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We present a search for new particles which produce narrow two-jet (dijet) resonances using proton-
antiproton collision data corresponding to an integrated luminosity of 1.13 fb™! collected with the CDF II
detector. The measured dijet mass spectrum is found to be consistent with next-to-leading-order
perturbative QCD predictions, and no significant evidence of new particles is found. We set upper limits
at the 95% confidence level on cross sections times the branching fraction for the production of new
particles decaying into dijets with both jets having a rapidity magnitude |y| < 1. These limits are used to
determine the mass exclusions for the excited quark, axigluon, flavor-universal coloron, E¢ diquark, color-

octet techni-p, W/, and Z'.

DOI: 10.1103/PhysRevD.79.112002

L. INTRODUCTION

Within the standard model (SM), two-jet (dijet) events
are produced in proton-antiproton (p p) collisions predomi-
nantly from hard quantum chromodynamics (QCD)
interactions of two partons. The fragmentation and hadro-
nization of the outgoing partons produce hadronic jets. The
dijet mass spectrum predicted by QCD falls smoothly and
steeply with increasing dijet mass. Many extensions of the
SM predict the existence of new massive particles that
decay into two energetic partons (quarks, g, or gluons,
g), which can potentially be observed as a narrow reso-
nance in the dijet mass spectrum. Such particles include the
excited quark [1], axigluon [2], flavor-universal coloron
[3], color-octet techni-p [4], Randall-Sundrum (RS) gravi-
ton [5], W/, Z' [6], and diquark in the string-inspired Eg
model [7].

Here we briefly discuss the theoretical models for these
new particles. In the SM, the quarks are considered as
fundamental particles. However, the presence of their gen-
erational structure and mass hierarchy motivates models of
quark compositeness in which the quarks consist of more
fundamental particles. If a quark is a composite particle, an
excited state of a quark g™ is expected, which decays to gg
[1]. In chiral color models, the SU(3) gauge group of QCD
results from the spontaneous breaking of the chiral color
gauge group of SU(3) X SU(3). Any model of chiral color
predicts the presence of the axigluon, a massive axial
vector gluon, that decays to gg [2]. The flavor-universal
coloron model also embeds the SU(3) of QCD in a larger
gauge group and predicts the presence of a color-octet
coloron which decays to gg [3]. Technicolor models seek
to explain electroweak symmetry breaking via the dynam-

PACS numbers: 13.85.Rm, 14.70.Pw, 14.80.—]

ics of new interactions among techniquarks. The models of
extended technicolor and topcolor-assisted technicolor
predict the presence of a color-octet techni-p (pzg) which
decays to gg or gg [4]. The RS model of a warped extra
dimension offers a solution for the hierarchy between the
electroweak scale and Planck scale Mp, by introducing an
extra spacial dimension [5]. This model predicts a Kaluza-
Klein tower of graviton states (RS gravitons) which decay
to gqg or gg. The grand unified theories (GUT) based on
larger gauge groups, e.g., Es and SO(10), or left-right-
symmetric models [8] often introduce additional gauge
bosons, such as W’ and Z', which decay to ¢4’ and ¢g,
respectively [6]. The Eg; GUT model also predicts the
presence of a diquark which decays to gq or g g [7].

In the past, the UA2 [9], CDF [10,11], and DO [12]
experiments searched for resonances in the dijet mass
spectrum and set limits on their production. In this article,
we present a first measurement of the dijet mass spectrum
and a search for massive particles which produce narrow
dijet resonances in pp collisions at the center-of-mass
energy /s = 1.96 TeV. This analysis uses data corre-
sponding to an integrated luminosity of 1.13 fb™! collected
between February 2002 and February 2006 with the CDF II
detector at the Fermilab Tevatron.

