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Motivated by the isomorphism between ospð4j6Þ superalgebra and D ¼ 3 N ¼ 6 superconformal

algebra we consider the superstring action on the AdS4 � CP3 background parametrized by D ¼ 3N ¼
6 super-Poincare and CP3 coordinates supplemented by the coordinates corresponding to dilatation and

superconformal generators. The relation between the degeneracy of fermionic equations of motion and the

action �-invariance in the framework of the supercoset approach is also discussed.
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I. INTRODUCTION

The idea of gauge/string correspondence has been ela-
borated since the early days of string theory. During the last
decade significant progress has been attained in under-
standing the duality [1–3] between the D ¼ 4 N ¼ 4
super-Yang-Mills theory and string theory on an AdS5 �
S5 background. A recently novel example of the gauge/
string correspondence has been proposed [4] involving the
superconformal D ¼ 3 N ¼ 6 Chern-Simons-matter the-
ory [5] with the gauge group UðNÞ �UðNÞ and level k and
M-theory on an AdS4 � ðS7=ZkÞ background. In the
t’Hooft limit N, k ! 1 with � ¼ N=k fixed the field
theory can be effectively described by the IIA superstring
on an AdS4 � CP3 background.

For both dualities one of the main unsolved problems is
to quantize corresponding superstring models. The full
action for the Green-Schwarz (GS) superstring on AdS5 �
S5 was constructed in [7,8] on the symmetry grounds using
that AdS5 � S5 is the maximally supersymmetric back-
ground of Type IIB supergravity and that all bosonic and
fermionic degrees of freedom fit into the supercoset space
PSUð2; 2j4Þ=ðSOð1; 4Þ � SOð5ÞÞ. It was then discovered
[9] that such full action is classically integrable extending
the previous result [10] for the bosonic model. This stimu-
lated application of the methods developed for the inves-
tigation of integrable systems [11]. However, the
nonlinearity of the superstring action even after the exclu-
sion of the pure gauge degrees of freedom still precludes
from solving the quantization problem and motivates ap-
plication of the approximate methods [13,14].

To obtain the superstring action on an AdS4 � CP3

background including the fermions it has been suggested
in [16,17] to apply the supercoset method of [7]. The main
observation is that the bosonic degrees of freedom fit into
the bosonic body ðSpð4Þ=SOð1; 3ÞÞ � ðSOð6Þ=Uð3ÞÞ of the
supercoset space OSpð4j6Þ=ðSOð1; 3Þ �Uð3ÞÞ that also
allows to accommodate 24 fermions equal in number to
the supersymmetries preserved by the AdS4 � CP3 back-

ground. It was shown [16] that such superstring action
involving 24 fermions is invariant under the 8-parameter
�-symmetry transformations and is classically integrable.
Similarly to the AdS5 � S5 superstring the original su-

perstring action on AdS4 � CP3 was given in the AdS
basis for the Cartan forms with the appropriate choice of
the supercoset element. The isomorphism between the
AdS4 algebra and conformal algebra in 1þ 2 dimensions
suggests considering also the superstring action in the
conformal basis [20]. Choosing theOSpð4j6Þ=ðSOð1; 3Þ �
Uð3ÞÞ supercoset representative parametrized by theD ¼ 3
N ¼ 6 superspace coordinates, CP3 coordinates and
those associated with the dilatation and superconformal
generators yields the action with manifest D ¼ 3 N ¼ 6
super-Poincare symmetry that is the subgroup of the sym-
metry group on the field theory side of the duality [4,23].
It should be noted that despite the fact that the super-

coset action on the AdS4 � CP3 background has clear
group-theoretical structure, involves the correct number
of physical degrees of freedom and is classically inte-
grable, unlike the supercoset action on AdS5 � S5, it can-
not describe all possible superstring motions, as was
already observed in [16]. To study such string configura-
tions the explicit form of the action depending on all 32
fermionic variables is needed that in turn requires to elabo-
rate on the full superspace solution of the IIA supergravity
on AdS4 � CP3 [24]. However, whether such full-fledged
action for the IIA superstring on AdS4 � CP3 inherits the
integrability property remains unknown.
In Sec. II we discuss the properties of the superstring

action on the supercoset space OSpð4j6Þ=ðSOð1; 3Þ �
Uð3ÞÞ. In particular, the equations of motion for the fermi-
ons are cast into the form close to that derived in the
conventional GS approach [25], and it is proved that in
the general case 8 of 24 equations are trivial. So that the
�-symmetry already manifests itself at the level of the
equations of motion. This degeneracy of the equations of
motion for the fermions traces back to the form of the
anticommutators of the fermionic generators of D ¼ 3
N ¼ 6 superconformal algebra. We also give the repre-
sentation for the �-symmetry transformations, that allows
to gauge away 1

3 of the fermionic degrees of freedom, in the
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form amenable for comparison with the GS �-symmetry
transformations that remove 1

2 of the fermions.

In Sec. III we derive the explicit expressions for the
Cartan forms in the conformal basis starting from the
OSpð4j6Þ=ðSOð1; 3Þ �Uð3ÞÞ supercoset element and use
them to write the superstring action in the form with
manifest D ¼ 3 N ¼ 6 super-Poincare symmetry. The
possibility of fixing the gauge freedom related to the 8-
parameter �-symmetry is discussed.

In the Appendixes the relevant properties of spinors and
�-matrices in D ¼ 2þ 3, D ¼ 1þ 3 and D ¼ 1þ 2 di-
mensions are summarized, and details on the isomorphism
between the ospð4j6Þ superalgebra and D ¼ 3 N ¼ 6
superconformal algebra are given.

