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AdS, X CP? superstring and D = 3 /N' = 6 superconformal symmetry
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Motivated by the isomorphism between osp(4]6) superalgebra and D = 3 N = 6 superconformal
algebra we consider the superstring action on the AdS, X CP? background parametrized by D = 3 N =
6 super-Poincare and C[P3 coordinates supplemented by the coordinates corresponding to dilatation and
superconformal generators. The relation between the degeneracy of fermionic equations of motion and the
action k-invariance in the framework of the supercoset approach is also discussed.

DOI: 10.1103/PhysRevD.79.106007

I. INTRODUCTION

The idea of gauge/string correspondence has been ela-
borated since the early days of string theory. During the last
decade significant progress has been attained in under-
standing the duality [1-3] between the D =4 N =4
super-Yang-Mills theory and string theory on an AdSs X
S3 background. A recently novel example of the gauge/
string correspondence has been proposed [4] involving the
superconformal D = 3 N = 6 Chern-Simons-matter the-
ory [5] with the gauge group U(N) X U(N) and level k and
M-theory on an AdS, X (87/Z,) background. In the
t'Hooft limit N, k — oo with A = N/k fixed the field
theory can be effectively described by the ITA superstring
on an AdS, X CP? background.

For both dualities one of the main unsolved problems is
to quantize corresponding superstring models. The full
action for the Green-Schwarz (GS) superstring on AdSs X
§3 was constructed in [7,8] on the symmetry grounds using
that AdSs X S° is the maximally supersymmetric back-
ground of Type IIB supergravity and that all bosonic and
fermionic degrees of freedom fit into the supercoset space
PSU(2,2|4)/(SO(1,4) X SO(5)). It was then discovered
[9] that such full action is classically integrable extending
the previous result [10] for the bosonic model. This stimu-
lated application of the methods developed for the inves-
tigation of integrable systems [11]. However, the
nonlinearity of the superstring action even after the exclu-
sion of the pure gauge degrees of freedom still precludes
from solving the quantization problem and motivates ap-
plication of the approximate methods [13,14].

To obtain the superstring action on an AdS, X CP?
background including the fermions it has been suggested
in [16,17] to apply the supercoset method of [7]. The main
observation is that the bosonic degrees of freedom fit into
the bosonic body (Sp(4)/S0(1, 3)) X (SO(6)/U(3)) of the
supercoset space OSp(4]16)/(SO(1,3) X U(3)) that also
allows to accommodate 24 fermions equal in number to
the supersymmetries preserved by the AdS, X CP3 back-
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ground. It was shown [16] that such superstring action
involving 24 fermions is invariant under the 8-parameter
k-symmetry transformations and is classically integrable.

Similarly to the AdSs X S° superstring the original su-
perstring action on AdS, X CP? was given in the AdS
basis for the Cartan forms with the appropriate choice of
the supercoset element. The isomorphism between the
AdS, algebra and conformal algebra in 1 + 2 dimensions
suggests considering also the superstring action in the
conformal basis [20]. Choosing the OSp(4]6)/(SO(1, 3) X
U(3)) supercoset representative parametrized by the D = 3
N =6 superspace coordinates, CP? coordinates and
those associated with the dilatation and superconformal
generators yields the action with manifest D =3 N =6
super-Poincare symmetry that is the subgroup of the sym-
metry group on the field theory side of the duality [4,23].

It should be noted that despite the fact that the super-
coset action on the AdS, X CP? background has clear
group-theoretical structure, involves the correct number
of physical degrees of freedom and is classically inte-
grable, unlike the supercoset action on AdSs X S°, it can-
not describe all possible superstring motions, as was
already observed in [16]. To study such string configura-
tions the explicit form of the action depending on all 32
fermionic variables is needed that in turn requires to elabo-
rate on the full superspace solution of the IIA supergravity
on AdS, X CP3 [24]. However, whether such full-fledged
action for the IIA superstring on AdS, X CP? inherits the
integrability property remains unknown.

In Sec. II we discuss the properties of the superstring
action on the supercoset space OSp(4]6)/(SO(1,3) X
U(3)). In particular, the equations of motion for the fermi-
ons are cast into the form close to that derived in the
conventional GS approach [25], and it is proved that in
the general case 8 of 24 equations are trivial. So that the
k-symmetry already manifests itself at the level of the
equations of motion. This degeneracy of the equations of
motion for the fermions traces back to the form of the
anticommutators of the fermionic generators of D = 3
N = 6 superconformal algebra. We also give the repre-
sentation for the k-symmetry transformations, that allows
to gauge away % of the fermionic degrees of freedom, in the
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form amenable for comparison with the GS «-symmetry
transformations that remove % of the fermions.

In Sec. Il we derive the explicit expressions for the
Cartan forms in the conformal basis starting from the
0Sp(4]6)/(SO(1, 3) X U(3)) supercoset element and use
them to write the superstring action in the form with
manifest D =3 N = 6 super-Poincare symmetry. The
possibility of fixing the gauge freedom related to the 8-
parameter k-symmetry is discussed.