The measurement of the dijet mass spectrum is also an
important test of perturbative QCD (pQCD) predictions. It
provides complementary information to the inclusive jet
cross section measurements [13—17], and comparisons of
the measurement with pQCD predictions provide con-
straints on the parton distribution functions (PDFs) of the
proton, in particular, at high momentum fraction x (x =
0.3), where the gluon distribution is not well constrained
[18].
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II. THE CDF DETECTOR

The CDF II detector is described in detail elsewhere
[19]. Here, the components that are relevant to this search
are briefly described. Surrounding the beam pipe, there is a
tracking system consisting of a silicon microstrip detector,
a cylindrical drift chamber, and a solenoid magnet that
provides a 1.4 T magnetic field. The central and plug
calorimeters, which cover the pseudorapidity regions of
[nl < 1.1 and 1.1 < |n| < 3.6 [20], respectively, surround
the tracking system with a projective tower geometry and
measure the energy of interacting particles. The calorim-
eters are segmented into electromagnetic and hadronic
sections. The electromagnetic section consists of lead
and scintillator, and the hadronic section consists of iron
and scintillator, respectively. In the central region, the
calorimeter consists of 48 modules, segmented into towers
of granularity An X A¢ = 0.1 X 0.26. The energy reso-
lution of the central electromagnetic calorimeter for elec-

trons is o (E7)/Ey = 13.5%//E;(GeV) & 1.5%, while the
energy resolution of the central hadron calorimeter for
charged pions that do not interact in the electromagnetic

section is o(Ey)/E; = 50% /yE;(GeV) & 3%, where E;
is the transverse energy [20]. The wall hadron calorimeter
covers the gap in the projective tower geometry between
the central and plug hadron calorimeters, corresponding to
0.7 < |xy| < 1.3, with segmentation similar to that of the
central calorimeter. The energy resolution of the wall

hadron calorimeter is o(E;)/Er = 75%/JE;(GeV) &
4% for charged pions that do not interact in the electro-
magnetic section. A system of Cherenkov counters, located
around the beam pipe and inside the plug calorimeters, is
used to measure the number of inelastic pp collisions per
bunch crossing and thereby the luminosity.

III1. DATA SETS AND EVENT SELECTION

The dijet data used in this search were collected using a
three-level on-line event selection (trigger) system, and are
identical to the data used in Ref. [17]. The four trigger
selections used in this analysis are referred to as ““jet20,”
“jet50,” ““jet70,” and ““jet100” according to the E thresh-
old (in GeV) of calorimeter clusters reconstructed using a
cone algorithm [21] with cone radius Ry, = 0.7. The
jet20, jet50, and jet70 trigger rates are randomly reduced
(prescaled) to avoid saturating the bandwidth of the data
acquisition system. After prescaling, these trigger data sets
correspond to 1.44, 32.5, and 143 pb~! of integrated lumi-
nosity, respectively. The jet100 trigger is not prescaled.

Jets are reconstructed from the energy depositions in the
calorimeter towers with the transverse momentum py [20]
above 0.1 GeV/c. Jets are formed from the four-vectors of
calorimeter towers [22] using the cone-based midpoint jet
clustering algorithm [14,23,24] with cone radius R ., =
0.7. The kinematics of a jet is defined by the four-vector
recombination scheme [23].
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Cosmic ray and beam loss background events are re-
moved by requiring /Y E;y <min(3 + 0.0125 X

Pt 6), where fy and ¥ E; are the missing E; and sum

E; [25], respectively, and pJTell (GeV/c) is the py of the
leading jet in the event before the corrections described in
Sec. IV are applied. This requirement makes the fraction of
background events negligible and has an efficiency of
= 95% for dijet events. In order to ensure good coverage
of each event by the detectors, the primary event vertex is
required to be within 60 cm of the center of the detector
along the z axis [20]. The efficiency for this requirement is
determined to be 96% from the distribution of primary
event vertices along z measured using a sample of mini-
mum bias events.