II. SUPERSTRING ACTION IN THE SUPERCOSET
APPROACH: EQUATIONS OF MOTION AND

�-SYMMETRY

The starting point is the OSpð4j6Þ=ðSOð1; 3Þ �Uð3ÞÞ
supercoset element G that is used to define the left-
invariant Cartan 1-forms

G �1dG ¼ GmnðdÞMmn þ�
î
ĵðdÞV

ĵ
î þ F�

a ðdÞOa
�

þ �F�aðdÞ �O�a: (1)

The bosonic 1-forms GmnðdÞ, m, n ¼ 00; 0; :::; 3 are asso-

ciated with the soð2; 3Þ � spð4Þ generators Mmn that can

be split into the soð1; 3Þ generatorsMm0n0 ,m0, n0 ¼ 0; . . . ; 3

and the soð2; 3Þ=soð1; 3Þ coset generators M00m0
that cor-

responds to representing the soð2; 3Þ algebra as the AdS4
one. Accordingly the 1-forms Gm0n0 ðdÞ define the soð1; 3Þ
connection and G00m0 ðdÞ the AdS4 veirbein. Analogously

the Cartan forms �
î
ĵðdÞ, î, ĵ ¼ 1; . . . ; 4

�
î
ĵ ¼ �a

b �a
4

�4
b �4

4

� �
; �4

4 ¼ ��a
a (2)

can be split into the 1-forms �a
bðdÞ corresponding to the

uð3Þ generators Va
b and the 1-forms �4

aðdÞ, �a
4ðdÞ re-

lated to the suð4Þ=uð3Þ coset generators Va
4, V4

a. These
forms define the uð3Þ connection and the CP3 vielbein,
respectively. The fermionic 1-forms F�

a ðdÞ and �F�aðdÞ are
related to the ospð4j6Þ odd generators Oa

�, �O�a carrying
the D ¼ 2þ 3 Majorana spinor index � ¼ 1; . . . ; 4 and
transforming in the vector representation of SOð6Þ that
decomposes as 3 � �3 with respect to SUð3Þ (see
Appendix B). By construction the Cartan forms (1) satisfy
the Maurer-Cartan (MC) equations that can be schemati-
cally written as

d!A þ 1

2
!BðdÞ ^!CðdÞfCBA ¼ 0; (3)

where fCBA are the structure constants of the ospð4j6Þ
superalgebra.

Under the discrete automorphism � of the ospð4j6Þ
superalgebra the soð1; 3Þ and uð3Þ generators are inert,
while the remaining bosonic generators change the sign

�ðM00m0 Þ ¼ �M00m0
, �ðVa

4Þ ¼ �Va
4, �ðV4

aÞ ¼ �V4
a.

The fermionic generators transform as �ðOa
�Þ ¼ iOa

�,
�ð �O�aÞ ¼ �i �O�a. These transformations of the ospð4j6Þ
generators induce transformations of the associated Cartan
forms and serve as the guide to construct the Z4-invariant
superstring action

S ¼ � 1

2

Z
d2�

ffiffiffiffiffiffiffi�g
p

gijðGi00
m0
Gj00m0 þ�ia

4�j4
aÞ

þ SWZ; (4)

where the Wess-Zumino term is given by the wedge prod-
uct of the fermionic Cartan forms [26,27]

S WZ ¼ i

2
"ij

Z
d2�F�

iaC
0
��

�F�a
j : (5)

Two summands entering the kinetic term correspond to the
AdS4 and CP3 parts of the background. The WZ term
involves the D ¼ 1þ 3 charge conjugation matrix C0

��.

The superstring Lagrangian is constructed out of the
world-sheet projections of Cartan 1-forms; thus to find its
variation it is necessary to consider the variations of rele-
vant 1-forms. Using the general formula for the variation of
a form

�FðdÞ ¼ dði�FðdÞÞ þ i�ðdFðdÞÞ (6)

in the second summand one substitutes the MC equations

dG00m0 �2Gm0
n0 ðdÞ^G00n0 ðdÞ� iF�

a ðdÞ^�00m0
��

�F�aðdÞ¼0;

(7)

d�a
4þi�þa

bðdÞ^�b
4ðdÞ�"abc �F

�bðdÞ^C��
�F�cðdÞ¼0;

(8)

d�4
aþ i�4

bðdÞ^�þb
aðdÞþ"abcF�

b ðdÞ^C��F
�
c ðdÞ¼ 0;

(9)

dF�
a þ 1

2
F�
a ðdÞ ^GmnðdÞ�mn

�
� þ i��a

bðdÞ ^ F�
b ðdÞ

þ i"acb�4
cðdÞ ^ �F�bðdÞ ¼ 0; (10)

d �F�a þ 1

2
�F�aðdÞ ^GmnðdÞ�mn

�
� þ i �F�bðdÞ ^��b

aðdÞ
� i"acb�c

4ðdÞ ^ F�
b ðdÞ ¼ 0; (11)

where GmnðdÞ�mn
�
� ¼ 2G00m0 ðdÞ�00m0

�
� þ

Gm0n0 ðdÞ�m0n0
�
� and ��a

bðdÞ ¼ �a
bðdÞ � �b

a�c
cðdÞ are

the soð2; 3Þ and uð3Þ � uð1Þ connections. Then the varia-
tion of the 1-forms entering the action (4) acquires the form
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�G00m0 ðdÞ ¼ dG00m0 ð�Þ þ 2Gm0
n0 ðdÞG00n0 ð�Þ

� 2Gm0
n0 ð�ÞG00n0 ðdÞ þ iF�

a ðdÞ�00m0
��

�F�að�Þ
� iF�

a ð�Þ�00m0
��

�F�aðdÞ; (12)

��a
4ðdÞ ¼ d�a

4ð�Þ � i�þa
bðdÞ�b

4ð�Þ
þ i�þa

bð�Þ�b
4ðdÞ þ 2"abc �F

�bðdÞC��
�F�cð�Þ;
(13)

��4
aðdÞ ¼ d�4

að�Þ � i�4
bðdÞ�þb

að�Þ
þ i�4

bð�Þ�þb
aðdÞ � 2"abcF�

b ðdÞC��F
�
c ð�Þ;
(14)

�F�
a ðdÞ ¼ dF�

a ð�Þ � 1

2
F�
a ðdÞGmnð�Þ�mn

�
�

þ 1

2
F�
a ð�ÞGmnðdÞ�mn

�
� � i��a

bðdÞF�
b ð�Þ

þ i��a
bð�ÞF�

b ðdÞ � i"acb�4
cðdÞ �F�bð�Þ

þ i"acb�4
cð�Þ �F�bðdÞ; (15)

� �F�aðdÞ ¼ d �F�að�Þ � 1

2
�F�aðdÞGmnð�Þ�mn

�
�

þ 1

2
�F�að�ÞGmnðdÞ�mn

�
� � i �F�bðdÞ��b

að�Þ
þ i �F�bð�Þ��b

aðdÞ þ i"acb�c
4ðdÞF�

b ð�Þ
� i"acb�c

4ð�ÞF�
b ðdÞ: (16)

Since of the utmost importance is the �-invariance of the
superstring action (4) we concentrate on the fermionic
contribution to the variation of the action

