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We investigate the interactions of closed strings in a IIB matrix model. The basic interaction of the

closed superstring is realized by the recombination of two intersecting strings. Such interaction is

investigated in a IIB matrix model via two-dimensional noncommutative gauge theory in the IR limit.

By estimating the probability of the recombination, we identify the string coupling gs in the IIB matrix

model. We confirm that our identification is consistent with matrix string theory.
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I. INTRODUCTION

The IIB matrix model [1] is considered as a candidate of
the nonperturbative formulation of superstring theory. The
relation between the IIB matrix model and perturbative
string theory is shown in [2]. Perturbative string theory is
also contained in Dijkgraaf, Verlinde, and Verlinde’s ma-
trix string theory [3]. The strong coupling region of two-
dimensional supersymmetric Yang-Mills theory is de-
scribed by the perturbative superstring theory. In the strong
coupling limit, a free Green-Schwarz string theory is ob-
tained. On the other hand, a weak coupling region is
described by the perturbative Yang-Mills theory. In addi-
tion, there is an intermediate region which is described by
the type IIB supergravity solution in the large N limit [4].

The aim of this paper is to identify the string coupling gs
in the IIB matrix model. The hint for the identification
comes from the matrix string theory. The gauge coupling of
the two-dimensional Yang-Mills theory has the ½length��1

of the world sheet and it is related to the string coupling as
g�2
YM ¼ �0g2s . The gs has the dimension [length] on the

world sheet. Thus, our task is to search for the dimension-
ful parameter on the world sheet.

Before searching for gs, we have to construct the world
sheets in the IIB matrix model. They are constructed as
two-dimensional classical backgrounds [2] in the IR limit.
The string length is identified there and free multiple
closed strings are obtained. Vertex operators of type IIA
superstring are constructed from the IIB matrix model on
these backgrounds in [5]. The relation between type IIA
superstring theory and the IIB matrix model is also pro-
posed in [6] in a different way.

In this paper, we consider the interaction of perturbative
strings. The basic interactions are the transitions from two
strings into one string or vice versa. These interactions are
introduced in the formulation of superstring field theory in
the light-cone gauge [7]. 2 strings ! 1 string interactions

are represented by the recombination of intersecting strings
locally. See Fig. 1.
Although this process locally represents the recombina-

tion of 2 strings ! 2 strings, the final state is connected
globally. Thus, after the recombination, we obtain a single
closed string. In the matrix model, the instability of this
system comes from the off-diagonal modes. The system
with the larger intersection angle � is more unstable than
that with the smaller intersection angle. In other words, the
decay rate of two closed strings is decided by the inter-
section angle �. We can replace the angle � with another
parameter q which is related to � as � ¼ 2tan�1q. Since
we choose the horizontal axis in Fig. 1 as the coordinate of
the world-sheet � and the vertical axis as the transverse
scalar field �ið�Þ, the parameter q denotes the slope of the
tilted strings. In the two-dimensional gauge theory, q is the
dimensionful parameter. We clarify the q dependence of
the instability. Since the configuration decays into the
single closed string through the recombination process,
we estimate q dependence of the recombination probabil-
ity. In the string perturbation theory, the recombination
probability is proportional to g2s to the leading order.
In our investigation, we derive the action of multiple

strings from the IIB matrix model. We identify the unstable
mode for the intersecting strings which are the solutions of
this action. From this mode, we estimate the probability of
the recombination. By comparing the result to that of the
perturbative string theory, we identify the string coupling
gs in the IIB matrix model.
In Sec. II, we derive the action of multiple closed super-

strings. In Sec. III A, we carry out the fluctuation analysis
for the intersecting closed strings. We identify the unstable

FIG. 1. Two strings intersect at an angle �. The recombination
happens at the intersection point.
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mode. In Sec. III B, we calculate the probability of the
recombination from the unstable mode. By comparing our
result with that of the perturbative superstring theory, we
identify the string coupling gs. In Sec. III C, we estimate
the probability of the recombination in matrix string the-
ory. Section IV is devoted to the conclusion. In
Appendix A, our notation of light-cone coordinates is
given. In Appendix B 1, the differential equations for the
fluctuation modes are solved. In Appendix B 2, the
Schrödinger equation which controls the time evolution
of the probability is solved.

