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Neutrinoless double beta decay ð��0�Þ is the only realistic probe of the Majorana nature of the

neutrino. In the standard picture, its rate is proportional to mee, the e-e element of the Majorana neutrino

mass matrix in the flavor basis. I explore minimally allowed mee values within the framework of mass

matrix anarchy where neutrino parameters are defined statistically at low energies. Distributions of mixing

angles are well defined by the Haar integration measure, but masses are dependent on arbitrary weighting

functions and boundary conditions. I survey the integration measure parameter space and find that for

sufficiently convergent weightings, mee is constrained between (0.01–0.4) eV at 90% confidence.

Constraints from neutrino mixing data lower these bounds. Singular integration measures allow for

arbitrarily small mee values with the remaining elements ill-defined, but this condition constrains the

flavor structure of the model’s ultraviolet completion. ��0� bounds below mee � 5� 10�3 eV should

indicate symmetry in the lepton sector, new light degrees of freedom, or the Dirac nature of the neutrino.

DOI: 10.1103/PhysRevD.79.113003 PACS numbers: 14.60.Pq

I. INTRODUCTION

The observation of nonzero neutrino mass and mixing
via flavor oscillations is the first terrestrial evidence of
physics beyond the standard model (SM) of particle phys-
ics. See [1–3] for a review of neutrino physics. This dis-
covery provides useful insight into the nature of new high
scale phenomena and introduces many important ques-
tions. Chief among these is the charge conjugation prop-
erties (Dirac versus Majorana) of the neutrino. First, one
may enlarge the SM field content to include one or more
gauge singlets N (right-handed neutrinos) and give the
neutrino a Dirac mass similar to the other fermions via
coupling to the neutral SM Higgs boson: �NH0. On the
other hand, possessing no unbroken gauge quantum num-
bers, the neutrino may have a Majorana mass term which
couples the neutrino to its charge conjugate �c, and thus
renders the neutrino equal to its own antiparticle. This
breaks all nontrivial global symmetries. In particular, a
Majorana neutrino mass violates lepton number by two
units. The Dirac versus Majorana nature of the neutrino is
an important issue that must be addressed experimentally.

Neutrinoless double beta decay (��0�) is an as yet
unobserved lepton number violating (LNV) process that
would unambiguously identify the Majorana nature of the
neutrino [4]. In fact, except in rare circumstances [5],
��0� is the only realistic hope of probing LNV in the
near future [6,7]. Given the importance of this process, it is
useful to explore its theoretical expectations over a broad
range of scenarios. In the standard picture, with no new
light LNV degrees of freedom below the TeV scale, ��0�
proceeds primarily via Majorana neutrino exchange. In this
case, its amplitude is proportional to mee, the e-e element
of the neutrino mass matrix in the flavor basis where the
charged leptons are diagonal. While this relationship is

generally spoiled by new physics [5], it should still effec-
tively hold for sufficiently smallmee values. While it is true
that the smallest ��0� rates may be dominated by high
dimensional nonrenormalizable operators there is an im-
portant feedback mechanism into mee. This follows from
the extended black box theorem [8] where a one to one
relationship is derived between mee and the effective meff

ee

that governs ��0� in the vanishing limit, such that mee ¼
0 $ meff

ee ¼ 0. Thus, it is reasonable to assume that, when
searching for small ��0� rates, it is enough to study the
behavior of mee. This is only loose motivation for the
present analysis as it is impossible to extract the exact
rate below which this reasoning holds without assuming
properties of the neutrino mass’s ultraviolet completion. In
what follows I will assume the dominance of the light
Majorana neutrino exchange mechanism parametrized by
mee. This is the most popular case. Additionally, since
other new physics has yet to be discovered, it is the
minimal mechanism currently implied by direct observa-
tion. Current experimental limits constrain the ��0� half-
life below �1025 yr, corresponding to mee < 0:35 eV at
90% confidence1 [12–15]. Next generation experiments are
poised to extend this reach by roughly an order of magni-
tude to mee < 0:05 eV [14,16,17].
While it is true that ��0� rates are below current

sensitivities,2 it is possible that they will be discovered

*jjenkins6@lanl.gov

1The translation between measured half-life and mee is not
straightforward, as it depends critically on isotope dependent
nuclear matrix element calculations where uncertainties cur-
rently range an order of magnitude [9–11]. This is likely to
improve within the next several years.