�Sjf ¼
Z

d2�ð �F �â
fþgiV

ij
þMj�â

�b̂C��F
�

fþgb̂ð�Þ

þ �F �â
f�giV

ij�Mj�â
�b̂C��F

�

f�gb̂ð�ÞÞ; (17)

where

Mi�â
�b̂ ¼ �i�b

aGi00m0�00m0
�
� ��

�"acb�i4
c

���
�"acb�ic

4 �i�a
bGi00m0�00m0

�
�

 !
:

(18)

The expression (17) analogous to the GS superstring case
[25] involves the world-sheet projectors

Vij
� ¼ 1

2
ð ffiffiffiffiffiffiffi�g
p

gij � "ijÞ (19)

obeying the relations

Vij
þ þ Vij� ¼ ffiffiffiffiffiffiffi�g

p
gij; Vik�gklV

jl
� ¼ 0;

Vik�gklV
lj
� ¼ ffiffiffiffiffiffiffi�g

p
Vij
�; Vij

�Vkl� ¼ Vkj
�Vil�:

(20)

The fermionic variation parameters and the world-sheet

projections of Cartan forms have been grouped as follows:

F �
f�gâð�Þ ¼

F�
ð�Það�Þ
�F�a
ð�Þð�Þ

 !
(21)

and

�F �â
f�gi ¼

�F�a
ð�Þi

F�
ð�Þia

 !
: (22)

They include chiral in the D ¼ 1þ 3 dimensional sense
spinors F�

ð�Það�Þ, F�
ð�Þia and their conjugates �F�a

ð�Þð�Þ, �F�a
ð�Þi

[28]. The chiral projectors are defined as

P�
þ� ¼ 1

2
ð��

� þ C��C0
��Þ;

P�
�� ¼ ðP�

þ�Þ� ¼
1

2
ð��

� � C��C0
��Þ

(23)

and satisfy the requisite properties

Pþ þ P� ¼ I; P�P� ¼ P�;

PþP� ¼ P�Pþ ¼ 0;
(24)

because of the relation

C��C0
��C

��C0
�� ¼ ��

� : (25)

The definition (23) is justified by the fact that C��C0
�� is

related to the 4d matrix �5
�
�

C��C0
�� ¼ iC0���5

�
�C0

��: (26)

To derive (17) we have also used the following properties
of chiral projectors (23):

P�
��C��P

�
�� ¼ 0; P�

���
00m0
�� P�

�� ¼ 0: (27)

The variation (17) determines the equations of motion
for the fermions

Vij
�MT�â

j �b̂
�F �b̂
f�gi ¼ 0: (28)

To find whether all of the Eqs. (28) are nontrivial we need
to compute the rank of MT�â

j �b̂

MT�â
j �b̂

¼ �i�a
bGj00m0�00m0�

� ��
�"

acb�jc
4

���
�"acb�j4

c �i�b
aGj00m0�00m0�

�

 !
(29)

on shell of the Virasoro constraints

�S
�gijð�Þ ¼ Gi00m0Gj00

m0 þ 1

2
ð�ia

4�j4
a þ�ja

4�i4
aÞ

� 1

2
gijg

klðGk00m0Gl00
m0 þ�ka

4�l4
aÞ ¼ 0: (30)

In Eqs. (28) the 2d vector index of MT�â
j �b̂

is acted by the

world-sheet projectors (19) so that only one of its compo-
nents out of two is independent. This can be illustrated, for
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instance, by the action of Vij
� on a vector Fj that can be

presented as

Vij
�Fj ¼ Vi�F�	; Vi� ¼ 1

2

1ffiffiffiffiffi�g
p

g	
�1ffiffiffiffiffi�g
p

g		

 !
;

F�	 ¼ ffiffiffiffiffiffiffi�g
p

g		F	 þ ð ffiffiffiffiffiffiffi�g
p

g	
 � 1ÞF
:

(31)

Similarly the result of Vij
� projector action on the Virasoro

constraints (30) reads

Vik�V
jl
�

�S
�gklð�Þ ¼ Vi�V

j
�ðG�	00m0G�	00

m0 þ��	a
4��	4

aÞ

¼ 0: (32)

Then one observes that the matrix G�	00m0�00m0�
� is non-

singular

G�	00m0�00m0�
�G�	00n0�

00n0�
� ¼ G�	�	�

�
�; (33)

where G�	�	 ¼ G�	00m0G�	00
m0
. This allows by the rank

preserving transformation to bring MT to the triangular
form

�i�a
bG�	00m0�00m0�

� ��
�"

acb��	c
4

0 i
��	a

4��	4
b

G�	�	
G�	00m0�00m0�

�

0@ 1A:
(34)

Since the rank of the 3� 3 matrix ��	a
4��	4

b is unity
[29], the rank of MT equals 4� 3þ 4� 1 ¼ 16. As a
result 8 out of 24 equations (28) are trivial and this implies
via the second Noether theorem the 8-parameter fermionic
symmetry of the action (4). The crucial distinction of the
supercoset string model [16] from the GS superstring on
flat background [25] and on AdS5 � S5 [7] is that the
�-symmetry can gauge away only 1

3 of the fermions rather

than 1
2 . This is attributed to the fact that the action (4) could

be obtained by the partial �-symmetry gauge fixing from
the full action containing 32 fermionic degrees of freedom,
and the 8-parameter fermionic symmetry of (4) is the
remnant of the 16-parameter symmetry of that full action
[31].
It is worthwhile to note that the matrix M can be

obtained starting from the matrix of the anticommutators
of the fermionic generators of the ospð4j6Þ superalgebra

f �O�a;O
b
�g f �O�a; �O�bg

fOa
�;O

b
�g fOa

�; �O�bg
 !

: (35)

Substituting the explicit expressions for its entries (see
Appendix B)

�i�b
a�

mn
��Mmn þ 2C��ðVa

b � �b
aVc

cÞ 2C��"acbV4
c

�2C��"
acbVc

4 �i�a
b�

mn
��Mmn � 2C��ðVb

a � �a
bVc

cÞ
 !