In the Appendixes the relevant properties of spinors and
y-matrices in D =2+3,D=1+3and D =1+ 2 di-
mensions are summarized, and details on the isomorphism
between the osp(4|6) superalgebra and D =3 N =6
superconformal algebra are given.

II. SUPERSTRING ACTION IN THE SUPERCOSET
APPROACH: EQUATIONS OF MOTION AND
k-SYMMETRY

The starting point is the OSp(4]6)/(SO(1, 3) X U(3))
supercoset element G that is used to define the left-
invariant Cartan 1-forms

G 'dG = G, (d)M™ + Qlj(d)vjf + F(d)0",
+ Fe(d)0,,. (1)

The bosonic 1-forms Gm(a’), m, n=20"0,...,3 are asso-
ciated with the so(2, 3) ~ sp(4) generators M™" that can
be split into the so(1, 3) generators M ml on' =0,...,3
and the so(2, 3)/so(1, 3) coset generators M that cor-
responds to representing the so(2, 3) algebra as the AdS,
one. Accordingly the 1-forms G, (d) define the so(1, 3)
connection and Gy, (d) the AdS, veirbein. Analogously

the Cartan forms Qlj(d), hj=1...,4

2 QL Qf

OJ = a a.), 04=-0, 2

<Q4b Q44) N ¢ @
can be split into the 1-forms Q,°(d) corresponding to the
u(3) generators V,” and the 1-forms Q,%(d), Q,*(d) re-
lated to the su(4)/u(3) coset generators V,*, V,%. These
forms define the u(3) connection and the C[P? vielbein,
respectively. The fermionic 1-forms F%(d) and F*“(d) are
related to the osp(4|6) odd generators 0%, O, carrying
the D = 2 + 3 Majorana spinor index « = 1,...,4 and
transforming in the vector representation of SO(6) that
decomposes as 3@®3 with respect to SU(3) (see
Appendix B). By construction the Cartan forms (1) satisfy
the Maurer-Cartan (MC) equations that can be schemati-
cally written as

dwz + %w’B(d) A wc(d)f® 5 =0, (3)

where f¢B a are the structure constants of the osp(4(6)
superalgebra.
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Under the discrete automorphism Y of the osp(4[6)
superalgebra the so(1,3) and u(3) generators are inert,
while the remaining bosonic generators change the sign
Y(MO™) = =Mo" Y(V,H) = -V, Y(V,) = -V,
The fermionic generators transform as Y(0%) = i04%,
Y(0,,) = —i0,,. These transformations of the osp(4|6)
generators induce transformations of the associated Cartan
forms and serve as the guide to construct the Z,-invariant
superstring action

1 . !
S = =5 [ @ESTT Gy Groms + 02,00
+ Swz @

where the Wess-Zumino term is given by the wedge prod-
uct of the fermionic Cartan forms [26,27]

SWZ = %8ljj.d2§FIa‘;ClaBFjBa (5)

Two summands entering the kinetic term correspond to the
AdS, and CP? parts of the background. The WZ term
involves the D = 1 + 3 charge conjugation matrix C,, 5.

The superstring Lagrangian is constructed out of the
world-sheet projections of Cartan 1-forms; thus to find its
variation it is necessary to consider the variations of rele-
vant 1-forms. Using the general formula for the variation of
a form

SF(d) = d(isF(d)) + is(dF(d)) (6)

in the second summand one substitutes the MC equations
dG¥™ —2G™ (d) NGO (d) = iF§(d) A3 FP(d) =0,
)

A0 +iQ, P (d) A, (d) ~ &gy FE(d) ACo g FB(d) =0,
)]

dQ,* +iQ (A AQ, 4 (d) + e FH(d) A CopFE(d) =0,
)

1
dF® + EFf(d) A G(d)y™ , + i (d) A F§(d)
+ i, Q4 (d) A F*(d) = 0, (10)

_ 1 _ _
dF* + 2 FP(d) A Gy (d)y™ 5 + iF(d) A, (d)
— ig9b Q) 4(d) A F&(d) = 0, (11)

where G (d)y™2 P = 2Gy, (d)yO™ P+
Gy (d)y"™ B and Q. b(d) = Q, (d) = 65Q.(d) are
the so(2,3) and u(3) ® u(1) connections. Then the varia-
tion of the 1-forms entering the action (4) acquires the form
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8G""'(d) = dG""'(8) + 2G™ (d)G" ()
—2G™ (8)G"" (d) + iF§(d)yYy FP(5)
— iF(8)yn Fha(d), (12)
80,4(d) = dQ,4(8) — i, (d)Q,4(8)
+iQ, ,2(8)Q,4(d) + 284 F* (d)Co g FP(8),
(13)
80,9(d) = dQ,(8) — i, (d)Q,,*(5)
+iQ,1(8)Q,,%(d) — 26" F(d)C g FE (),
(14)
8F2(d) = dF2(8) — Fﬁ<d>Gmn(6)ym" «
Fﬂ(a)Gmn(d)ym" «—iQ_ Pd)FE(S)
+ lQ—ah(a)Fg(d) - lgach4c(d)Fab(8)
+ isach4C(6)Fab(d): (15)
SFo(d) = dF™(8) — 3 FF(d)Gi (8)y25°