IV. JET CORRECTIONS AND MEASUREMENT OF
THE DIJET MASS SPECTRUM

The jet energies measured by the calorimeters are af-
fected by instrumental effects such as calorimeter nonun-
iformity, nonlinearity, and energy smearing. We correct for
these biases in several steps [26]. First, an n-dependent
relative correction is applied to equalize the response of the
calorimeter. The equalized jet pr is then corrected for the
effects of pileup, i.e., additional pp interactions in the
same bunch crossing. The pileup correction subtracts
0.97 = 0.29 GeV/c for each additional primary vertex
from the measured jet p7. Then, a pr-dependent correction
is applied to account for, on average, the undermeasured
hadron energy due to the nonlinearity of the calorimeter
response. The correction factors are 1.19 and 1.06 at jet
pr = 90 and 600 GeV/c, respectively. After these correc-
tions we reconstruct the dijet mass m;; from the four-
vectors of the two highest corrected-p jets. We form the
dijet mass spectrum as

[ - )
dmjj i -Ei'etrig,i Am’

JIt

where n; is the observed number of events, €y, is the
trigger efficiency, U; is the unfolding correction, Am;; ; is
the bin width, and L; is the integrated luminosity of the
trigger data set used for the ith dijet mass bin. The unfold-
ing correction accounts for the bin-by-bin migration effect
due to the finite resolution of the m; measurement and the
efficiencies of the off-line event selection requirements,
and is discussed in detail below. The bin width m; is set to
10% of the dijet mass which approximately corresponds to
the dijet mass resolution. We count only events in which
both of the leading two jets have a rapidity magnitude |y|
[20] less than 1.

We use the jet20, jet50, jet70, and jet100 data sets for the
dijet mass regions of 180-241, 241-321, 321-427, and
above 427 GeV/c?, respectively, where the trigger effi-
ciencies are higher than 99.8%. This ensures a negligible
uncertainty from trigger efficiency measurements. The
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relative difference in the integrated luminosity between
jet70 and jet100 is determined by taking the ratio of
jet70 to jetl00 data in the dijet mass region where both
triggers are fully efficient, and the relative differences
between the jet50 and jet70, and jet20 and jet50 integrated
luminosities are determined in the same manner. This
ensures no bias at the dijet mass boundaries between differ-
ent trigger data sets.

The measured spectrum is corrected for the bin-by-bin
migration effect due to the finite resolution of the m;;
measurement and the efficiencies of the off-line event
selection requirements by the unfolding correction U,
when it is compared with QCD predictions at the hadron
level [17]. We obtain the unfolding correction using QCD
dijet events generated by the PYTHIA 6.2 [27] Monte Carlo
simulation program that have passed through the CDF
detector simulation [28]. The PYTHIA events are generated
with Tune A [29], which refers to the set of parameters
describing multiple-parton interactions and initial state
radiation that have been tuned to reproduce the energy
observed in the region transverse to the leading jet [30].
It has also been shown to provide a reasonable description
of the measured energy distribution inside a jet [31]. The
correction is determined on a bin-by-bin basis by taking the
ratio of a hadron-level cross section to a calorimeter-level
cross section. The hadron-level cross section is defined
using hadron-level jets clustered from the final state stable
particles [32] in PYTHIA with the same jet clustering algo-
rithm as the one used to cluster calorimeter towers. The
leading two jets are required to have |y| <1. The
calorimeter-level cross section is obtained by analyzing
the PYTHIA events using the same analysis chain as for
the data. Since the correction depends on the dijet mass
spectrum, the PYTHIA events are reweighted to match the
dijet mass spectrum measured in data before the correction
factor is calculated. The size of the correction ranges from
~1.2 at low mj; (200 GeV/c?) to ~1.5 at high mj;
(1250 GeV/c?).