(36)

and replacing the soð2; 3Þ=soð1; 3Þ and suð4Þ=uð3Þ coset
generators by the Cartan forms M00m0 ! G00m0 ðdÞ, Va

4 !
�a

4ðdÞ, V4
a ! �4

aðdÞ yields up to the overall factor the
entries of the matrix M. This is of course the anticipated
result since the action variation is determined by the varia-
tion of Cartan forms that in turn depends on the structure
constants of the ospð4j6Þ superalgebra. However, this ob-
servation could be of more use when applied backwards:
starting from the matrix composed of the anticommutators
of the fermionic generators of the isometry superalgebra
for some superbackground, whose bosonic part can be
presented as the coset space, one can study the degeneracy
of such a matrix to find whether the corresponding string

model, constructed using the supercoset approach, will be
�-invariant.
Let us consider the �-invariance property of the action

(4) in more detail. An equal number of physical and pure
gauge fermions in the GS superstring implied that the same
matrix with the space-time spinor indices was present both
in the equations of motion for the fermions and the
�-symmetry transformation rules. However, in the present
case MT cannot directly appear in the �-transformations
because it is required that the matrix of the rank 8 single
out the requisite number of independent transformation
parameters. Such a matrix can be constructed as the
second-order polynomial in the world-sheet projections
of Cartan 1-forms [16]

K �b̂
ijâ� ¼ ��

�ðGi00
m0
Gj00m0�b

a þ�ia
4�j4

bÞ iGi00m0�00m0�
�"acb�j4

c

�iGi00m0�00m0�
�"

acb�jc
4 ��

�ðGi00
m0
Gj00m0�a

b þ�i4
a�jb

4Þ
 !

(37)

and is used in the �-symmetry transformation rules for the fermionic 1-forms

F �
f�gâð��Þ ¼ Vij�Vkl�K �b̂

jlâ�ß
�

f�gb̂ik; F �
fþgâð��Þ ¼ Vij

þVklþK �b̂
jlâ�eß�fþgb̂ik: (38)

As the bosonic forms are inert under the �-symmetry [32]
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G00m0 ð��Þ ¼ 0; �4
að��Þ ¼ 0; �a

4ð��Þ ¼ 0;

(39)

the �-variation of the action (4) obtained by the substitu-
tion of (38) into (17) is compensated by the variation of the
auxiliary 2d metric

��ð ffiffiffiffiffiffiffi�g
p

gijÞ ¼ 2ið �F �â
f�gkV

kl�Gl00m0�00m0
�� Vii0þVjj0

þ ß�f�gâi0j0

þ �F �â
fþgkV

klþGl00m0�00m0
�� Vii0�Vjj0� ~ß�fþgâi0j0 Þ:

(40)

The polynomial structure of K requires the parameters of
the �-transformation ß�f�gâij, ~ß

�
fþgâij to carry the pair of the

world-sheet vector indices instead of one as in the GS case
and to satisfy the (anti)self-duality constraints in each
index

1ffiffiffiffiffiffiffi�g
p gijV

jk
þß�f�gâkl ¼

1ffiffiffiffiffiffiffi�g
p gljV

jk
þß�f�gâik ¼ ß�f�gâil; (41)

and

1ffiffiffiffiffiffiffi�g
p gijV

jk� eß�fþgâkl ¼
1ffiffiffiffiffiffiffi�g

p gljV
jk� eß�fþgâik ¼ eß�fþgâil: (42)

On the constraint shell defined by the Virasoro con-
straints (30) the rank of the �-transformations equals 8 so
that only 1

3 parameters act nontrivially. Note that in the

�-symmetry transformation rules (38) the 2d vector indices
of the matrix K are contracted with the world-sheet pro-

jectors Vij
� so only one independent component of 4 re-

mains. Thus to find the rank of K �b̂
�	�	â� one can solve the

eigenvalue problem that amounts to computing the deter-
minant of K � �I using its block structure

detðK � �IÞ ¼ det
A�b
a� B�

a �b

C�ab
� D�a

�b

 !
¼ detA detðD� CA�1BÞ; (43)

where

A�b
a� ¼ ��

�Aa
b;

Aa
b ¼ ðG�	�	 � �Þ�b

a þ��	a
4��	4

b;

D�a
�b ¼ ��

�ððG�	�	 � �Þ�a
b þ��	4

a��	b
4Þ;

B�
a�b ¼ iG�	00m0�00m0�

�"acb��	4
c;

C�ab
� ¼ �iG�	00m0�00m0�

�"
acb��	c

4: (44)

The addition of �I renders the matrix Aa
b nonsingular,

detA ¼ ��ðG�	�	 � �Þ2, and its inverse is given by

A�1
b
a ¼ 1

�ðG�	�	 � �Þ ð��
a
b þ��	b

4��	4
aÞ: (45)

Then the calculation yields that

detðK � �IÞ ¼ �16ð�� 2G�	�	Þ8 ¼ 0: (46)

One finds that 8 of 24 eigenvalues ofK are nonzero proving
that its rank indeed equals 8. So that the matricesM and K
are complementary in the sense that rankMþ rankK ¼
24.

III. SUPERSTRING ACTION IN THE CONFORMAL
BASIS

The introduction of the (1þ 2)-dimensional supercon-
formal group generators (B13) and (B23) (see Appendix B)
implies via (1) the introduction of the corresponding 1-
forms in the conformal basis

�ðdÞ ¼ G003ðdÞ; !̂mðdÞ ¼ �ðG00mðdÞ þG3mðdÞÞ;
ĉmðdÞ ¼ G3mðdÞ �G00mðdÞ; m ¼ 0; 1; 2 (47)

and

F�
a ðdÞ ¼ !̂

�
a

�̂�a

 !
; �F�aðdÞ ¼ �̂!�a

�̂�a
�

 !
: (48)

So that the expression (1) acquires the form

G �1dG ¼ GmnðdÞMmn þ !̂mðdÞPm þ ĉmðdÞKm

þ �ðdÞDþ�a
bðdÞVb

a þ�a
4ðdÞV4

a

þ�4
aðdÞVa

4 þ�4
4ðdÞV4

4 þ !̂
�
a ðdÞQa

�

þ �̂!�aðdÞ �Q�a þ �̂�aðdÞS�a þ �̂�a
�ðdÞ �S�a :

(49)

It follows from (4) and the definition (47) and (48) that the
Cartan forms !̂mðdÞ, ĉmðdÞ, �ðdÞ and !̂�

a ðdÞ, �̂!�aðdÞ,
�̂�aðdÞ, �̂�a

�ðdÞ enter the superstring action. Relevant MC

equations in the conformal basis read
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d!̂m � 2�ðdÞ ^ !̂mðdÞ � 2Gm
nðdÞ ^ !̂nðdÞ þ 2i!̂

�
a ðdÞ ^ 
m

�
�̂!aðdÞ ¼ 0;

dĉm þ 2�ðdÞ ^ ĉmðdÞ � 2Gm
nðdÞ ^ ĉnðdÞ þ 2i�̂�aðdÞ ^ ~
m� �̂�a

ðdÞ ¼ 0;

d�� !̂mðdÞ ^ ĉmðdÞ � ið �̂!�aðdÞ ^ �̂�aðdÞ þ !̂�
a ðdÞ ^ �̂�a

�ðdÞÞ ¼ 0;

d�a
4 þ i�þa

bðdÞ ^�b
4ðdÞ � 2"abc �̂!