+ 3 FPE)Guld) i — i@, (5)
+ iF(8)Q_,4(d) + ie®PQ Hd)FE(5)
— ig®tQ H(S)F¢(d). (16)

Since of the utmost importance is the k-invariance of the
superstring action (4) we concentrate on the fermionic
contribution to the variation of the action

88, = fdzf(f{HlViijaaﬁécﬁy 115(9)

+ j—"““ ViM; ﬂbcﬁyf{ }b(a)) (17)

_:8b 0'm’
lSaGiO’m’ Y aB

M Bb — agsachMC
iaa _5g8acbﬂ_ 4 :
i

—i8¢G iy Y™ P
(18)

The expression (17) analogous to the GS superstring case
[25] involves the world-sheet projectors

1 N y
vi=2 (/788" = &) (19)
obeying the relations
VI+ V= /=gl KeuVi =0,

_ y y B
kguvi=—gvy, vk =

The fermionic variation parameters and the world-sheet

vhyil, 20
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projections of Cartan forms have been grouped as follows:

j:'a (5) _ Ir_(ai)a(a) (21)
=a Fee (5)
and
Faa
Fb, = ( F(Sf)) ) (22)

They include chiral in the D = 1 + 3 dimensional sense
spinors F(+)a(5), F{, ), and their conjugates Ff‘I")(B), Fee,
[28]. The chiral projectors are defined as

1
Pig= 5(6“ + Cc*(C! ﬁ)
(23)
= (P 3)* = (5 Cayclg)
and satisfy the requisite properties
P++P,:I, PiPi:Pi)
(24)
P+P7:P7P+:O,
because of the relation
CoBCl C7°Cf, = 82, (25)

The definition (23) is justified by the fact that C*AC’ By 18
related to the 4d matrix I, %

CaPClyy = iCPT57C (26)

To derive (17) we have also used the following properties
of chiral projectors (23):

P CoyPLs =0, PY Y5y Py = 0. (27)

The variation (17) determines the equations of motion
for the fermions

V;jMJZ‘aa -,F{‘*'}z 0. (28)

To find whether all of the Egs. (28) are nontrivial we need
to compute the rank of M7*4

i Bb
MTO(ﬁ _ —i5ZGj0/m/'y0m aB
J o Bb

5%80Cbﬂjc;4,
- iaZGjO’m’ 70 " aﬁ

(29)

_6%8acbﬂj4c

on shell of the Virasoro constraints

oS ;o1
——— =GyyG.," +=(Q. Q.7+ Q. %0,
5glj(é‘:) i0'm"™ oy 2( ia j4 ja 14)
1 /
- Egijgkl(Gk()’m'Gl()’m + Qka4Ql4u) = (. (30)

In Egs. (28) the 2d vector index of M; T’“

world-sheet projectors (19) so that only one of its compo-
nents out of two is independent. This can be illustrated, for

1s acted by the
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instance, by the action of V¥ on a vector F ; that can be
presented as

o 1

()
2\ e (31)

Fo,=~88"F, + (/=88 = DF,.

Similarly the result of V;j projector action on the Virasoro
constraints (30) reads

VIF; = ViF.,

vikydl = ViVL(GarymG o g™ + Qur* Q)

58 (¢)

=0. (32)

Then one observes that the matrix G o, y*"™® p 1s non-
singular

GtTO’m’ Olm’aﬂGtTO’n’yO’n/By = Gi7t76$’ (33)

_TO/’”/. This allows by the rank
preserving transformation to bring M” to the triangular

form
_i5zGiTO/m/,y0'm’aﬁ 8%8aCth7—c4
ORI .

0 j—fra ~ard

where G+ ,4; = GG

b
+1. 0'm’ a
Gy + GtTO’m/ B
(34)

( — i85 Yo gMun + 2Cap(V," — 85V.6)

_ zcaﬁ 8acb Vc4

and replacing the so(2,3)/so(1,3) and su(4)/u(3) coset
generators by the Cartan forms M,, — Gy, (d), V,* —
Q,4d), V,* — Q,%(d) yields up to the overall factor the
entries of the matrix M. This is of course the anticipated
result since the action variation is determined by the varia-
tion of Cartan forms that in turn depends on the structure
constants of the osp(4|6) superalgebra. However, this ob-
servation could be of more use when applied backwards:
starting from the matrix composed of the anticommutators
of the fermionic generators of the isometry superalgebra
for some superbackground, whose bosonic part can be
presented as the coset space, one can study the degeneracy
of such a matrix to find whether the corresponding string

|

— i85 YagMun — 2Cap(V,* — 85V,
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Since the rank of the 3 X 3 matrix Q. ,,*Q. ,” is unity
[29], the rank of M” equals 4 X3+ 4 X 1=16. As a
result 8 out of 24 equations (28) are trivial and this implies
via the second Noether theorem the 8-parameter fermionic
symmetry of the action (4). The crucial distinction of the
supercoset string model [16] from the GS superstring on
flat background [25] and on AdSs X S> [7] is that the
K-symmetry can gauge away only % of the fermions rather
than % . This is attributed to the fact that the action (4) could
be obtained by the partial k-symmetry gauge fixing from
the full action containing 32 fermionic degrees of freedom,
and the 8-parameter fermionic symmetry of (4) is the
remnant of the 16-parameter symmetry of that full action
[31].