The systematic uncertainties arise mainly from four
sources: the jet energy scale, the jet energy resolution,
the unfolding correction, and the integrated luminosity.
The dominant source is from the absolute jet energy scale.
The size of the uncertainty in the cross section varies from
10% at low m;; to *72 % at high m;;. The uncertainty in the
relative jet energy scale introduces a 3% uncertainty on the
measured cross section at low m;; and *') % at high m;;.
The uncertainty in the modeling of jet energy smearing is
estimated from the difference between the data and PYTHIA
samples using the bisector method [33], and it introduces
an uncertainty in the cross section of 1% at low m;; and
J_rg% at high mj;. The difference between the unfolding
correction from a PYTHIA sample and that from a sample
generated by the HERWIG 6.5 [34] Monte Carlo simulation
program is also taken as a systematic uncertainty to ac-
count for the uncertainty in the modeling of jet fragmenta-
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FIG. 1 (color online). (a) The measured dijet mass spectrum
for both jets to have |y| <1 compared to the NLO pQCD
prediction obtained using the CTEQ6.1 PDFs. (b) The ratio of
the data to the NLO pQCD prediction. The experimental system-
atic uncertainties, theoretical uncertainties from PDF, the ratio of
MRST2004/CTEQ6.1, and the dependence on the choice of
renormalization and factorization scales are also shown. An
additional 6% uncertainty in the determination of the luminosity
is not shown.

tion. This uncertainty is 2% at low m;; and 8% at high m ;.
The uncertainty in the determination of the integrated
luminosity is 6%, independent of m ;. The total uncertainty
is *13% at low m;; and *}$ % at high m;;. The measured
dijet mass spectrum after all the corrections discussed
above are applied is shown together with the statistical

and systematic uncertainties in Fig. 1(a).

V. COMPARISONS WITH QCD PREDICTIONS

The measured dijet mass spectrum is compared in Fig. 1
to the next-to-leading-order (NLO) pQCD predictions
from FASTNLO [35]. The predictions were obtained using
the CTEQ6.1 [18] PDFs with the renormalization and
factorization scales both set to ., the average pr of the
leading two jets. Jets are reconstructed by the midpoint
algorithm with cone radius Ry, = 0.7. The maximum
separation between two partons merged into a jet is set to
Reone X Rgep [36], and Ry, is set to 1.3 [21,24]. Setting the
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renormalization and factorization scales to 2 instead of
Mo reduces the cross section prediction by 5%—10%, and
setting Ry, = 2 increases the cross section by = 10%. The
PDF uncertainties estimated from 40 CTEQ®6.1 error PDFs
and the ratio of the predictions using MRST2004 [37] and
CTEQG6.1 are shown in Fig. 1(b). The PDF uncertainty is
the dominant theoretical uncertainty for most of the m;;
range. The NLO pQCD predictions for jets clustered from
partons need to be corrected for nonperturbative under-
lying event and hadronization effects. The multiplicative
parton-to-hadron-level correction (C,_,;,) is determined on
a bin-by-bin basis from a ratio of two dijet mass spectra.
The numerator is the nominal hadron-level dijet mass
spectrum from the PYTHIA Tune A samples, and the de-
nominator is the dijet mass spectrum obtained from jets
formed from partons before hadronization in a sample
simulated with an underlying event turned off. We assign
the difference between the corrections obtained using
HERWIG and PYTHIA Tune A as the uncertainty on the
C,—, correction. The C,_,;, correction is 1.16 = 0.08 at
low mj; and 1.02 = 0.02 at high m;;. Figure 1 shows the
ratio of the measured spectrum to the NLO pQCD predic-
tions corrected for the nonperturbative effects. The data
and theoretical predictions are found to be in good agree-
ment. To quantify the agreement, we performed a y? test
which is the same as the one used in the inclusive jet cross
section measurements [15,17]. The test treats the system-
atic uncertainties from different sources and uncertainties
on C,_,;, as independent but fully correlated over all m;
bins and yields y?/no. d.o.f. = 21/21.