2A positive signal was reported by a subset of the Heidelberg-
Moscow group with a half-life near 1:19� 1025 yr at 4:2�
confidence [18]. I neglect this observation in what follows
awaiting confirmation, except to point out that their extracted
mee is well accommodated by the anarchy model of neutrino
mass.
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by the next round of experiments. In terms of the measured
oscillation parameters, we are only beginning to explore
the interesting range dominated by the atmospheric mass
squared difference within the inverted and quasidegenerate
spectral hierarchies [19]. If ��0� observation is ‘‘right
around the corner,’’ in which case mee is relatively large, it
is unlikely that its rate is suppressed by an approximate
flavor symmetry. However, if bounds are pushed signifi-
cantly lower, it is quite reasonable a small mee is protected
by an appropriate symmetry mechanism [20]. It is natural
to wonder how small it can be without the introduction of
imposed mass matrix structure. To this end, it is instructive
to take the ‘‘no structure’’ limit and consider mee bounds,
assuming the anarchy hypothesis [21,22]. Similar reason-
ing was applied much earlier in the history of neutrino
physics to probe the potential for large mixing angles [23].
In this scenario, the underlying neutrino mass model is
sufficiently complicated, such that the mass matrix appears
random at low energies in any basis. In other words, there
is effectively no difference between the three light neutrino
states. This leads to a distribution of observables that must
be treated statistically. In [21,24], it was shown that the
large mixing angles and small hierarchies of the neutrino
sector are consistent with anarchy, provided �13 is not too
small, whereas the Cabibbo-Kobayashi-Maskawa matrix is
inconsistent with anarchy, as expected by pure inspection
of its structure.3 In this analysis, the marginalized mixing
angle distribution functions are well defined in terms of the
Haar measure invariant under the Uð3Þ group. It is not as
straightforward to consider questions involving mass ei-
genvalues since one may include arbitrary Uð3Þ invariant
weighting functions into the integration measure [21] and
boundary conditions. Here, I survey this added layer of
ambiguity and derive the smallest allowed mass matrix
element consistent with anarchy.

In what follows, I analyze expectations for mee within
the anarchy picture of neutrino mass generation. The goal
is to determine how small/large one mass matrix element
may be from the others within an anarchical framework. In
Sec. II, I introduce the formalism and notation employed
throughout the analysis. Using the Kolmogorov-Smirnov
(KS) goodness of fit test, I scan the parameter space of
measures defined by both simple polynomial and divergent
Uð3Þ invariant functions with ‘‘spherical’’ boundary con-
ditions in subsection II A. Here, I also comment on mod-
ifications induced by the use of nontrivial boundary
conditions. In subsection II B, I connect these results to
the case of realistic neutrino mixing. I conclude in Sec. III
with a summary of my results and comment on the impact
of future experimental data.

II. MASS MATRIX ANARCHYAND ��0�

I parametrize the complex, symmetric, three neutrino
Majorana mass matrix as

m�� ¼ ma�� ¼ mr��e
i���; (2.1)

where the dimensionless complex parameters a�� � ðaÞ��
define the structure of the matrix and are constructed to
have a magnitude r�� and phase ���. The latter contains

the familiar Majorana and Dirac phases of the neutrino
mixing matrix in various linear combinations. Three of
these six phases may be rotated away as unphysical with
appropriate transformations, but are included in this analy-
sis without loss of generality. See for example [27,28] and
references therein. A dimensionful factor ofm is pulled out
to carry the scale of neutrino masses. There is ambiguity in
the factorization of m and r��. To be concrete, I define m