It is worthwhile to note that the matrix M can be
obtained starting from the matrix of the anticommutators
of the fermionic generators of the osp(4|6) superalgebra

- b A A
({oaa, 03t {0aa 0/317}). (35)

{Ogu 0%} {Ozap O,Bb}

Substituting the explicit expressions for its entries (see
Appendix B)

2C V,©
af EachVy ) (36)

model, constructed using the supercoset approach, will be
K-invariant.

Let us consider the x-invariance property of the action
(4) in more detail. An equal number of physical and pure
gauge fermions in the GS superstring implied that the same
matrix with the space-time spinor indices was present both
in the equations of motion for the fermions and the
k-symmetry transformation rules. However, in the present
case M' cannot directly appear in the k-transformations
because it is required that the matrix of the rank 8 single
out the requisite number of independent transformation
parameters. Such a matrix can be constructed as the
second-order polynomial in the world-sheet projections
of Cartan 1-forms [16]

de; _ ( Sg(GlO/m/Gjolm/BZ + Qla4ﬂj4b) iGiolml’)/O/m/aBSachj4c ) (37)
bap —iGigwy" " g0 85(G " Gy by + Q0,0
and is used in the k-symmetry transformation rules for the fermionic 1-forms
— yij b, B — i h~
j]-"?f}&(b‘,() = VgVIiIKﬂgZ%{f}gik’ j]-"?ﬂd(b‘,() = VjV’ﬁKﬂgng}l;ik. (38)

As the bosonic forms are inert under the xk-symmetry [32]
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G()Im/(SK) = 0: Q4a(5K) = O: Qu4(8k) = O;

(39

the k-variation of the action (4) obtained by the substitu-
tion of (38) into (17) is compensated by the variation of the
auxiliary 2d metric

8 ('\/ gl]) - 2l(f{ }kvk Glo/m/’yom V” v]/ { }&1’]’

+ T?f}kv+ G'IO/m’ Ygg Vﬁ, V‘]j/%{_'_}éirjr)-
(40)

The polynomial structure of K requires the parameters of
the k-transformation xf aij? %4141 to carry the pair of the
world-sheet vector indices instead of one as in the GS case
and to satisfy the (anti)self-duality constraints in each
index

1
\/'—g'glj

. 1 .
Jjk B k_B _ . B
Viin (—Yakl — r___gg;jVi Kk = M-jair (41

and

B VikeB 1 VikeB 42
=g 8T Mak T =g 8UTE M aik Mg 42

On the constraint shell defined by the Virasoro con-
straints (30) the rank of the x-transformations equals 8 so
that only % parameters act nontrivially. Note that in the
k-symmetry transformation rules (38) the 2d vector indices
of the matrix K are contracted with the world-sheet pro-

jectors Vi' so only one independent component of 4 re-
mains. Thus to find the rank of K . £ B one can solve the

eigenvalue problem that amounts to computing the deter-
minant of K — A7 using its block structure

ab

A B¢
det(K — AI) = det( Cgafj] b 4 Bb )
B Bb
= detAdet(D — CA™'B), (43)
where

ALl = 83A,",
b= (GiT+T
Daa[;b = 6%((Gtri7

NS+ Q. 40, 0

- /\)82 + Qi’r4aﬂirb4)’

*Ta

. 0/ ! n
Bgﬁb - lGiTO’m’y maﬁsachﬂ 7-4Cr
. /300!
Caa‘g — _lGiTO,mI,)/Oma aChQ+Tc ) (44)
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The addition of A/ renders the matrix A,” nonsingular,
detA = —A(G+,+, — A)?, and its inverse is given by

== (A8 + Q.0 ). @
MCoe = A0+ Qay? Q). (45)

Then the calculation yields that
det(K — AI) = A'%(A — 2G +,+,)8 = 0. (46)

One finds that 8 of 24 eigenvalues of K are nonzero proving
that its rank indeed equals 8. So that the matrices M and K
are complementary in the sense that rankM + rankK =
24,

III. SUPERSTRING ACTION IN THE CONFORMAL
BASIS

The introduction of the (1 + 2)-dimensional supercon-
formal group generators (B13) and (B23) (see Appendix B)
implies via (1) the introduction of the corresponding 1-
forms in the conformal basis

A(d) = GO’?’(d): (;)m(d) = _(GO’m(d) + G3m(d))»
é\'m(d) = GSm(d) - GO’m(d)r m=0,1,2 (47)
and

Fe) = [ @4 Foa(gy — (@ 48
) o)

So that the expression (1) acquires the form

G 4G = G,,,(d)M"™ + &, (d)P" + ¢,,(d)K"
+ A(d)D + QL @)V, + Q, d)V,*
+ Q9 )V, + QH@VH + olh(d)0s
+ 0" (d)Qpa + Xua(d)SH* + Xi(d)SE.
(49)