II. THE EFFECTIVE ACTION OF MULTIPLE
STRINGS

The interaction among multiple strings is described in
various ways in string theory. Perturbatively, transitions
from two strings into one string or vice versa are the basic
process. We aim to identify such interactions in the IIB
matrix model. Since this interaction is proportional to gs at
the tree level, we can identify gs in the IIB matrix model
through this process.

Let us start from the action

S ¼ � 1

g2
Tr

�
1

4
½A�; A��½A�; A�� þ 1

2
�c��½A�; c �

�
;

(2.1)

where c is a ten-dimensional Majorana-Weyl spinor and
A� (� ¼ 0; 1; . . . ; 9) and c are N � N Hermitian matri-

ces. By expanding the action (2.1) around a two-
dimensional noncommutative background,

½p�; p�� ¼ i���; (2.2)

we obtain an N ¼ 8 two-dimensional UðnÞ noncommu-
tative gauge theory [8–10]:

S ¼ � �

8�g2

Z
d2xtrðF2

~� ~� þ 2ðD ~��iÞ2 þ ½�i;�j�½�i;�j�

þ 2 �c�~�D ~�c þ 2 �c�i½�i; c �Þ�; (2.3)

where ~�, ~� ¼ 0, 1 and i; j ¼ 2; . . . ; 9.
The � product is described by

a � b ¼ exp

�
iC��

2

@2

@��@	�

�
aðxþ �Þbðxþ 	Þj�¼	¼0;

(2.4)

where C�� is defined as the inverse of ���.

By taking the commutative (IR) limit, we obtain a
commutative gauge theory

S ¼ � �

8�g2

Z
d2xtrðF2

~� ~� þ 2ðD ~��iÞ2 þ ½�i;�j�½�i;�j�

þ 2 �c�~�D ~�c þ 2 �c�i½�i; c � þOð�ÞÞ: (2.5)

Diagonal components are relevant degrees of freedom in
the IR limit. We interpret the diagonal elements of the field

�i in (2.5) as the coordinates of the fundamental strings.
This two-dimensional Yang-Mills theory is related to a low
energy effective theory of D strings by the S-duality trans-
formation, as is shown in Fig. 2 of our previous paper [2].
We map the world-sheet coordinate from R2 into R1 �

S1 as

z � x0 þ ix1 ¼ e
þi�: (2.6)

Since the only gauge invariant quantity is a set of the
eigenvalues of the matrices �i, if we go around the circle
S1, the eigenvalues can be interchanged. See Fig. 2. We can
consider a string of length n by the identification �ið�Þ ¼
�ið�þ 2�nÞ.
Since multiple free closed strings can be regarded as a

moduli space of this theory, one can consider a configura-
tion with multiple strings of various length in general,

�ið�aÞ ¼ �ið�a þ 2�waÞ; (2.7)

where n ¼ P
k
a¼1 w

a.
For our purpose, it is enough to analyze Uð2Þ gauge

theory since the recombination is a local problem which
involves two strings. See Fig. 3. At the tree level, the
amplitude of this interaction is proportional to gs. After
the coordinate transformation (2.6), the action (2.5) is
mapped into

S¼� �

8�g2

Z
d
d�jzj2tr

�
2

�
@þA�

z
� @�Aþ

�z
�½Aþ;A��

�
2

þ 4

�
@þ�i

z
�½Aþ;�i�

�
2 þ½�i;�j�½�i;�j�

þ 2 �c�þ
�
@þc
z

�½Aþ;c �
�

þ 2 �c��
�
@�c
�z

�½A�;c �
�
þ 2 �c�i½�i;c �

�
: (2.8)

After the field redefinition,

Aþ ! 1

z

ffiffiffiffiffi
g2

�

s
Aþ; A� ! 1

�z

ffiffiffiffiffi
g2

�

s
A�;

c R ! 1ffiffiffi
z

p c R; c L ! 1ffiffiffi
�z

p c L;

(2.9)

FIG. 2. The string world-sheet coordinate. We map the coor-
dinate from ðx0; x1Þ into ð
; �Þ.
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and the rescaling,


 !
ffiffiffiffiffi
�

g2

s

; � !

ffiffiffiffiffi
�

g2

s
�; (2.10)

we obtain the effective action

S ¼ � �

8�g2

Z 1

�1
d


Z 2�w

0
d�tr

�
g2

�jzj2 F
2
z�z þ 4Dþ�iD��i

þ �jzj2
g2

½�i;�j�½�i;�j� þ 2 �c ð�þDþ þ ��D�Þc

þ 2

ffiffiffiffiffi
�

g2

s
jzj �c�i½�i; c � þOð�Þ

�
: (2.11)

The parameter g2

� is identified with the string scale as �0 �
g2

� in [2]. �i has the target space dimension of ls. Since the

recombination is the local interaction, the length of the
string does not affect the interaction. Thus, for simplicity,
we can consider the two closed strings with the equal
length. We parametrize the integral region of � as
½0; 2�w�.

