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It is shown that observers in the standard ADM 3þ 1 treatment of matter are the same as the observers

used in the matter treatment of Bondi: they are comoving and local Minkowskian. Bondi’s observers are

the basis of the post-quasistatic approximation (PQSA) to study a contracting distribution of matter. This

correspondence suggests the possibility of using the PQSA as a test bed for numerical relativity. The

treatment of matter by the PQSA and its connection with the ADM 3þ 1 treatment are presented, for its

practical use as a calibration tool and as a test bed for numerical relativistic hydrodynamic codes.
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I. INTRODUCTION

Unification in the treatment of matter is desirable in
numerical relativity. The standard way to consider matter
in ADM 3þ 1 and characteristic formulations leads to
flux-conservative equations [1,2]. These procedures are
recognized nowadays as Eulerian [3]. Here it is briefly
reported an unexpected unity provided by an old physical
point of view to deal with matter [4], which combines
Lagrangian and Eulerian observers, called from now on
Bondians. It will be shown below, for the case of spherical
symmetry, that the notion of comoving observers with the
fluid in locally Minkowskian frames, introduced by Bondi,
is exactly the same used in [1]. For slow evolution (qua-
sistaticity) it is possible to extract some general results for
an adiabatic fluid starting from reasonable physical as-
sumptions. Bondi adapted the aforementioned approach
to radiation coordinates to study more realistic nonadia-
batic problems. The Eulerian formulations of numerical
relativity [1,2] actually use Bondian observers in the
mathematical treatment of matter.

In 1980 Herrera and collaborators proposed a seminu-
meric method [5] by elaborating on the original ideas of
Bondi, recently interpreted as the post-quasistatic approxi-
mation (PQSA) [6]. The PQSA starts from any interior
static solution and leads to a system of ordinary differential
equations for quantities evaluated at the boundary surface
of the fluid distribution. The numerical solution of this
system allows the modeling of self-gravitating spheres
whose static limit is the original ‘‘seed’’ solution. The
approach is based on the introduction of conveniently
defined effective variables and heuristic ansatzs, whose
rationale and justification become intelligible within the
context of the PQSA [6]. In the quasistatic approximation,
the effective variables coincide with the physical variables
(pressure and density), the method may be regarded as an
iterative method with each consecutive step corresponding
to a stronger departure from equilibrium. We show here
that the effective variables are exactly the conservative and
flux variables in the standard ADM 3þ 1 formulation.

Quasinormal modes are usually employed as a test bed
for code calibration [7]. Hydrodynamic evolution of poly-

tropic spherical neutron stars can also be used as a test bed
for multidimensional codes [3]. Another possibility is to
follow the evolution just departing equilibrium. The PQSA
can be adapted as a numerical test for more general nu-
merical approaches, not limited to spherical symmetry [8].
Are Bondian observers of relevance for current codes in
ADM 3þ 1 and characteristic formulations of general
relativity? The answer could be useful for new practi-
tioners in the area; we propose the PQSA as a test bed
for numerical relativity.
It what follows we briefly review the ADM 3þ 1 for-

mulation to consider matter. Then, we demonstrate that
Bondian observers are the same as for the ADM 3þ 1
formulation. Finally, we resume the technical details of the
PQSA and propose how it can be used as a test bed for
numerical relativity hydro codes.

II. A 3þ 1 FORMULATION FOR MATTER

An approach for simulating a self-gravitating, relativis-
tic perfect fluid in spherical symmetry, was documented in
[1]. Here we present a summary of that approach to estab-
lish its relation with Bondian observers. Consider a perfect
fluid given by the energy-momentum tensor Tab ¼ ð�þ
pÞuaub þ pgab, where � is the energy density, p is the
pressure, ua is the 4-velocity and gab is the spacetime
metric. The energy density � contains all contributions to
the total energy, which for a perfect fluid include the rest
mass-energy density, �0, and the internal energy density
� ¼ �0 þ �0�, where � is the specific internal energy. We
consider only single-component fluids, and the number
density, n, is simply related to �0 via �0 ¼ n�, where �
is the rest mass of a single fluid particle. The basic equa-
tions of motion for the fluid can be derived from local
conservation of the energy-momentum: Tab