such that the resulting r�� matrix elements have maximal

magnitudes defined by boundary conditions subject to
anarchy constraints. The average r�� values should be

near unity. In other words, r�� is a generally Oð1Þ matrix

up to some deviations described by the anarchy hypothesis.
The overall neutrino mass scale m is inferred from experi-
ment and included into the analysis by hand. Currently, m
is bounded at 0.05 eV from below by the atmospheric mass
squared difference [15,29] and from above at roughly 1 eV
by cosmological data [15]. In the remainder of this paper I
refer to these as the hierarchical and quasidegenerate lim-
its, respectively. These are realized when the lightest mass
eigenvalue squared is less than (hierarchical) or greater
than (quasidegenerate) the mass squared differences. In
what follows, within the anarchy picture, one may only
extract limits on the deviations of r�� from its average

value, or equivalently, bound the ratio of mass matrix
elements.
Imposing the anarchy hypothesis implies that the matrix

elements of Eq. (2.1) are distributed randomly in any basis
or, more precisely, the probability distribution of each a��
is invariant under arbitrary unitary rotations. Starting from
the diagonal mass basis, the flavor basis (as well as any
other physical basis) is found by a random rotation, and
one may calculate the probability distribution of any ma-
trix structure. Notice that the obvious distinction of the
diagonal mass basis renders it a very improbable structure
which may be understood in terms of a sampled ensemble
of matrices. The small chance of landing on it via random
rotation does not preclude its existence.
Assuming three light neutrinos, the condition of Uð3Þ

invariance imposes strict conditions on the total distribu-
tion function Gða��Þ universally associated with each

element. This quantity may only be a function of

detðaÞ ¼ �ijkr1ir2jr3ke
ið�1iþ�2jþ�3kÞ

and the purely radial quantity

3These claims were questioned and explored by analysis
discussed in [25,26] but the overall consistency between anarchy
and current neutrino data still holds.
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tr ðayaÞ ¼ r211 þ r222 þ r233 þ 2r212 þ 2r213 þ 2r223:

Working in these polar coordinates, the marginalized
probability distribution of any single element’s magnitude,
say ja11j ¼ r11 � r, is obtained by integrating over the
other radial coordinates and all phases, subject to some
(also invariant) integration limits l ¼ l½trðayaÞ; detðaÞ�.
Thus, the r-coordinate distribution may be written in terms
of the arbitrary functionals G and l, as

gðrÞ ¼
Z l½trðayaÞ;detðaÞ�

0
G½trðayaÞ; detðaÞ� Y

���;��1

r��dr��

� Y
���

d���: (2.2)

At this point, G may be thought of as a weighting function
in the integration measure. As a probability, gðrÞ is positive
and normalized as

R
1
0 gðrÞrdr ¼ 1. This implies that ma-

trix elements do not have independent distribution func-
tions, so that the probability of structures defined by
magnitudes r�� cannot be expressed as a product of

gðr��Þ. Rather, one must calculate the generalized version

Eq. (2.2). The cumulative probability distribution that the
radial magnitude is less than some r is given by

FðrÞ ¼
Z r

0
gðr0Þr0dr0: (2.3)

With this, the C confidence interval limits are found from

max½FðrÞ; 1� FðrÞ� � Cþ 1

2
¼ 0; (2.4)

which yields two solutions interpreted as the extreme r
values allowed at C confidence. One may trivially general-
ize this procedure to n neutrino states with no qualitative
changes. It reflects the mechanism behind the KS goodness
of fit test and yields the same results for one free variable.