�bðdÞ ^ �̂�c
�ðdÞ ¼ 0;

d�4
a þ i�4

bðdÞ ^�þb
aðdÞ þ 2"abc!̂�

b ðdÞ ^ �̂�cðdÞ ¼ 0; (50)

and

d!̂�
â ��ðdÞ ^ !̂�

â ðdÞ þ
1

2
!̂

âðdÞ ^GmnðdÞ
mn

�

þ !̂mðdÞ ^ ~

�
m �̂âðdÞ þ i�â

b̂ðdÞ ^ !̂
�

b̂
ðdÞ ¼ 0; (51)

d�̂�â þ�ðdÞ ^ �̂�âðdÞ þ 1

2
GmnðdÞ ^ 
mn

�
�̂âðdÞ

� ĉmðdÞ ^ 
m
�!̂


âðdÞ þ i�â

b̂ðdÞ ^ �̂�b̂ðdÞ ¼ 0; (52)

where the fermionic 1-forms have been grouped

!̂ �
â ðdÞ ¼ !̂

�
a

�̂!�a

� �
; �̂�âðdÞ ¼

�̂�a
�̂�a
�

 !
(53)

according to the decomposition of the SOð6Þ vector repre-
sentation into the SUð3Þ irreducible parts. The elements of
the matrix �â

b̂ðdÞ are the components of the suð4Þ Cartan
forms (2)

� â
b̂ðdÞ ¼ �a

b � �b
a�c

c "acb�4
c

�"acb�c
4 ��b

a þ �a
b�c

c

� �
: (54)

It is antisymmetric with respect to the metric

Hâ b̂ ¼ 0 �b
a

�a
b 0

� �
(55)

thus having 15 independent components.
To obtain explicit expressions for the Cartan forms in the

conformal basis we consider the following
OSpð4j6Þ=ðSOð1; 3Þ �Uð3ÞÞ supercoset element [33]

G ¼ exmP
mþ�

�
a Q

a
�þ ���a �Q�ae��aS

�aþ ��a
�
�S
�
a ez

aVa
4þ�zaV4

a
e’D:

(56)

The bosonic real coordinates xm and ’ parametrize AdS4,
while 3 complex coordinates za and their conjugate �za
parametrize CP3. The anticommuting coordinates can be
divided into ��a , ���a related to the Poincare supersymme-
try and ��a, ��a

� related to the conformal supersymmetry.

Then the calculation yields for the Cartan forms associated
with the soð2; 3Þ=soð1; 3Þ coset generators

!̂ mðdÞ ¼ e�2’!mðdÞ;
!mðdÞ ¼ dxm � id�

�
a 
m

�
��a þ i�

�
a 
m

�d ��a;
(57)

ĉmðdÞ ¼ e2’cmðdÞ;
cmðdÞ ¼ �id��a ~


m� ��a
 þ i��a ~


m�d ��a


� 2

�
d��a þ 1

4
��aðdÞ

�
~
m� ��a

ð ��b
��

�
bÞ

þ 2��a ~

m�

�
d ��a þ 1

4
��aðdÞ

�
ð ��b

��
�
bÞ; (58)

�ðdÞ ¼ d’þ id�
�
a ��a

� þ id ���a��a; (59)

where

�
�
a ðdÞ ¼ �~
m�!mðdÞ�a;

���aðdÞ ¼ �~
m�!mðdÞ ��a
;

(60)

and for those associated with the soð1; 3Þ generators

Gmn ¼ �i

�
d��a þ 1

2
��a ðdÞ

�

mn

�
 ��a



� i

�
d ���a þ 1

2
���aðdÞ

�

mn

�
�a: (61)

For the suð4Þ Cartan form matrix (54) we find

� â
b̂ðdÞ ¼ �bâ

b̂ðdÞ þ�fâ
b̂ðdÞ: (62)

The bosonic contribution is given by

� bâ
b̂ðdÞ ¼ iTâ

ĉd �Tĉ
b̂

¼ �ba
b � �b

a�bc
c "acb�b4

c

�"acb�bc
4 ��bb

a þ �a
b�bc

c

� �
;

(63)

where the unitary matrix T equals

Tâ
b̂¼ �b

acosjzjþ �zaz
b ð1�cosjzjÞ

jzj2 i"acbz
c sinjzj

jzj
�i"acb �zc

sinjzj
jzj �a

bcosjzjþza �zb
ð1�cosjzjÞ

jzj2

0@ 1A;
jzj2¼ za �za:

(64)

So that the explicit form of the entries of �bâ
b̂ðdÞ is given

by
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�ba
bðdÞ ¼ i

ð1� cosjzjÞ
jzj2 ð�zadzb � d�zaz

bÞ � i �zaz
b

� ð1� cosjzjÞ2
jzj4 ðdzc �zc � zcd�zcÞ;

�ba
4ðdÞ ¼ d�za

sinjzj
jzj þ �za

sinjzjð1� cosjzjÞ
2jzj3

� ðdzc �zc � zcd�zcÞ þ �za

�
1

jzj �
sinjzj
jzj2

�
djzj;

�b4
aðdÞ ¼ dza

sinjzj
jzj þ za

sinjzjð1� cosjzjÞ
2jzj3

� ðzcd�zc � dzc �zcÞ þ za
�
1

jzj �
sinjzj
jzj2

�
djzj: (65)

The fermionic contribution can be presented as

� fâ
b̂ðdÞ ¼ ðT�ðdÞ �TÞâb̂;

�â
b̂ðdÞ ¼ �a

b � �b
a�c

c "acb�4
c

�"acb�c
4 ��b

a þ �a
b�c

c

� �
;

(66)

where the entries of �â
b̂ðdÞ equal

�a
bðdÞ¼ 2

�
d�

�
a þ1

2
�
�
a ðdÞ

�
��b
��2

�
d ���bþ1

2
���bðdÞ

�
��a

��b
a

��
d�

�
c þ1

2
�
�
c ðdÞ

�
��c
�

�
�
d ���cþ1

2
���cðdÞ

�
��c

�
;

�a
4ðdÞ¼ 2"abc

�
d ���bþ1

2
���bðdÞ

�
��c
�;

�4
aðdÞ¼�2"abc

�
d��b þ1

2
��b ðdÞ

�
��c: (67)

The expressions for the fermionic Cartan forms can be
brought to the form

!̂�
a

�̂!�a

 !
¼ e�’Tâ

b̂
!