;a ¼ 0 and the

particle number: ðnuaÞ;a ¼ 0, where ‘‘;’’ is the (covariant)
derivative operator compatible with gab. To these conser-
vation laws one must adjoin an equation of state, p ¼
pð�0; �Þ, which, further, must be consistent with the first
law of thermodynamics.
The field equations couple the spacetime geometry,

encoded in the Einstein tensor, Gab, to the energy-
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momentum tensor, Tab, of the spacetime’s matter fields
Gab ¼ 8�Tab. When using the ADM 3þ 1 formalism
(specialized to spherical symmetry) to integrate the
Einstein equations, and choose the polar-areal coordinates
to adopt a polar spherical system ðt; r; �; �Þ, the metric
spacetime is written as

ds2 ¼ �A2dt2 þ B2dr2 þ r2ðd�2 þ sin2�d�2Þ; (1)

where A and B are functions of t and r. In analogy with the
usual Schwarzschild form of the static spherically sym-
metric metric, it is also useful to define the mass aspect
function

mðt; rÞ ¼ r

2
ð1� B�2Þ; (2)

which coincides with the Misner-Sharp mass [9].
The fluid’s coordinate velocity v

v ¼ Bur

Aut
(3)

and the associated Lorentz gamma function,W ¼ Aut, are
related by

W2 ¼ 1

1� v2
: (4)

Defining the conservative variables:

� � ð�þ pÞW2 � p ¼ �þ v2p

1� v2
; (5)

S � ð�þ pÞW2v ¼ ð�þ pÞv
1� v2

(6)

and the flux variable

� � Svþ p ¼ pþ v2�

1� v2
; (7)

the nonzero components of the energy-momentum tensor
are

Tt
t ¼��; Tr

r ¼ �; Tt
r ¼B

A
S; T�

� ¼ T�
� ¼ p: (8)

For the sake of completeness we write the sufficient set
of Einstein equations for the variables A and B given by the
nontrivial component of the momentum constraint (partial
differentiation with respect to any coordinate is denoted by
a comma)

B;t ¼ �4�rAB2S (9)

and by the polar slicing condition, which follows from the
demand that metric should have the form (1) for all t:

ðlnAÞ;r ¼ B2

�
4�r�þ m

r2

�
: (10)

An additional equation for B,

B;r ¼ B3

�
4�r�� m

r2

�
; (11)

follows from the Hamiltonian constraint.
When the equation of state is not a function of the

number density, the time evolution of an ultrarelativistic

perfect fluid is completely determined by the conservation
of the stress-energy tensor. The fluid equations of motion
can be written in conservative form. We define two vectors,
q̂ and ŵ, which are the conservative and primitive varia-
bles, respectively [1],

q̂ � �
S

� �
; ŵ � p

v

� �
: (12)

Also, a flux vector, f̂, and a source vector, ŝ, are

f̂ � S
�

� �
; ŝ � 0

	

� �
; (13)

with

	 ¼ �þ 2
A2p

B2r
; (14)

where

� ¼ A2B2

�
ðSv� �Þ

�
8�rpþ m

r2

�
þ p

m

r2

�
: (15)

Clearly in the Minkowskian case 	 ¼ 2p=r. We write now
the fluid equations of motion in the conservative form

q̂ ;t þ 1

r2
½r2Xf̂�;r ¼ ŝ; (16)

where X ¼ A=B. We will show now how this approach to
3þ 1 Numerical Relativity is related to Bondi’s approach.

III. BONDIAN OBSERVERS

In order to give physical significance to the variables �
and p, we follow [4] to introduce purely local Minkowski
coordinates ðT; x; y; zÞ by
dT¼ Adt; dx¼Bdr; dy¼ rd�; dz¼ r sin�d�:

(17)

Next we suppose that when viewed by an observer moving
relative to these coordinates with velocity ! in the radial
(x) direction, the physical content of space consists of:

� 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

0
BBB@

1
CCCA: (18)

A Lorentz transformation readily leads us to (8) if ! ¼ v,
where

! ¼ dx

dT
¼ B

A

dr

dt
: (19)

Now it is clear that v is the local radial velocity and dr=dt
is the matter velocity from Bondi’s point of view; both are
velocities of a fluid element. It makes sense because ua ¼
dxa=ds (see Eq. (3)), so that dr=dt is also a coordinate
velocity. Thus, observers that measure � and p are comov-
ing with the fluid and local-Minkowskian. Note that we
specialize here to the adiabatic case to simplify the pre-
sentation and to compare with the ADM 3þ 1 approach.
Also note that jvj< 1 because this is the velocity measured
by a Lorentzian observer.
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From (2) and (11) we get

m;r ¼ 4�r2�; (20)

which can be easily integrated for any time. Using this
integration in the momentum constraint (9) we obtain

dm

dt
¼ �4�r2p

dr

dt
; (21)

which is an energy equation (the power), showing clearly
how the fluid pressure does work on a material sphere
across its moving boundary, as Bondi pointed many years
ago. It can be easily shown that this last equation is exactly
the first integral of the homogeneous equation of motion in
the conservative form (16).