A. Simple polynomial measures

Consider a one-dimensional marginalized probability
distribution function, limited by l ¼ TrðayaÞ � 32. This
choice is not unique but does make physical sense, as it
implies that each matrix element lives within a three-
dimensional sphere. This is clear upon rotation to the
diagonal mass eigenbasis. I chose a nonunit radius for
convenience to reflect the physical definition of the mass
m, but this may be changed, provided a corresponding
scaling of r. With this choice, the universal Oð1Þ matrix
structures indicative of anarchy saturates the upper inte-
gration bound. This is easy to understand, as sample vol-
umes at large radii dominate that at smaller radii. Thus,
r�� 2 ½0; 3�, with the most probable values naively ex-

pected near one. It is reasonable to assume the weighting
functional may be expanded in a double Taylor series as
G½trðayaÞ; detðaÞ� ¼ P1

p;q cpqtrðayaÞp detðaÞq. Upon inte-

grating over the complex phases it is clear that all nonzero
powers of detðaÞ vanish by symmetry. However, this is only
true with ��� independent integration limits. A nontrivial

dependence on detðaÞ is possible within this framework but
requires a departure from the physically motivated spheri-
cal boundary conditions. An example case of polynomial
dependence reveals that such limits have little impact on
the marginalized distribution function for small values of r,
which is the primary concern of this analysis.
Thus, it is enough to consider only linear combinations

of

Gp½trðayaÞ; detðaÞ� ¼ TrðayaÞp
¼ ðr2 þ r222 þ r233 þ 2r212 þ 2r223

þ 2r213Þp: (2.5)

In this case, it is simple to obtain the cumulative distribu-
tion function

Fpð~rÞ ¼ ð6þ pÞ~r2
�

5

5þ p
� 10~r2

4þ p
þ 10~r4

3þ p
� 5~r6

2þ p
þ ~r8

1þ p
� 120~r10þ2p

ð6þ pÞð5þ pÞð4þ pÞð3þ pÞð2þ pÞð1þ pÞ
�

(2.6)

via the procedure outlined in Eq. (2.2) and (2.3) in terms of
the scaled magnitude ~r � r=3 that lives in the unit interval.
This is defined for all p >�6. It is easy to see that all other
pole divergences cancel pairwise out of this expression.

Combining Eq. (2.6) and (2.4) yields limits on the ratio
of matrix elements r. Upon multiplication by the current
experimentally allowed neutrino mass scale range
0:05 eV<m< 1 eV, one may obtain the two sided 90%
confidence limits of mee (or any other matrix element) as a
function of p within the anarchy framework. This is shown
in the gray contour of Fig. 1 along with the current and

future ��0� reach denoted by horizontal dotted and
dashed lines, respectively. For convenience, the 90% al-
lowed region is decomposed into the two extreme cases of
hierarchical and quasidegenerate mass spectra bounded by
the blue dashed and red dotted-dashed curves, respectively.
Given a particular neutrino mass scale, the allowed mee

range spans scarcely an order of magnitude. Much of the
breadth of the totally allowed gray region in Fig. 1 comes
from uncertainty in m. Therefore, an absolute neutrino
mass measurement should significantly tighten the anarchy
prediction of mee.
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For p >�5 the curves of Fig. 1 are relatively level
yielding mee in the range (0.01–0.1) eV and (0.05–
0.5) eV for the hierarchical and quasidegenerate spectra.
This is easy to understand, as ~r � 1 and Eq. (2.6) may be

truncated at quadratic order4. Hence, FpðrÞ ! 5
9
6þp
5þp r

2

yielding a C confidence limit for r between

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� CÞ 5þp

10ð6þpÞ
q

. This approximation works very well

for lower bounds but receives up to 5% corrections for
the upper 90% confidence limits. At this point, it is in-
structive to consider the generalized n neutrino scenario for
analogous weightings and boundary conditions l ¼
TrðayaÞ � n2. In the small ~r ¼ r=n approximation, the