It follows from (4) and the definition (47) and (48) that the
Cartan forms ®"(d), ¢"™(d), A(d) and &4 (d), ®*(d),
Xuad), }Z(d) enter the superstring action. Relevant MC
equations in the conformal basis read
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do™ — 2A(d) A @™(d) —2G™,(d) A

PHYSICAL REVIEW D 79, 106007 (2009)

@"(d) + 2idf (d) A o, »"(d) =0,

dem + 20(d) A ¢"(d) — 2G™(d) A &(d) + 2if ua(d) A 577 F4(d) = 0,
dA — &™(d) A &,,(d) — i(@**(d) A ¥ pa(d) + & (d) A }4(d)) = 0,

A0 + 0, (d) A Q,4(d)

- 28ubcw'ub(d) A /\/,u,(d) =0,

A0, +iQ0(d) A Q4 (d) + 28O (d) A §,(d) = 0, (50)

and

dof = M) A 62 (d) + 305 A G (D™

+ &"(d) A G4 Ra(d) + i, (d) A @%(d) =0, (51)

1
d¥ua + A(d) A Yua(d) + _Gmn(d) Aa™ " Rva(d)
— Cpl(d) Ao, @%(d) + i, b(d) AX b(d) 0, (52

where the fermionic 1-forms have been grouped
ot@=(25)  ra@=(t)
a ora ) pma X

according to the decomposition of the SO(6) vector repre-
sentation into the SU(3) irreducible parts. The elements of
the matrix {2, b(d) are the components of the su(4) Cartan
forms (2)

N O b _ 8bQ <
b(gy —
0, a (d) - ( a_sachéc4c
It is antisymmetric with respect to the metric

_(0 &
Hal;—<5Z v) (55)

thus having 15 independent components.

To obtain explicit expressions for the Cartan forms in the
conformal basis we consider the following
0Sp(4]6)/(SO(1, 3) X U(3)) supercoset element [33]

G = et P OO0, oM LS GV LV gD

(56)

8ach4c
—0,7 + 590, ) >

The bosonic real coordinates x” and ¢ parametrize AdS,,
while 3 complex coordinates z* and their conjugate Z,
parametrize CP3. The anticommuting coordinates can be
divided into 8%, 6#¢ related to the Poincare supersymme-
try and n,,, 7}, related to the conformal supersymmetry.
Then the calculation yields for the Cartan forms associated
with the so(2, 3)/so(1, 3) coset generators

®"™(d) = e **w"(d),

(57)
o™(d) = dx" — id6y

m pva oM m Qva
O'M,,H +10aa'w,d0 s

[
&"(d) = e2¢c™(d),

c"(d) = —idn,, 6" 05 + in,, 6" d R,
- 2(d0 + - Zw(d)) o (nh )
w20 (a4 @) a). 59
Ald) =do + id6Y My + idﬁ_““nw, (59)
where
{a(d) = =" w,,(d)n,,
(60)

r(d) = = 5" @, (d) 7,
and for those associated with the so(1, 3) generators
) 1
G = ~i{dst + 3 gt i
_ 1 -
. (GRS R G
For the su(4) Cartan form matrix (54) we find
Q.(d) = 0,,°(d) + 0,,°(d). (62)
The bosonic contribution is given by

0,5 = iT,dT,b

— (Qba - 5Zchc
_Sachbc4

> N

Sachbzlc )
_bea + 5ZchL

(63)

where the unitary matrix 7 equals

_ 1 —cos .
, . 52 cos|z| + ZaZb( lztlizslzl) i€ 4ep 2" SIITIZl
= i T |
a _lsacbzcmlnzllzl 5“00S|Z|+Z z ( |C(|>;|z|)
|z|? =22,

(64)

So that the explicit form of the entries of (), dls (d) is given
by
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(1 — cos
Qbab(d) _ l( BE |z])

(1 — coslz])?
|z|*

(z,dz" — dz,2°) — i7,2"

(dz°z, — z°dZ.),

sin|z|(1 — cos|z[)
2|z

sin|z]  _

+zZ

|z| ¢
~ _ /1 sin|z]

X (dz¢Z, — z¢dZ.) + Z,| — — dlzl,

Q,,4(d) = dz,

Izl z?
.  sinfzl | sinlz|(1 = cos|z])
Qb4 (d) = |Z| < 2|Z|3
1 sin
X (2°d7, — dz¢z,) + Zd(lzl |z||Z|>d' . (65)

The fermionic contribution can be presented as
04" (d) = (TV(@T),",

A 7 b _ Bb\I] c
\P&h(d) = ( a_sacb\ff l4C

Sacb\I’4c

(66)
o 5;«?;)’

where the entries of ¥ &5 (d) equal

W, ) =20 + 3¢ ) =2 4B+ 550 Y
= ot (a0t + 322 @),
- (déf“ + %ZMC(d))nM),

W) = 2o (404 + 1Zﬂ”(al))ﬁ;;,,

W (d) = 26 (dof + 5 2 (@ )1 (67)

The expressions for the fermionic Cartan forms can be
brought to the form

é\)l’« R wM
(M) _ e_¢Tdb<5);fb ) 04 (d)