This action is valid when two strings coincide in the
target space. If two strings intersect at a point which is
indeed the situation we consider in this paper, then the off-
diagonal elements of this action are relevant only near the
intersection point. They are meaningful only two strings
are very close to each other, since otherwise these modes
become massive. Thus, we can describe off-diagonal
modes as local fields A12

~� ð
; �Þ which are valid near the

intersection point with the small intersection angle.
The definitions of light-cone coordinates @� and A� are

summarized in Appendix A 1. In the free string limit, we
obtain light-cone Green-Schwarz superstring action which
consists of marginal terms. In that case, every oscillator
mode decomposes into a left mover and a right mover.

III. RECOMBINATION

A. Fluctuation analysis and the recombination

In this section, by using the multiple closed superstring
effective action (2.11) obtained in the previous section, we
analyze the closed string interactions. In the IR limit,
diagonal components are relevant degrees of freedom.
Thus, the theory becomes a free theory in this limit. The
leading interaction in the perturbative string theory is the

interaction between two closed strings, which is realized as
the recombination. The recombination can be investigated
by using the Yang-Mills theory in [11] which is introduced
as the low energy effective action of D strings.
Let us start from the two-dimensional effective action

(2.11). The bosonic part is written as

S ¼ � �

8�g2

Z 1

�1
d


Z 2�w

0
d�tr

�
g2

�jzj2 F
2
z�z

þ 4Dþ�iD��i þ �jzj2
g2

½�i;�j�½�i;�j�
�
: (3.1)

In [2], we identify the overall coefficient �
8�g2

with 1
8��0 in

the free string limit. Off-diagonal fields are regarded as
local fields since we focus on the region where two strings
are close to each other.
The string coupling is very weak in the IR region. On the

analogy of matrix string theory [3], the string coupling will
behave gs / 1

jzj . We can interpret this relation as represent-

ing the equivalence between the IR limit and the weak
coupling limit.
The supergravity solution of fundamental strings which

is dual to our effective theory is described by [4]

ds2 ¼ U6

g4YM2
7�4N

dx2 þ 1

2�g2YM
dU2 þ U2

2�g2YM
d�2;

e� ¼
�
g6YM2

8�5N

U6

��1=2
: (3.2)

We can read the scaling behavior of x as x� 1=U3 from the
metric. In the IR limit, the string coupling vanishes e� �
U3 � 1=x ! 0, which is consistent with our picture.
It seems that this kind of running coupling behavior

makes it difficult to treat the interaction. However, the
recombination happens at a definite scale. For simplicity,
we fix the scale of z as jzj ¼ zr � 1 and treat this process
in the real time.1 We map the coordinates from z ¼ e
þi�

into z ¼ eiðtþ�Þ by the analytic continuation 
 ! it. Then,
the complex plane is mapped into the cylinder with the
radius jzj ¼ 1. The bosonic part of the action becomes

S ¼ � �

8�g2

Z 1

�1
dt

Z 2�w

0
d�tr

�
g2

�
F2
z�z þ 4Dþ�iD��i

þ �

g2
½�i;�j�½�i;�j�

�
: (3.4)

This action is the two-dimensional SU(2) Yang-Mills the-
ory in the Lorentzian metric. Since we are considering the

FIG. 3. Two closed strings x and y recombine at some time and
finally we obtain a single closed string z.