cumulative distribution function is given by FðnÞ
p �

r2 ðn�1Þðnþ2Þ
2n2

f 2pþn2þn
2pþn2þn�2

g, which yields confidence limits

between n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� CÞ 2pþn2þn�2

ðn�1Þðnþ2Þð2pþn2þnÞ
q

. At large n, the ma-

trix elements become independent with distributions

bounded by
ffiffiffiffiffiffiffi
1�p

C.
I now consider general well-behaved measure functions

as series expansions of TrðayaÞp weighted by arbitrary
coefficients cp, which by a trivial extension of Eq. (2.6)

results in

Fð~rÞ ¼ 1P1
m¼0

cm
mþ6

X1
p¼0

cp
6þ p

Fpð~rÞ: (2.7)

Here, one coefficient is always redundant, as it may be
factored out of both the numerator and denominator and
ultimately canceled. Because of this normalization condi-
tion, only those terms with comparable weightings having
large destructive/constructive interference contribute to
deviations from the limit contours of Fig. 1. This can
be seen in the small ~r approximation Fð~rÞ �
5~r2

P1
p¼0

cp
pþ5 =

P1
m¼0

cm
mþ6 . Uniformly scanning the pa-

rameters of Eq. (2.7), truncated at p ¼ 4 within the range
cp 2 ½�50; 50�, I sample the mee bounds obtained from

1010 sample functions. Results are shown in the blue
(lower) and red (upper) horizontal histograms of Fig. 1
for the hierarchical and quasidegenerate mass scales, re-
spectively. These arbitrarily normalized distributions are
highly dependent on the sampling procedure. Con-
sequently, the upper and lower endpoints are the only
useful quantities. Because of the small ~r approximate
behavior, the distribution of upper bounds is much wider
than that of the lower. The behaviors of these histograms
are in analogy with the work of [21] where random mass
matrices were generated and studied using a linear measure
function and cubic boundary conditions. In that case, mass
eigenvalues were histogrammed as opposed to the com-
bined quantity mee.
The behavior of Fpð~rÞ for p ! �6 is easy to understand,

but surprising from the mass matrix anarchy viewpoint.
Approaching this lower limit, one finds that

limp!�6Fpð~rÞ � ~r2ðpþ6Þ � 1þ ðpþ 6Þ ln~r2, implying

that the marginalized probability distribution gðrÞ !
�ðrÞ. This shows that at least one mass matrix element
may be arbitrarily small, provided a sufficiently divergent
integration measure. Furthermore, this must hold true in
any basis obtained by a random rotation from the diagonal
mass basis. With this, one finds the C confidence region

bounded between e�ð1�C=4ð6þpÞÞ, which goes rapidly to
zero, as seen in Fig. 1. It remains to check the behavior
of the other, marginalized matrix elements in this limit.
Given two magnitudes, r and s, one may calculate the
marginalized probability distribution function gpðr; sÞ
and the cumulative distribution function Fpðr; sÞ parame-

trized by p in the integration measure of Eq. (2.5). In the
limit p ! �6, when ~r is small, per the above argument,

Fpðr; sÞ � ~r2ðpþ6Þ � ðpþ 6Þ r
2

s2
¼ FpðrÞ � ðpþ 6Þ r

2

s2
:

When r is within its C confidence limits, defined by
FpðrÞ 2 ð1� CÞ=2, then Fpðr; sÞ 2 ð1� CÞ=2 is also sat-

isfied up to small perturbations. The coordinate s is vir-
tually unconstrained. Thus, given p ! �6, at least one
texture zero is guaranteed and all other matrix elements
vary freely and are (almost) independent of the integration
measure. Similar statements apply to other sufficiently
divergent poles in the measure. For example, given
G½TrðayaÞ� ¼ ðB2 � TrðayaÞÞp in the appropriate p limit,

FIG. 1 (color online). Anarchy allowed mee limits at 90%
confidence as a function of pþ 6 defined by Eq. (2.5) (see
text for details). Shaded region is total confidence interval while
the blue (dashed) and red (dash-dotted) bounds indicate the
hierarchical and quasidegenerate neutrino mass spectra, respec-
tively. mee ! 0 as p ! �6. Red (upper) and blue (lower)
horizontal histograms show allowed upper and lowermee bounds
for a measure series expansion sample space for quasidegenerate
and hierarchical spectra, respectively. Current and future ��0�
bounds are also shown.