= do; + {f'(d),

@M (d) = dorb + Z’”’(d) (68)
and
) - eori() "
( v )~ R (69)
where
X,ua(d) dn/.m + 2”7]b debnl/a + 2i7]ubd0_1}bnva

+ l(dey,a + gﬂa(d))(nbﬁb)
Xo(d) = dn% + 2in,,d0" 7% + 2inbde;q
+i(d6y, + 24(d)(ny7h). (70)

In terms of the Cartan forms in the conformal basis (47)
and (48), the superstring action (4) acquires the form
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1 (1 A\ (A N
-3/ dzw——ggu(zw,f" + Ny + )
+ AiAj + Qia4ﬂj4a) B _slj jdzf(wla ,uV

+ /?i,uagﬂy/{\/j'ly)' (71)

It has a rather complicated structure with the kinetic term
containing contributions up to the 8th power in the fermi-
ons and the WZ term up to the 6th power. Note, however,
that similarly to the AdSs X S° superstring anticommuting
coordinates 0%, 9#¢ related to the Poincare supersymmetry
enter expressions for the Cartan forms utmost quadrati-
cally, and the nonlinear fermionic contribution is due to
Nua» 1}, related to the conformal supersymmetry. For the
AdSs X S° superstring there have been proposed the
k-symmetry gauges that entirely remove the coordinates
7 so that the action becomes quadratic [35] or quartic in
the fermions [21,36,37]. This seems to be the simplest
known form of the AdSs X S° superstring action. In the
case under consideration it is impossible to gauge away all
12 coordinates 7 by the 8-parameter x-symmetry trans-
formation. Among the SO(1, 2) covariant gauges one can
consider the gauge

Npa = (77’;2 >> Npa = 0, (72)
where the index A corresponds to the fundamental repre-
sentation of SU(2), that removes 8 coordinates 7. In this
case the following entries of the matrix (66) ¥,2 = ¥,! =
¥, = W,* =0 turn to zero, and the kinetic term of the
superstring action (71) becomes utmost of the sixth order
in the fermions. The gauge

w Un w
0. = (6,14 ), 03 =0,
3

removes an equal number of # and 7 coordinates [38]. In
this gauge vanish the components of the Cartan forms
‘1'1,24 = \P41'2 = \Ifl,23 = q,31,2 =0 and wf =0, Xu3 =
0. More substantial simplification can be attained, e.g., by
considering the noncovariant condition

=0 (74)

that partially fixes the k-symmetry gauge freedom. In such
acase ¢! = 0, while other components of the Cartan forms
(58) become quadratic in fermions and also y;, = Y{ =0
so that the kinetic term of the action (71) contains the
fermionic contributions up to the fourth power and the
WZ term up to the second power. Then the remaining
freedom can be used to turn to zero extra Cartan form
components.

Nu3 = 0 (73)

IV. CONCLUSION

In the present paper we have considered in the frame-
work of the supercoset approach the superstring action on
the AdS, X CP? background [16] in the conformal basis
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for the Cartan 1-forms motivated by the isomorphism
between the osp(4]6) superalgebra and D =3 N =6
superconformal algebra. We have obtained the expressions
for the Cartan forms explicitly covariant under the D = 3
N = 6 super-Poincare transformations starting from the
0Sp(4|6)/(SO(1, 3) X U(3)) supercoset representative pa-
rametrized by the coordinates associated with the D = 3
N = 6 superconformal generators. These results can be
used to establish a more transparent relation to the field
theory side of the Aharony-Bergman-Jafferis-Maldacena
duality [4].

We have also derived the SO(1,3) X SU(3) covariant
expression for the matrix M that enters the equations of
motion for the fermions and have shown that in the general
case its rank equals 16 implying via the second Noether
theorem the 8-parameter x-symmetry of the action. The
form of the matrix M can be found by inspecting the
anticommutation relations of the fermionic generators of
0sp(4|6) superalgebra. The complementary matrix K
that enters the k-symmetry transformation rules is qua-
dratic in the world-sheet projections of Cartan forms
rather than linear as for the GS superstring, and we have
proved in the SO(1, 3) X SU(3) covariant way that the rank
of K equals 8. These results outline the similarities and
differences of the supercoset formulation for the super-
string on AdS, X CP3 background and the conventional
GS one.

It was suggested in [16] that the OSp(4|6)/(SO(1, 3) X
U(3)) supercoset action could be obtained by partial gauge
fixing of the k-symmetry in the full superstring action on
an AdS, X CP3 background. However, it is interesting to
note that such supercoset action per se may be viewed as
belonging to the family of the models of pointlike [40-42]
and extended [43—45] objects in extended superspaces
describing the Bogomol’nyi-Prasad-Sommerfield states
preserving exotic [46] fractions of the space-time super-
symmetry. Here the role of extra superspace variables
complementing the super-Poincare ones is played by the
bosonic z%, z,, ¢ and fermionic 7,,, 7}, coordinates.