VI. SEARCH FOR DIJET MASS RESONANCES

We search for narrow mass resonances in the measured
dijet mass spectrum by fitting the measured spectrum to a
smooth functional form and by looking for data points that
show significant excess from the fit. We fit the measured
dijet mass spectrum before the bin-by-bin unfolding cor-
rection is applied. We use the following functional form:

do

- = — y)P1 /yP2tp3In(x)
o = poll = 37

x=mj/\s, (2

where pg, p1, P2, and pj are free parameters. This form fits
well the dijet mass spectra from PYTHIA, HERWIG, and NLO
pQCD predictions. The result of the fit to the measured
dijet mass spectrum is shown in Fig. 2. Equation (2) fits the
measured dijet mass spectrum well with x?/no. d.o.f. =
16/17. We find no evidence for the existence of a resonant
structure, and in the next section we use the data to set
limits on new particle production.

VII. LIMITS ON NEW PARTICLE PRODUCTION

Several theoretical models which predict the existence
of new particles that produce narrow dijet resonances are
considered in this search. For the excited quark ¢* which
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FIG. 2 (color online). (a) The measured dijet mass spectrum
(points) fitted to Eq. (2) (dashed curve). The bin-by-bin unfold-
ing corrections is not applied. Also shown are the predictions
from the excited quark, ¢*, simulations for masses of 300, 500,
700, 900, and 1100 GeV/c?, respectively (solid curves). (b) The
fractional difference between the measured dijet mass distribu-
tion and the fit (points) compared to the predictions for ¢* signals
divided by the fit to the measured dijet mass spectrum (curves).
The inset shows the expanded view in which the vertical scale is
restricted to *£0.04.

decays to gg, we set its couplings to the SM SU(2), U(1),
and SU(3) gauge groups to be f = f' = f, =1 [1], re-
spectively, and the compositeness scale to the mass of ¢*.
For the RS graviton G* that decays into ¢g or gg, we use
the model parameter k/Mp, = 0.1 which determines the
couplings of the graviton to the SM particles. The produc-
tion cross section increases with increasing k/Mp;; how-
ever, values of k/Mp > 0.1 are disfavored theoretically
[38]. For W' and Z’, which decay to ¢g’ and g respec-
tively, we use the SM couplings. The leading-order pro-
duction cross sections of the RS graviton, W/, and Z' are
multiplied by a factor of 1.3 to account for higher-order
effects in the strong coupling constant «, [39]. All these
models are simulated with PYTHIA Tune A. Signal events of
these models from PYTHIA are then passed through the
CDF detector simulation. For all the models considered
in this search, new particle decays into the modes contain-
ing the top quark are neither included in the o predic-
tions nor in the signal dijet mass distribution modeling,
since such decays generally do not lead to the dijet
topology.

The dijet mass distributions from ¢* simulations with
masses 300, 500, 700, 900, and 1100 GeV/ ¢? are shown in
Fig. 2. The dijet mass distributions for the ¢*, RS graviton,
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FIG. 3 (color online). Dijet mass distributions for simulated
signals of the g*, RS graviton, W', and Z' with the mass of
800 GeV/c2.

W', and Z' simulations with the mass of 800 GeV/c? are
shown together in Fig. 3. The shapes of the distributions are
mainly determined by the jet energy resolution and QCD
radiation which leads to tails on the low mass side. Since
the natural width of these particles is substantially smaller
than the width from the jet energy resolution, all the dijet
mass distributions appear similar. However, the dijet mass
resonance distributions are somewhat broader for ¢* and
RS gravitons than for W’ and Z' because ¢* and RS
gravitons can decay into the mode containing gluons,
unlike W’ and Z'. Gluons radiate more than quarks and
tend to make the resulting dijet mass distributions broader.
As a result, the cross section limits obtained based on the
q* and RS graviton resonance shapes are about 20% larger
than those obtained with the W/ and Z’ resonance shapes.