4This is only true for p >�5 as, in this limit, the quadratic
terms of Eq. (2.6) diverge and thus cancel. In this case one must
truncate at quartic order.
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one radial magnitude goes to B while the rest are uncon-
strained by the theory.

B. Mass matrix anarchy and neutrino mixing

Thus far, I have explored the relation: Neutrino mixing
data is consistent with the anarchy hypothesis . . . Given
neutrino anarchy, what are the allowed mass matrix struc-
tures in an arbitrary basis? The allowed mee range is then
easily extracted. This is the proper treatment, but it does
not address if/when the derived structures accommodate
the neutrino data. Alternately, one might consider the
anarchical mee distribution constrained by current oscilla-
tion phenomenology. This will not yield the same range as
the previous analysis. As noted in [24], regarding the
preferred value of the reactor mixing angle, given the
consistency of neutrino data and anarchy, onewould expect
an expanded confidence region for unknown quantities
such as the CP phases and �13. In other words, a large
amount of (accidental) structure can appear among these
parameters while still maintaining consistency with
anarchy. In the standard parametrization, the composite
mass matrix element mee magnitude is given by

jmeej ¼ mjr1ei�1cos2�12cos
2�13 þ r2e

i�2 sin2�12cos
2�13

þ r3e
ið�3��Þsin2�13j; (2.8)

where an overall mass scale m is factored out for consis-
tency with the preceding analysis. Here ri and �i make up
the complex eigenvalues of the flavor basis mass matrix
Eq. (2.1), diagonalized by the mixing angles �12, �23, �13,
and � in the usual way. In this quantity, a single Majorana
phase may be removed as unphysical so the resulting
expression depends on only two phase linear combinations.
The mixing parameters are distributed according to the
Haar measure and the radial magnitudes according to the
complex Majorana mass eigenvalue measure given in [21],
weighted by an invariant function analogous to Eq. (2.5).
mee is the summed convolution of these distributions. It is
well known that, given current data, Eq. (2.8) can vanish,
provided the normal neutrino mass ordering and particular
relationships among the phases and mass scale [15,30,31].
One would then expect the allowed mee range to extend
lower in the normal than the inverted hierarchy.

I point out that the preceding analysis could have been
done from this perspective, with separated mass and mix-
ing parameters, but was easier done in the flavor basis.
Within a realistic neutrino mixing framework constrained
by the data shown in Table I, the use of the convoluted
Eq. (2.8) is convenient since we already know many best fit
bounds from oscillation searches [15,29]. Marginalizing
the convoluted mee distribution over the unknown phases
as well as the neutrino mixing angle uncertainties with a
polynomial weighting function, I obtain the normalized
mee cumulative distribution function. Thus, this quantity
is the normalized term by term convolution of angular

distribution functions weighted by the Haar measure and
the polynomial measured mass eigenstate distributions.
The experimentally allowed mixing angle ranges may be
substituted into this function. For simplicity, I consider the
normal and inverted neutrino mass spectra separately in
terms of only the lowest free mass eigenvalue with the
others related to it by the measured mass squared differ-
ences. I find that for all nonsingular weightings, mee >
4:4� 10�4 eV and mee > 1:6� 10�2 eV at 90% confi-
dence for the normal and inverted hierarchies, respectively.
For the inverted hierarchy, this bound coincides roughly
with the smallest possible inverted mee value obtained
from Eq. (2.8) evaluated at r3 ¼ 0. As expected, the normal
hierarchy bound is well below those shown in Fig. 1 due to
cancellations induced by the marginalization over un-
known phases. However, care must be taken when inter-
preting this result as one hierarchy may be preferred over
another by anarchy. A numerical scan over an ensemble of
mass eigenvalues, without imposing mass squared differ-
ences from oscillation data, reveals a general preference
for the intermediate state to lie closer to the heavier than
the lighter one. My results agree qualitatively with a simi-
lar scan done in [21]. Still, this slight effect does not
suggest that anarchy favors the inverted hierarchy, which
is defined in terms of mass squared differences. These
results are relatively independent of the supplied weighting
function, provided that it is sufficiently nonsingular.