As the extension of the presented results one can exam-
ine the supercoset action invariance under the full D = 3
N = 6 superconformal transformations, and derive the
corresponding Noether charges and calculate their algebra.
It is of interest by fixing the gauge freedom to seek for the
simplest form of the action to be compared with that for the
AdS;s X S° superstring. Novel insights into the structure of
the action and the quantization problem could also be
gained by working out the first-order formulation in anal-
ogy with the GS superstring in a flat background [48] and
elaborating on the twistor transform [49]. We hope to
address these issues in future.
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APPENDIX A: SPINORS AND y-MATRICES

The D = 2 + 3 spinor indices are raised and lowered by
means of the antisymmetric charge conjugation matrix and
its inverse

Yo =CPyp, Yo = Caph®.

The spinor “ is composed of a pair of the (1 + 2)-

dimensional spinors
ee(E) (%)
Py B et
and the charge conjugation matrix and its inverse admit the
representation in terms of the 2 X 2 unit matrix

0 o [0 o
Caﬁ:(—a’; 0”)’ CB:(&; 0 ) (A3)

The position of indices of the 2-component spinors can be
changed as follows:

(Al

(A2)

14

R
’ P (Ad)
sw,s”" = 3?;, g2 =g =1
The Majorana condition in 1 + 2 dimensions
(pM) 1o, =¢,, 0" (A5)

amounts to the reality of the spinor components in the
chosen basis, where 6°4” = §*¥. Accordingly in 2 + 3
dimensions the Majorana condition

() (V) = Cpatp®

is satisfied for the spinors composed of a pair of the
(1 + 2)-dimensional Majorana spinors. Because of the
relation (7% y°)® pCPY = =387 it also amounts to the

component by component reality of a spinor.

The (2 + 3)-dimensional 7y-matrices in the Majorana
representation can be realized in terms of the (1 + 2)-
dimensional real y-matrices

yo/ _ ([ Ewr 0 5,0'(13 _ g’ 0
b 0 &) 0 e,/

,ym — 0 O-MMV ,71naB — 0 o,
ap —gm, 0 ’ _O-m,u,y 0 ’

s _[&w O 3ap _ —e* 0
3 , ap = , (A7
Yap ( 0 —ghv Y 0 e, (A7)

where
=, o', —0d%),

g = 8“)‘8”/’0'3"7 = (I, —o!, o).

(A6)

m
aiy

(A8)

They satisfy the Clifford algebra relations
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(A9)
ntt = (—, -+, +, +), ymaB = CCWC,BS),%
as a result of the D = 1 + 2 relations
oG+ gt G = =2 (A10)
The so(2, 3) generators are defined as
yul = —(yawm = Yay ¥2P). (A1D)

Their explicit form in terms of the above introduced
y-matrices is found to be

mn v 0

,ymn B — (2 ,yO’m B — 0 _OJ;ZV
a 0 &n'lnl.LV 4 (o3 &mMV O ’

0 o / 6y 0
3m B — nv 03 B — 12
y a (5.111,1“/ O )’ ’y o ( 0 _ 65 )»

mn vV —

o u (O'M)\O"MV a.z/\a.m)\u)’ &mn,uv — O.mnyp,‘
(A12)

The (1 + 3)-dimensional charge conjugation matrix that
enters the WZ term and its inverse can be realized as

€., 0
C’aﬁ——waﬁ ( 6 sf“’)’

wroQ
1 — i~0aBf — _:f €
C iy 1( 0 Sw)'

(A13)

I'-matrices in D = 1 + 3 dimensions are defined as

0 —io”
"B — _am cvB.Tm B — [
et = 7y e (ia—mw 0 )

o, 0

=" : Al4
(0 ) s

They obey the Clifford algebra relations

m' n' n' m' — _~»mn' B

r T yﬁ + I T yﬂ = —2n™" §q. (A15)

The matrix I'> = TOT'T’I"® then equals

0 g
SB — nv

I, (—s’“’ 0 ) (A16)

APPENDIX B: 0sp(4/6) SUPERALGEBRA AS D =3
N = 6 SUPERCONFORMAL ALGEBRA

The (anti)commutation relations of the osp(4|6) super-
algebra can be written in the supermatrix form

[0kt Oyt = (G 3Ok + ()G Ok yy
+ (G yOp g + (MG 2O ),
(B1)

where
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Cag O
Gm:( oF )

l81] (B2)

is the orthosymplectic metric composed of the D = 2 + 3
charge conjugation matrix C,z and the unit metric 6, in
the vector representation of SO(6). The supermatrix Oy
has the following block structure:

Oa,B 00(.1
ous = (o o) (B3
with the blocks obeying the reality
Oj; = 001 , OZ = _Oajl
e ! (B4)
OIB == _OIB’ 01.] = _OIJ
and (anti)symmetry
Opx = (=)"O0zu: Oug = Oz,
MN NM B B (B5)

Ou; = Oyq, Oy = -0y

conditions. The block structure of O 5 implies that the
(anti)commutation relations of the osp(4|6) superalgebra

can be divided into 5 groups
[001,3’ 075] = i(Ca'yOB(S + Cagoﬂ,y + CB'yOozﬁ

+ Cps04y), (B6)

[OIJr OKL] = 51K0JL - 81LOJK - 5JK01L + SJLOIK’

(B7)

