can be obtained
from the direct measurements of Vtd, Vts, and Vtb. Vtb is
currently investigated at Tevatron; for the latest value of
Vtb from single top production see [55,61,62]. Also more
precise data on FCNC will be very helpful. For the case of

the promising Bs system this is currently done at the
Tevatron and in the near future at LHCb [63] and probably
at Super B factories [64,65].
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