III. CONCLUSIONS

Within the framework of neutrino mass anarchy, the
distribution of parameters and matrix elements must be
treated statistically. Unlike a study of neutrino mixing
angles and phases, which depend only on the invariant
Haar measure, an analysis of mass eigenvalues/matrix
elements depends critically on arbitrary integration mea-
sures and boundary conditions. For well-behaved mea-
sures, the value of any one matrix element may vary
between about 0.01 eV and 0.4 eV at 90% confidence.
This is well within the reach of future experiments and
will be tightened with better knowledge of the overall

TABLE I. Summary table of current neutrino results together
with naming conventions and parameter definitions. Columns
three and four list best fit central parameter values and 1�
uncertainties. These were adapted from the global oscillation
analysis of [32]. The central values are used as input into the
analysis of subsection II B.

Name

Parameter

combination Value 1� uncertainty

�m2
S m2

2 �m2
1 7:65� 10�5 eV2 0:22� 10�5 eV2

�m2
A jm2

3 �m2
2j 2:40� 10�3 eV2 0:12� 10�3 eV2

sin�S sin�12 0.551 0.017

sin�A sin�23 0.707 0.046

sin�R sin�13 0.1 <0:14

MINIMALLY ALLOWED NEUTRINOLESS DOUBLE BETA . . . PHYSICAL REVIEW D 79, 113003 (2009)

113003-5



neutrino mass scale. However, these bounds are expanded
for sufficiently divergent measures, which may lead to a
vanishing matrix element. This case also renders the re-
maining matrix elements undefined, and thus removes al-
most all predictability from the theory. I conclude that
arbitrarily small matrix elements are allowed within the
anarchy framework, but this seems counterintuitive, given
the universal mass matrix structure assumed in the original
formulation of the theory.

This is more puzzling when put in the framework of
realistic neutrino data. mee ¼ 0 implies the normal hier-
archy and practically forces a	� 
 like symmetry among
the remaining elements [5,33,34]. While still consistent
with anarchy (the divergent weighting imposes the texture
zero and frees all other elements to vary almost uncon-
strained to yield the correct mass spectra and parameter
relationships), this seems like a lot of accidental structure
for a structureless matrix! The resolution lies in the ultra-
violet completion of the theory that produces the integra-
tion measure. That is, the underlying theory yields well-
defined mass parameters, but by our limited knowledge of
its complicated structure, this information is communi-
cated to low energies as an ensemble of possible choices
that must be treated statistically. The nature of possible
model classes selects the weighting function for us. An
anarchy guaranteed texture zero implies a mechanism

selecting those textures from the ensemble of ultraviolet
completions. This is inconsistent with the anarchy princi-
ple from construction, as it would require a corresponding
symmetry mechanism and/or parameter fine-tuning. Of
course, without knowing the details of neutrino mass gen-
eration it is impossible to gauge or select uncomfortable
levels of tuning or when flavor structures must arise. Still,
one would not expect the metric power law parameter to
venture too close to the �6 singularity. To get a handle on
this, it is reasonable to assume a 10% or greater deviation
which implies mee 	 5� 10�3 eV at 90% confidence.
��0� bounds below this level should indicate nontrivial
structure in the lepton flavor sector, new light LNV degrees
of freedom [35–38], or the Dirac nature of the neutrino.
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