1For a generic value of zr, the coupling constant is changed as
g2s ! g2s=z

2
r . By taking the following rescaling,

q ! q

z2r
; ’ ! ’

zr
; � ! �zr; (3.3)

we can absorb this factor. It is consistent with our claim (3.26)
q� g2s .
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large winding number w, the world-sheet length of the
string is very large. Thus, the solution of a single closed
string might be represented locally as

�2 ¼
ffiffiffiffiffi
g2

�

s
�; A� ¼ c ¼ 0;

�i ¼ 0 ði ¼ 3; . . . ; 9Þ;
(3.5)

in Uð1Þ gauge theory.
The solution which represents the intersecting strings is

written as

ð�2Þb:g: ¼
q

ffiffiffiffi
g2

�

q
� 0

0 �q
ffiffiffiffi
g2

�

q
�

0
B@

1
CA ¼ q

ffiffiffiffiffi
g2

�

s
��3;

A� ¼ c ¼ 0; �i ¼ 0 ði ¼ 3; . . . ; 9Þ:
(3.6)

Two strings intersect at � ¼ 0. Each string is connected
with each other at a point far from the origin � ¼ 0, which
cannot be seen in this local solution near the intersection
point. Thus, if the recombination occurs at this point, we
obtain the single closed string. q is a parameter which is
related to the intersection angle � as

q � tan
�

2
: (3.7)

q is the dimensionful quantity in the world-sheet sense and,
as we will see later, we relate it to the string coupling
constant gs. If we take q � 1, two strings are very close to
each other in the target space, especially around the inter-
section point. Thus, our effective theory is valid.

We consider the fluctuations around this background.
We turn on the fluctuations a� and ’,

�2 ¼ q

ffiffiffiffiffi
g2

�

s
��3 þ

ffiffiffiffiffi
g2

�

s
’�1; Aþ ¼ aþ�2;

A� ¼ a��2;

(3.8)

since other fluctuations decouple from these fields at the
quadratic level. �i (i ¼ 1, 2, 3) are the Pauli matrices.

The quadratic Lagrangian is obtained as

L ¼ g2

�
½�ð@þa� � @�aþÞ2

� 2ð@þ’� iqaþ�Þð@�’� iqa��Þ
� ffiffiffi

2
p

qa�’þ ffiffiffi
2

p
qaþ’�: (3.9)

Note that these fluctuation terms do not come from
½�i;�j�½�i;�j� terms. By choosing the gauge condition

aþ ¼ �a� � affiffiffi
2

p ; (3.10)

the quadratic Lagrangian is written by the parameter 
 and
� as

L ¼ g2

�
½ð@taÞ2 þ ð@t’Þ2 � ðð@�’Þ2 þ 2q�a@�’

þ ðqa�Þ2 � 2qa’Þ�: (3.11)

In order to solve the equation of motion for the fluctua-
tions, we expand the fluctuations by the mass eigenfunc-
tions

aðt; �Þ ¼ X
n	0

~að�ÞCnðtÞ; ’ðt; �Þ ¼ X
n	0

~’ð�ÞCnðtÞ;

(3.12)

where CnðtÞ satisfy the equations

ð@2t þm2
nÞCnðtÞ ¼ 0: (3.13)

The differential equations are solved in Appendix B 1.
For the lowest mode n ¼ 0, the eigenfunctions are calcu-
lated as

C0ðtÞ ¼ C0 
 expð ffiffiffi
q

p
tÞ;

~a0ð�Þ ¼ ~’0ð�Þ ¼ exp

�
� q

2
�2

�
;

(3.14)

with the eigenvalue

m2
0 ¼ �q: (3.15)

These eigenfunctions are localized near the intersection
point �� 0. This mode is tachyonic and it causes the
recombination [11].

B. The recombination probability

Since the transition probability from two strings into the
single string depends on the string coupling constant gs, we
can identify gs by our investigation. We estimate the
recombination probability per unit time. Since we put
two strings with the relative center of mass velocity v ¼
0 as the initial condition, the recombination always occurs
if we wait long enough.
Before calculating the probability, we confirm that the

lowest mode C0 (from now on, we denote it as C) indeed
causes the recombination. During and after the recombi-
nation, we investigate the time evolution of the tachyonic
mode. Small fluctuations trigger the recombination and, if
we wait long enough, the recombination is over.
The recombination can be seen by the diagonalization of

the background with the off-diagonal fluctuations

�2ðt; �Þ ¼ 1

2

ffiffiffiffiffi
g2

�

s
q� CðtÞ~’0ð�Þ

CðtÞ~’0ð�Þ �q�

� �
!diag 1

2

ffiffiffiffiffi
g2

�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq�Þ2 þ C2ðtÞe�q�2

q
0

0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq�Þ2 þ C2ðtÞe�q�2

q
0
B@

1
CA: (3.16)
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Note that although this phenomenon locally represents
the recombination of 2 strings ! 2 strings, the final state
is connected globally. Thus, this recombination represents
the transition from two closed strings into the single closed
string. We need to clarify the validity of the approximation
since this geometrical picture comes from the fluctuation
analysis. Our analysis is valid if the terms quadratic in the
fluctuations are much smaller than the terms in the back-
ground. This condition is