�
b

�!�b

 !
; !�

b ðdÞ ¼ d��b þ ��b ðdÞ;

�!�bðdÞ ¼ d ���b þ ���bðdÞ (68)

and

�̂�a
�̂�a
�

� �
¼ e’Tâ

b̂ ��b

��b
�;

� �
(69)

where

��aðdÞ ¼ d��a þ 2i ��b
�d�


b�a þ 2i��bd ��b�a

þ iðd��a þ ��aðdÞÞð�
b ��

b
Þ;

��a
�ðdÞ ¼ d ��a

� þ 2i��bd ��b ��a
 þ 2i ��b

�d�

b ��

a


þ iðd ��a� þ ��a�ðdÞÞð�
b ��

b
Þ: (70)

In terms of the Cartan forms in the conformal basis (47)
and (48), the superstring action (4) acquires the form

S ¼ � 1

2

Z
d2�

ffiffiffiffiffiffiffi�g
p

gij
�
1

4
ð!̂m

i þ ĉmi Þð!̂mj þ ĉmjÞ

þ�i�j þ�ia
4�j4

a

�
� 1

2
"ij

Z
d2�ð!̂�

ia"�
�̂!a
j

þ �̂i�a"
� �̂�a

jÞ: (71)

It has a rather complicated structure with the kinetic term
containing contributions up to the 8th power in the fermi-
ons and the WZ term up to the 6th power. Note, however,
that similarly to the AdS5 � S5 superstring anticommuting
coordinates ��a , ���a related to the Poincare supersymmetry
enter expressions for the Cartan forms utmost quadrati-
cally, and the nonlinear fermionic contribution is due to
��a, ��a

� related to the conformal supersymmetry. For the

AdS5 � S5 superstring there have been proposed the
�-symmetry gauges that entirely remove the coordinates
� so that the action becomes quadratic [35] or quartic in
the fermions [21,36,37]. This seems to be the simplest
known form of the AdS5 � S5 superstring action. In the
case under consideration it is impossible to gauge away all
12 coordinates � by the 8-parameter �-symmetry trans-
formation. Among the SOð1; 2Þ covariant gauges one can
consider the gauge

��a ¼ ��A

��3

� �
; ��A ¼ 0; (72)

where the index A corresponds to the fundamental repre-
sentation of SUð2Þ, that removes 8 coordinates �. In this
case the following entries of the matrix (66)�1

2 ¼ �2
1 ¼

�4
3 ¼ �3

4 ¼ 0 turn to zero, and the kinetic term of the

superstring action (71) becomes utmost of the sixth order
in the fermions. The gauge

�
�
a ¼ ��A

�
�
3

� �
; �

�
3 ¼ 0; ��3 ¼ 0 (73)

removes an equal number of � and � coordinates [38]. In
this gauge vanish the components of the Cartan forms
�1;2

4 ¼ �4
1;2 ¼ �1;2

3 ¼ �3
1;2 ¼ 0 and !�

3 ¼ 0, ��3 ¼
0. More substantial simplification can be attained, e.g., by
considering the noncovariant condition

�1a ¼ 0 (74)

that partially fixes the �-symmetry gauge freedom. In such
a case ĉ1 ¼ 0, while other components of the Cartan forms
(58) become quadratic in fermions and also �1a ¼ ��a

1 ¼ 0
so that the kinetic term of the action (71) contains the
fermionic contributions up to the fourth power and the
WZ term up to the second power. Then the remaining
freedom can be used to turn to zero extra Cartan form
components.

IV. CONCLUSION

In the present paper we have considered in the frame-
work of the supercoset approach the superstring action on
the AdS4 � CP3 background [16] in the conformal basis
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for the Cartan 1-forms motivated by the isomorphism
between the ospð4j6Þ superalgebra and D ¼ 3 N ¼ 6
superconformal algebra. We have obtained the expressions
for the Cartan forms explicitly covariant under the D ¼ 3
N ¼ 6 super-Poincare transformations starting from the
OSpð4j6Þ=ðSOð1; 3Þ �Uð3ÞÞ supercoset representative pa-
rametrized by the coordinates associated with the D ¼ 3
N ¼ 6 superconformal generators. These results can be
used to establish a more transparent relation to the field
theory side of the Aharony-Bergman-Jafferis-Maldacena
duality [4].

We have also derived the SOð1; 3Þ � SUð3Þ covariant
expression for the matrix M that enters the equations of
motion for the fermions and have shown that in the general
case its rank equals 16 implying via the second Noether
theorem the 8-parameter �-symmetry of the action. The
form of the matrix M can be found by inspecting the
anticommutation relations of the fermionic generators of
ospð4j6Þ superalgebra. The complementary matrix K
that enters the �-symmetry transformation rules is qua-
dratic in the world-sheet projections of Cartan forms
rather than linear as for the GS superstring, and we have
proved in the SOð1; 3Þ � SUð3Þ covariant way that the rank
of K equals 8. These results outline the similarities and
differences of the supercoset formulation for the super-
string on AdS4 � CP3 background and the conventional
GS one.

It was suggested in [16] that the OSpð4j6Þ=ðSOð1; 3Þ �
Uð3ÞÞ supercoset action could be obtained by partial gauge
fixing of the �-symmetry in the full superstring action on
an AdS4 � CP3 background. However, it is interesting to
note that such supercoset action per se may be viewed as
belonging to the family of the models of pointlike [40–42]
and extended [43–45] objects in extended superspaces
describing the Bogomol’nyi-Prasad-Sommerfield states
preserving exotic [46] fractions of the space-time super-
symmetry. Here the role of extra superspace variables
complementing the super-Poincare ones is played by the
bosonic za, �za, ’ and fermionic ��a, ��a

� coordinates.