We also consider production of the axigluon A that
decays into gg, Eg diquark D (D¢) that decays into g g
(qq), and color-octet techni-p (prg) that decays into gg or
gg. Their lowest-order theoretical predictions for ¢o*i2 =
o+ B - A are shown in Fig. 4 along with the predictions
for the other models described above as a function of new
particle mass, where o is the new particle production cross
section, B is the branching fraction to dijets, and A is the
kinematical acceptance for each of the leading two jets to
have |y| < 1. In addition, the flavor-universal coloron C
which decays to gg is considered. The cross section for the
coloron is always larger than or equal to that for the
axigluon, so the limits on the axigluon apply to the coloron
as well. For p;g production, predictions are for the mass-
degenerate prg with the standard topcolor-assisted-
technicolor couplings and with the set of parameters in
[40].

We set upper limits on 08¢ = ¢ - B - A as follows. We
use the likelihood function L = [Tw! exp(—up;)/n;!,
where w; = o™¢ L ent¢/nd% + n9P is the predicted
number of events, €; is the event selection efficiency in
the ith dijet mass bin, and n;'® /ngy is the predicted fraction
of signal events in bin i. We model the QCD dijet mass
spectrum with Eq. (2) and extract n?CD by n?CD =L
€uig; * Am;; - do/dm;|;. For each value of o*'¢ we max-
imize the likelihood with respect to the four parameters in
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FIG. 4 (color online). Observed 95% C.L. upper limits on new
particle production cross sections times the branching fraction to
dijets obtained with the signal shapes from (a) W', (b) Z/, (¢) RS
graviton, and (d) ¢* production. Also shown are the cross section
predictions for the production of W', Z', RS graviton, prg, ¢,
axigluon, flavor-universal coloron, and Eg diquark for the set of
parameters described in the text. The limits and theoretical
predictions are for events in which both of the leading two jets
have |y| < 1.

Eq. (2). We integrate this profiled likelihood over Bayesian
priors for the parameters describing the systematic uncer-
tainties [41], and we use a flat prior on o™ to extract
Bayesian upper limits on that parameter. Although this
procedure uses Bayesian techniques, we verified that the
resulting upper limits have good frequentist coverage.
The obtained 95% confidence level (C.L.) limits using
the W', Z', RS graviton, and ¢* signal resonance shapes are
shown in Fig. 4 and Table I as a function of the new particle
mass. Also shown in Fig. 4 are the theoretical predictions
for the various models. For the W/, Z/, ¢*, and RS graviton,
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TABLE I. Observed 95% C.L. upper limits on the new particle
production cross sections times branching fraction to dijets times
the acceptance for both jets to have |y| <1 obtained with the
signal shapes from W/, Z’, RS graviton (G*), and ¢* production.

Mass 95% C.L. o - B+ A (pb)

(GeV/c?) w! z G* q"
260 L1X102 1.1X102 1.5%x10® 1.5x10?
280 8.1x 10" 83x10' 1.2X10% 1.1 X102
300 45x10'  s51x10" 83x10' 6.3x10!
320 28X 100 31X 10" 4.4x10" 42X 10
340 1.8 X100  1.9x 10" 28X 10" 24X 10
360 .0x 10"  1.1x10" 1.6x10' 1.5x 10!
380 8.0x10° 86x10° 1.1x10' 1.0X 10!
400 72X 100 73X 10° 92X 10° 86X 10Y
425 7.1x10°  7.0x10° 82x10° 7.8x10°
460 58X 100 63%x10° 74x10° 7.4x10°
500 39X 100 4.0x10° 55x10° 50X 10°
540 LOX10° 20x10° 3.0x10° 26x10°
580 LOX10°  L1xX10° 1.4X10° 1.3x10°
620 80X 107" 85x 107! 1.0X10° 1.0x 10°
660 7.2x107" 7.6x 107! 88X 107! 84 x 107!
700 6.0x 107! 64x107! 7.8x 107! 73x 107!
750 43%X107! 46x 107! 57x107' 56x 107!
800 27X 107" 29x107! 3.9x 107" 3.7x 107!
850 1.8 X 107! 1.9x 107! 23x107! 23x 107!
900 1.3X107" 1.4x107! 1.7x107! 1.6x 107!
950 12X 107" 1.2x107" 1.4x107' 1.4x 107!
1000 .1x107" 1.1 x107! 1.3x107" 1.2x 107!
1050 89X 1072 94x 1072 1.1X107' 1.0x 107!
1100 6.7X1072 7.1X1072 85X 1072 82X 102
1150 58X 1072 59X1072 7.1X107% 6.9X107?
1200 46X1072 48X 1072 58X 1072 57X1072
1250 3.6 X 1072 3.6X 1072 4.4X107%2 45X 1072
1300 26X 1072 27X 1072 33X 1072 3.4x102
1350 1.8 X 1072 19X 1072 23X 1072 24X1072
1400 14X 1072 1.4X1072 1.6X1072 1.8X 1072