The field equation 8�T�
� ¼ 8�T�

� ¼ G�
� ¼ G�

� which

reads explicitly

8�p ¼ 1

B2

�
A;rr

A
þ A;r

A

B;r

B
þ 1

r

�
A;r

A
� B;r

B

��

� 1

A2

�
1

B

�
B;tt � B2

;t

B

�
þ B;t

B

�
B;t

B
� A;t

A

��
; (22)

can be written in many ways. To get some physical insight
we can write it as a generalization of the well known
Tolman-Oppenheimer-Volkoff (TOV) equation for hydro-
static support [5,10], or equivalently, as an equation of
motion for the fluid in conservative form (16), modulo
Bianchi identities.

We have to satisfy some boundary conditions to match
the interior (dynamic) solution with the exterior one, which
is static by virtue of the Birkoff theorem. The boundary
conditions at some moving radius are that of Darmois-
Lichnerowicz [11,12]. They are briefly discussed in the
next section.

IV. POST-QUASI-STATIC APPROXIMATION

The PQSAwas documented in [6]; it has its origin in the
pioneering work of Bondi [4] and in an extension of it
known as the HJR method [5]. In this last work the bound-
ary conditions are clearly treated and are crucial to solve
the field equations as a system of ordinary differential
equations. Here we point out the technical details and its
connection with the ADM 3þ 1 formulation.

A. Matching conditions

Outside of the fluid distribution, the spacetime is that of
Schwarzschild. In order to match smoothly the two metrics
at the surface r ¼ r�ðtÞ, we require the continuity of the
first fundamental form. It follows that

A� ¼ B�1
� ¼ ð1� 2m�=r�Þ1=2; (23)

where the subscript � indicates the boundary of the distri-
bution and m� is the total mass. Now, the continuity of the
second fundamental form leads us to

p� ¼ 0; (24)

which expresses the continuity of the pressure at the sur-
face of the matter distribution. In case of dissipation, that
is, heat flow or/and viscosity, the pressure is not continuous
anymore [6].

B. Identification of effective variables in 3þ 1

We adapt the PQSA to the contraction of adiabatic
spheres, identifying the conservative and flux variables �
and � with the effective variables ~� and ~p in [6], respec-
tively, which are the energy density and pressure in the
static limit. If we know the radial dependence for these
variables the Hamiltonian constraint and the polar slicing
condition can be readily integrated to obtain

m ¼
Z r

0
4�r2�dr (25)

and

ln

�
A

A�

�
¼

Z r

r�

ð4�r3�þmÞ
rðr� 2mÞ dr: (26)

Now, we write (22) as

�;r þ ð�þ �Þð4�r3�þmÞ
rðr� 2mÞ þ 2

r
ð�� pÞ

¼ e�


4�rðr� 2mÞ
�
m;tt þ 3m2

;t

r� 2m
�m;t
;t

2

�
; (27)

which is the generalized TOV [5,10]. This equation is
exactly the same inhomogeneous equation of motion for
the fluid in a conservative form (16). To see this corre-
spondence we have to keep in mind that �� � ¼ p� �
and ��� p� ¼ S2. We write Eq. (27) here to establish a
connection between the ADM 3þ 1 procedure and the
PQSA algorithm. It is clear that this TOV is general in
the adiabatic context.