As the extension of the presented results one can exam-
ine the supercoset action invariance under the full D ¼ 3
N ¼ 6 superconformal transformations, and derive the
corresponding Noether charges and calculate their algebra.
It is of interest by fixing the gauge freedom to seek for the
simplest form of the action to be compared with that for the
AdS5 � S5 superstring. Novel insights into the structure of
the action and the quantization problem could also be
gained by working out the first-order formulation in anal-
ogy with the GS superstring in a flat background [48] and
elaborating on the twistor transform [49]. We hope to
address these issues in future.
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APPENDIX A: SPINORS AND �-MATRICES

TheD ¼ 2þ 3 spinor indices are raised and lowered by
means of the antisymmetric charge conjugation matrix and
its inverse

c � ¼ C��c �; c � ¼ C��c
�: (A1)

The spinor c � is composed of a pair of the (1þ 2)-
dimensional spinors

c � ¼ ��

’

� �
; c � ¼ ’�

��

� �
(A2)

and the charge conjugation matrix and its inverse admit the
representation in terms of the 2� 2 unit matrix

C�� ¼ 0 �
�

��
�
 0

� �
; C�� ¼ 0 ���



�
� 0

 !
: (A3)

The position of indices of the 2-component spinors can be
changed as follows:

�� ¼ "��; ’� ¼ "�’
;

"�"
� ¼ ��

�; "12 ¼ "21 ¼ 1:
(A4)

The Majorana condition in 1þ 2 dimensions

ð’�Þy
0�
 ¼ "�’

� (A5)

amounts to the reality of the spinor components in the
chosen basis, where ~
0� ¼ ��. Accordingly in 2þ 3
dimensions the Majorana condition

ðc �Þyð~�00�0Þ�� ¼ C��c
� (A6)

is satisfied for the spinors composed of a pair of the
(1þ 2)-dimensional Majorana spinors. Because of the

relation ð~�00�0Þ��C
�� ¼ ���� it also amounts to the

component by component reality of a spinor.
The (2þ 3)-dimensional �-matrices in the Majorana

representation can be realized in terms of the (1þ 2)-
dimensional real �-matrices

�00
�� ¼� "� 0

0 "�

 !
; ~�00�� ¼� "� 0

0 "�

 !
;

�m
�� ¼ 0 
m

�


�
m�
 0

 !
; ~�m�� ¼ 0 
m�



�
m
�
 0

 !
;

�3
�� ¼ "� 0

0 �"�

 !
; ~�3�� ¼ �"� 0

0 "�

 !
; (A7)

where


m
� ¼ ðI; 
1;�
3Þ;

~
m� ¼ "��"�
m
�� ¼ ðI;�
1; 
3Þ: (A8)

They satisfy the Clifford algebra relations
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�
m
�� ~�

n�� þ �
n
�� ~�

m�� ¼ �2�mn��
�;

�mn ¼ ð�;�;þ;þ;þÞ; ~�m�� ¼ C��C���
m
��

(A9)

as a result of the D ¼ 1þ 2 relations


m
� ~


n� þ 
n
� ~


m� ¼ �2�mn��
�: (A10)

The soð2; 3Þ generators are defined as

�mn �
� ¼ 1

2
ð�m

�� ~�n�� � �
n
�� ~�m��Þ: (A11)

Their explicit form in terms of the above introduced
�-matrices is found to be

�mn
�
�¼ 
mn

�
 0

0 ~
mn�


� �
; �00m

�
�¼ 0 �
m

�

~
m� 0

� �
;

�3m
�
�¼ 0 
m

�

~
m� 0

� �
; �003

�
�¼ �

� 0
0 ��

�


� �
;


mn
�
¼1

2
ð
m

�� ~

n��
n

�� ~

m�Þ; ~
mn�

¼�
mn

�:

(A12)

The (1þ 3)-dimensional charge conjugation matrix that
enters the WZ term and its inverse can be realized as

C0
�� ¼ �i�00

�� ¼ i
"� 0
0 "�

� �
;

C0�� ¼ i~�00�� ¼ �i
"� 0
0 "�

� �
:

(A13)

�-matrices in D ¼ 1þ 3 dimensions are defined as

�m0
�
� ¼ ��m0

��C
0��: �m

�
� ¼ 0 �i
m

�

i~
m� 0

 !
;

�3
�
� ¼ i�

� 0

0 �i�
�


 !
: (A14)

They obey the Clifford algebra relations

�m0
�
��n0

�
� þ �n0

�
��m0

�
� ¼ �2�m0n0��

�: (A15)

The matrix �5 ¼ �0�1�2�3 then equals

�5
�
� ¼ 0 "�

�"� 0

� �
: (A16)

APPENDIX B: ospð4j6Þ SUPERALGEBRA AS D ¼ 3
N ¼ 6 SUPERCONFORMAL ALGEBRA

The (anti)commutation relations of the ospð4j6Þ super-
algebra can be written in the supermatrix form

½OK̂ L̂; OM̂ N̂g ¼ iðGL̂M̂OK̂ N̂ þ ð�ÞlmGL̂ N̂OK̂ M̂

þ ð�ÞklGK̂ M̂OL̂ N̂ þ ð�ÞkðlþmÞGK̂ N̂OL̂ M̂Þ;
(B1)

where

GL̂M̂ ¼ C�� 0
0 i�IJ

� �
(B2)

is the orthosymplectic metric composed of the D ¼ 2þ 3
charge conjugation matrix C�� and the unit metric �IJ in

the vector representation of SOð6Þ. The supermatrix OM̂ N̂

has the following block structure:

OM̂ N̂ ¼ O�� O�J

OI� OIJ

� �
(B3)

with the blocks obeying the reality

O�
�� ¼ O��; O�

�J ¼ �O�J;

O�
I� ¼ �OI�; O�

IJ ¼ �OIJ

(B4)

and (anti)symmetry

OM̂ N̂ ¼ ð�ÞmnON̂ M̂: O�� ¼ O��;

O�J ¼ OJ�; OIJ ¼ �OJI

(B5)

conditions. The block structure of OM̂ N̂ implies that the
(anti)commutation relations of the ospð4j6Þ superalgebra
can be divided into 5 groups

½O��;O��� ¼ iðC��O�� þ C��O�� þ C��O��

þ C��O��Þ; (B6)

½OIJ; OKL� ¼ �IKOJL � �ILOJK � �JKOIL þ �JLOIK;

(B7)

fO�J;O�Lg ¼ ��JLO�� þ iC��OJL; (B8)

½O��;O�L� ¼ iðC��O�L þ C��O�LÞ; (B9)

½OIJ; O�L� ¼ �ILO�J � �JLO�I: (B10)

The commutation relations of the first group can be cast
into the soð2; 3Þ algebra relations
½Mkl;Mmn� ¼ �knMlm � �kmMln � �lnMkm þ �lmMkn

(B11)

by the transformation Mkl ¼ i
4�

kl��O��, O�� ¼
� i

2�
mn
��Mmn. Separating the generators that carry the sec-

ond time direction index one arrives at the AdS4 algebra

½M00m0
;M00n0 � ¼ Mm0n0 ;