the mass exclusion is determined by comparing the limits
obtained with their respective signal shapes and o*¢ pre-
dictions. For the axigluon, flavor-universal coloron, and E¢
diquark, we compare their o*¢ predictions to the limits
obtained with the ¢* signal shapes; these particles do not
decay into the mode containing a gluon, so their signal
shape would be narrower than that of ¢*, and thus the mass
exclusions obtained with the ¢* signal shapes are conser-
vative. For prg, we compare its ¢*¢ predictions with the
limits obtained using the RS graviton signal shapes. The
prg and RS graviton decay channels are similar; the
branching fraction to the gg state is higher for the RS
gravitons than for pyg, so comparing the limits obtained
using the RS graviton signal shapes to the p;g’s o€
predictions yields a conservative mass exclusion.

The mass exclusion regions obtained in this search are
260 < m < 870 GeV/c? for ¢*, 260 < m < 1250 GeV/c?
for the axigluon and flavor-universal coloron, 290 < m <
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630 GeV/c? for the E4 diquark, 260 < m < 1100 GeV/c?
for prg, 280 < m < 840 GeV/c? for W/, and 320 < m <
740 GeV/c? for Z'. For the RS graviton, this search did not
exclude any mass region. As the mass exclusions from the
previous dijet mass resonance searches [10-12] are m <
775 GeV/c? for g*, m < 980 GeV/c? for the axigluon and
flavor-universal coloron, 290 < m < 420 GeV/c? for the
E¢ diquark, and 260 < m < 480 GeV/c? for prg, this
search provides the most stringent lower mass limits for
these particles. This search also extends the existing mass
exclusions of 300 < m < 800 GeV/c? for W and 400 <
m < 640 GeV/c? for Z' obtained in the previous dijet mass
resonance search [12]. However, the more restrictive mass
exclusions of m <1000 GeV/c? for W' and m <
923 GeV/c? for Z' come from the W/ — ev search [42]
and Z' — et e search [43].

VIII. CONCLUSIONS

In conclusion, we performed a search for new particles
which produce narrow dijet resonances using p p collision
data from 1.13 fb~! of integrated luminosity collected with
the CDF II detector. The measured dijet mass spectrum is
found to be consistent with NLO pQCD predictions based
on recent PDFs and does not show evidence of a mass
resonance from new particle production. We set 95% con-
fidence level upper limits on new particle production cross
sections times the branching fraction to dijets times the
acceptance for both jets to have |y| < 1. We also determine
the mass exclusions for the excited quark, axigluon, flavor-
universal coloron, E4 diquark, color-octet techni-p, W/,
and Z' for a specific representative set of model parame-
ters. This search sets the most stringent lower mass limits
on the excited quark, the axigluon, the flavor-universal
coloron, the E4 diquark, and the color-octet techni-p.
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