C. Protocol (adiabatic case)

Let us outline here the method [6]:1. Take an interior
solution to Einstein equations, representing a fluid distri-
bution of matter in equilibrium, with a given �st ¼ �ðrÞ
and pst ¼ pðrÞ. 2. Assume that the r dependence of � and �
is the same as that of pst and �st, respectively. 3. Using
Eqs. (25) and (26), with the r dependence of � and �, one
gets m and A up to some functions of t, which will be
specified below. 4. For these functions of t one has three
ordinary differential equations (hereafter referred to as
surface equations), namely, Eqs. (19), (21), and (27) eval-
uated on r ¼ r�. 5. Once the system of surface equations is
determined, it may be integrated for any particular initial
data set. 6. Feeding back the result of integration in the
expressions for m and A, these two functions are com-
pletely determined. 7. With the input from the point 6
above, and using the field equations, all the physical var-
iables may be found for any piece of the matter
distribution.
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D. Incompressible fluid as example

Following the PQSA protocol outlined above, we take
an interior solution representing a fluid distribution of
matter in equilibrium. Now, we recall a Schwarzschild-
like model, which corresponds to an incompressible fluid
(see [6] for details) in the static case. If a 3þ 1matter code
is tested it needs as initial-boundary conditions: � ¼ �ðt ¼
0; rÞ, S ¼ Sðt ¼ 0; rÞ, Sðt; r ¼ 0Þ ¼ 0. In this example no
expansion of � near r ¼ 0 is required because for this
model � ¼ 3m�=4�r

3
�
for any r, in accordance with in-

compressibility. Once the system of ordinary differential
equations at the surface is integrated we can, following the
protocol, get the ADM 3þ 1 variable S at the initial slice.
As a matter of fact we can monitor any other geometrical or
physical variable from the PQSA to compare with the
ADM 3þ 1 implementation. This example is not deprived
of physical interest because we have enough cumulative
evidence that in general the fluid behaves incompressibly
near r ¼ 0.

V. AS A TEST BED

Bondian observers can be at rest at infinity (as in comov-
ing coordinates) or at a local-Minkowskian frame. To deal
with radiation the proper observers are far from the source
(r ! 1), to deal with matter they are in the bounded
source. Bondi’s treatment of matter combines Lagrangian
local physics with Eulerian global physics in a unambig-
uous manner. As a final result, it naively looks like purely
Eulerian, but here we have shown that it actually is a
combination of Lagrangian and Eulerian observers.

We have confidence that the PQSA is a good description
up to when the system is just departing from equilibrium.
The system always recovers equilibrium by virtue of the
PQSA. If stronger departure from equilibrium -towards
collapse- is desired we have to activate the iterative nature
of the method: the post-post-quasistatic approximation,
assuming that the effective variables now share the same
radial dependence as that of the physical variables just
obtained, and so on. In this seminumerical approach

matching across the surface distribution is clearly done,
leading to a system of ordinary differential equations
which determine the dynamics from initial conditions.
The key of the algorithm is an ansatz, based on a specific
definition of the PQSA. Namely, considering different
degrees of departure from equilibrium, the post-quasistatic
regime (i.e. the next step after the quasistatic situation) is
defined as that characterized by metric functions whose
radial dependence is the same as that of the quasistatic
regime. This in turn implies that some effective variables
share the same radial dependence as the corresponding
physical variables of the quasistatic regime. Thus, starting
with a static configuration, the first ‘‘level’’ off equilib-
rium, beyond the quasistatic situation, is represented by the
post-quasistatic regime. Once the static (seed) solution has
been selected, the definition of the effective variables
together with surface equations allows for determination
of metric functions, which in turn leads to the full descrip-
tion of physical variables as functions of the timelike
coordinate, for any region of the sphere.
The PQSA can be a test bed for a code which must

satisfy these conditions: i) smooth matching across the
boundary; ii) an equation of state or a relationship between
conservative and flux variables (effective variables); iii) an
exact departure from the same initial conditions; iv) near
the central geodesic, the PQSA is general enough to give
the dynamic boundary conditions at any time.
Now we know that in the standard characteristic treat-

ment of matter the physical variables are measured by
Bondian observers as well [2]. Because of this new view,
we are developing an alternative code which couples mat-
ter with scalar radiation, where a PQSA code is used as a
tool of calibration and as a test bed. These and other results
will be reported elsewhere.
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Phys. 14, 235 (1990).

[6] L. Herrera, W. Barreto, A. Di Prisco, and N.O. Santos,
Phys. Rev. D 65, 104004 (2002).

[7] H.-P. Nollert, Classical Quantum Gravity 16, R159 (1999);
H.-P. Nollert and B.G. Schmidt, Phys. Rev. D 45, 2617

(1992); K. Kokkotas and B.G. Schmidt, Living Rev.
Relativity 2, 2 (1999); R. Konoplya, J. Phys. Stud. 8, 93
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