½M00k0 ;Mm0n0 � ¼ �k0m0
M00n0 � �k0n0M00m0

;

½Mk0l0 ;Mm0n0 � ¼ �k0n0Ml0m0 � �k0m0
Ml0n0 � �l0n0Mk0m0

þ �l0m0
Mk0n0 : (B12)

Introducing the (1þ 2)-dimensional dilatation D, momen-
tum Pm and conformal boost Km generators
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D ¼ 2M003; Pm ¼ �ðM00m þM3mÞ;
Km ¼ M3m �M00m

(B13)

the AdS4 algebra commutation relations transform into the
conf3 algebra commutation relations

½Pm;D� ¼ �2Pm; ½Km;D� ¼ 2Km;

½Pm;Kn� ¼ �mnDþ 2Mmn;

½Pl;Mmn� ¼ �lmPn � �lnPm;

½Kl;Mmn� ¼ �lmKn � �lnKm;

½Mkl;Mmn� ¼ �knMlm � �kmMln � �lnMkm þ �lmMkn:

(B14)

By converting the soð6Þ generators into the suð4Þ gen-
erators

V
î
ĵ ¼ � i

4
OIJ�

IJ
î
ĵ; (B15)

where �IJ
î
ĵ ¼ 1

2 ð�I
î k̂
~�Jk̂ ĵ � �J

î k̂
~�Ik̂ ĵÞ, the commutation re-

lations (B7) reduce to

½V
î
ĵ; V

k̂
l̂� ¼ ið�ĵ

k̂
V
î
l̂ � �l̂

î
V
k̂
ĵÞ: (B16)

The suð4Þ generators can be split into the uð3Þ generators
Va

b and the suð4Þ=uð3Þ coset generators Va
4, V4

a

V
î
ĵ ¼ Va

b Va
4

V4
b V4

4

� �
; V4

4 ¼ �Va
a: (B17)

Then the suð4Þ algebra commutation relations (B16) ac-
quire the form

½Va
4; V4

b� ¼ iðVa
b þ �b

aVc
cÞ;

½Va
4; Vb

c� ¼ �i�c
aVb

4;

½V4
a; Vb

c� ¼ i�a
bV4

c;

½Va
b; Vc

d� ¼ ið�b
cVa

d � �d
aVc

bÞ:

(B18)

By contracting the SOð6Þ vector index I of the ospð4j6Þ
fermionic generators O�I with the D ¼ 6 antisymmetric

chiral �-matrices �I
î ĵ
and ~�Iî ĵ that satisfy

�I
î ĵ
~�Jĵ k̂ þ �J

î ĵ
~�Iĵ k̂ ¼ 2�IJ�k̂

î
; (B19)

the anticommutator (B8) is brought to the form

fO�î ĵ; O
k̂ l̂
� g ¼ ið�l̂

î
�k̂
ĵ
� �k̂

î
�l̂
ĵ
Þ�mn

��Mmn þ 2C��ð�k̂
î
V
ĵ
l̂

� �k̂
ĵ
V
î
l̂ þ �l̂

ĵ
V
î
k̂ � �l̂

î
V
ĵ
k̂Þ: (B20)

Performing the 3þ 1 split of the SUð4Þ indices î ¼ ða; 4Þ,

ĵ ¼ ðb; 4Þ, using the duality relations

Oab ¼ �"abcO
4c; O4a ¼ � 1

2
"abcObc;

Oab ¼ �"abcO4c; O4a ¼ � 1

2
"abcO

bc;

"123 ¼ "123 ¼ 1

(B21)

that stem from the SUð4Þ duality relations

Oî ĵ ¼
1

2
"î ĵ k̂ l̂O

k̂ l̂; "î ĵ k̂ l̂ ¼ "abc4; (B22)

introducing the (1þ 2)-dimensional supersymmetry Qa
�,

�Q�a and superconformal S�a, �S�a generators

O4a
� ¼ Qa

�

S�a

� �
; O�4a ¼ �Q�a

�S�a

� �
; (B23)

and substituting the expressions (A12) and the definition of
the conf3 generators (B13) we are able to bring the rela-
tions (B20) to the anticommutation relations of D ¼ 3
N ¼ 6 superconformal algebra in the SUð3Þ notation

fQa
�; �Qbg ¼ 2i�a

b

m
�Pm; fS�a; �Sbg ¼ 2i�a

b ~

m�Km;

fQa
�; S

bg ¼ 2�
�"

abcVc
4; f �Q�a; �S


bg ¼ �2�

�"abcV4
c;

fQa
�; �S


bg ¼ �i�a

b�

�Dþ i�a

b

mn

�
Mmn

� 2�
�ðVb

a � �a
bVc

cÞ;
f �Q�a; S

bg ¼ �i�b
a�


�Dþ i�b

a

mn

�
Mmn

þ 2�
�ðVa

b � �b
aVc

cÞ: (B24)

The commutators of (B9) and (B10) define the proper-
ties of the fermionic generators under the SOð2; 3Þ and
SOð6Þ transformations. In particular, using the definition
of D ¼ 3 N ¼ 6 generators (B13) and (B23) we get

½D;Qa
��¼Qa

�; ½D; �Q�a�¼ �Q�a;

½Mmn;Qa
��¼1

2

mn

�
Qa

; ½Mmn; �Q�a�¼1

2

mn

�
 �Qa;

½Km;Qa
��¼
m

�S
a; ½Km; �Q�a�¼
m

�
�Sa;

½D;S�a�¼�S�a; ½D; �S
�
a �¼� �S

�
a ;

½Mmn;S�a�¼�1

2
Sa
mn


�; ½Mmn; �S

�
a �¼�1

2
�Sa


mn

�;

½Pm;S�a�¼�~
m�Qa
; ½Pm; �S�a�¼�~
m� �Qa

(B25)

and
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½Va
b;Qc

��¼ i

2
�b
aQ

c
�� i�c

aQ
b
�; ½V4

a;Qb
��¼ i"abc �Q�c; ½Va

b; �Q�c�¼� i

2
�b
a
�Q�cþ i�b

c
�Q�a; ½Va

4; �Q�b�¼�i"abcQ
c
�;

½Va
b;S�c�¼ i

2
�b
aS

�c� i�c
aS

�b; ½V4
a;S�b�¼ i"abc �S

�
c ; ½Va

b; �S
�
c �¼� i

2
�b
a
�S
�
c þ i�b

c
�S
�
a ; ½Va

4; �S
�
b �¼�i"abcS

�c:

(B26)
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