{0ar, Oy} = —8,,04, +iCqy0yy, (B8)
[Oup Oy1] = i(CoyyOpr + CpyOqy), (B9)
(01, 0y] = 81,0,5 — 8,0, (B10)

The commutation relations of the first group can be cast
into the so(2, 3) algebra relations

[Mﬁ’ Mo = nk_"Mlﬂ — anl_n — nlﬂMk_m + nlﬂMk_”
(B11)
by the transformation MY =IyKeBO, 5 O,5=

— % y:—gMM. Separating the generators that carry the sec-
ond time direction index one arrives at the AdS, algebra

[M()’m', MO’n’] — Mm’n”
[M()’k” Mm’n’] — nk’m’MO’n’ _ nk’n’MO’m',
[Mk’l” Mm’n’] — ,rlk’n/Ml’m’ _ ,r}k’m’Ml’n’ _ nl’n’Mk’m’
+ plm pkn, (B12)

Introducing the (1 + 2)-dimensional dilatation D, momen-
tum P™ and conformal boost K™ generators
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D= ZMO’S, pm = _(MO’m + MSm)’

, (B13)
K" = M3m _ MOm

the AdS, algebra commutation relations transform into the
confy algebra commutation relations

[P, D] = —2P",  [K™ D]=2K",
[P", K"] = 0™ D + 2M™,
[Pl M™] = nimpn — plnpm,
[K', M™"] = K" — K™,
[Mk[, an] — nanlm _ 77kmluln _ T]lanm + ,r’lkan'

(B14)

By converting the so(6) generators into the su(4) gen-
erators

v i

P _ZOIJPIJ;j’

(B15)

where p”lj = %(Pl{,gﬁjkj — pl{éﬁ”‘f), the commutation re-

lations (B7) reduce to

Vi, v =islv! - slv J). (B16)

The su(4) generators can be split into the u(3) generators
V," and the su(4)/u(3) coset generators V,*, V,“

N b 4
v (V)

4 — _
i V4b V44 V4 = -V,

(B17)

Then the su(4) algebra commutation relations (B16) ac-
quire the form

[V VP 1= i(V," + 85V.0),
(V' Vv, 1= —issv,%

[V, v, 1= i83v,c,

[Va", V'l = i(8eV,! = 8GV.h).

(B18)

By contracting the SO(6) vector index I of the osp(4]6)
fermionic generators O,; with the D = 6 antisymmetric

chiral y-matrices pgj and p''/ that satisfy

pLp’Tk 4 plplik =251 6, (B19)

the anticommutator (B8) is brought to the form

kv — icslsk — sksly,mn ky I
{0 OB}_I(S{(S}' 5f5.;)yaﬂMM+2Caﬁ(6{‘/j

ai

— 5§vlf + ajlvlf - 5jivjf). (B20)

Performing the 3 + 1 split of the SU(4) indices i = (a, 4),
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j = (b, 4), using the duality relations

1
Oah — _Sab004c’ 04a — _ESabCObC,
1
Oab — _Sabco%’ 04a — Esabcobc’ (BZI)
€123 = g'¥ =1
that stem from the SU(4) duality relations
1 -
0;; = Es;j,;io“, Sfj'lzlA Eabcds (B22)

introducing the (1 + 2)-dimensional supersymmetry Q¢,
Q ., and superconformal S$#¢, S# generators

and substituting the expressions (A12) and the definition of
the conf; generators (B13) we are able to bring the rela-
tions (B20) to the anticommutation relations of D = 3
N = 6 superconformal algebra in the SU(3) notation

(B23)

{05, 0w} = 28507, Py, (S, S}} = 2i85G5"+"K,,
{04,877} =280V, A {0, S)} = =284 8w V4",
{04, 81} = —i8484D + i840™ " M,
=268, (V,* = 83V.),
{0y S} = —i8884D + i8L0™ " M,,,,

+264,(V,2 = 85v,.©). (B24)

The commutators of (B9) and (B10) define the proper-
ties of the fermionic generators under the SO(2, 3) and
SO(6) transformations. In particular, using the definition
of D =3 N = 6 generators (B13) and (B23) we get

[D, 04 1= 04

1
[Mm1’Q7L]=§0.mn# gr

[D’ Q,u,a] = Q/J,w
_ 1 _
[an’ Qy,a] = Eo-mn,uVQva’

(K™, Qpal = o), S
[D,Si1=—5&,

(K™, Q1= o, 8™,
[D, Ska]= —SKa,
1 - 1-
[an’ Sﬂa]z_isvao.mny,u, [an,SZL]: _ESZO-"MVM’

[P",ska]= —gmerQs, [P Ska]=—g"rQ,,

(B25)

and
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i . e _ i pn e _ .
[Vab: Q,Z,] = _6ZQ;‘L - 152 1;/,’ [V4a’ QI,ZL] = lsach,u,C! [Vab’ Q,u,c] = _EazQ,uc + lé‘lg Qp.a’ [Va4’ Qp.b] = _lsathfu

[Va”,S“”]=%62S“"—i8§S“b, [V, S#0] = igeeSt, [V, 54 =—L 855k + st Sk,
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