ðq�Þ2 � C2e�q�2
: (3.17)

Since q�2 �Oð1Þ as can be seen in (3.19), we obtain

q � C2: (3.18)

Our analysis is valid under this condition.
The action quadratic in the C mode is obtained as

S ¼ 1

8�

Z 1

�1
dt

Z �w

��w
d�ðð@tCðtÞÞ2 þ qC2ðtÞÞ

� exp

�
�q

2
�2

�
� 1

8�

ffiffiffiffiffiffi
�

2q

s Z 1

�1
dtðð@tCðtÞÞ2

þ qC2ðtÞÞ: (3.19)

After integrating the � direction, this action can be re-
garded as a quantum mechanics of a particle moving in the
inverse harmonic oscillator [12]. As seen in (3.16), CðtÞ is
related to the separation of recombined strings. If C takes a
large value, then we can regard it as the signal for recom-
bination. OnceC obtains the large value, the recombination
is over. The separation of strings grows and finally we
obtain a single closed string. In the inverse harmonic
oscillator potential, the wave functions of the particle
will keep spreading to the larger jCj. Thus, the recombi-
nation probability approaches 1 at t ! 1.

The parameters in (3.19) can be interpreted in terms of
the quantum mechanics of the particle moving in the
inverse harmonic potential as

m � 1

8�

ffiffiffiffiffiffi
�

2q

s
; ! � ffiffiffi

q
p

; (3.20)

where m is the mass of the particle and ! is the frequency.
The Schrödinger equation is given by

i
@c

@t
¼ � 1

4m

@2c

@C2
�m!2C2c : (3.21)

As an initial condition at t ¼ 0, we consider the wave
function to be a Gaussian which is labeled by the parameter
�. The derivation of the solution of the equation (3.21) is
discussed in Appendix B 2. For large t, the wave function
behaves

c ðC; tÞ � ð2=�Þ1=4b�1=2 exp

�
� 1

2
ð!tþ i�Þ

�

� exp

�
�e�2!t C

2

b2
þ im!C2

�
: (3.22)

As discussed previously, once recombination happens, we
obtain the single closed string as a final state. Since the
fluctuation analysis is valid in the region

ffiffiffi
q

p � C, the
geometric picture is also reliable in this region. We judge
that the recombination has happened if the value of CðtÞ
grows beyond

ffiffiffi
q

p ¼ !. Thus, the recombination probabil-

ity at a time t is estimated as

PðtÞ ¼ 2
Z 1

!
dCjc ðC; tÞj2 ¼ 1� Erfð ffiffiffi

2
p

b�1e�t!!Þ

¼ 1� Erfð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m!3 sin2�

q
e�t!Þ: (3.23)

One can confirm that at t ! 1, P ! 1. The recombination
probability per unit time is calculated as

dP

dt
¼ 2ffiffiffiffi

�
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m!5 sin2�

q
expð�4m!3 sin2�e�2t! � t!Þ

¼ 21=4

�3=4
q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2�

p
exp

�
� q

2
ffiffiffiffiffiffiffi
2�

p sin2�e�2
ffiffi
q

p
t � ffiffiffi

q
p

t

�
:

(3.24)

In the small q limit, the probability is proportional to

dP

dt
/ q: (3.25)

In the perturbative string calculation, this probability is
proportional to g2s . Thus, we identify

q� g2s : (3.26)

The higher order corrections come from the expansion of
the exponential function. By expanding this function at a
time t�Oð 1ffiffi

q
p Þ, and in the small q limit, we obtain

X1
n¼1

Pnq
n; (3.27)

which is consistent with the higher order corrections of the
perturbative string if we identify q with g2s [13,14].

C. The recombination in matrix string theory

In this section, we estimate the recombination probabil-
ity of intersecting strings from matrix string theory. The
action of matrix string theory is written by the two-
dimensional Yang-Mills theory,

S¼ 1

l2s

Z 1

�1
d


Z 2�w

0
d�tr

�
ðl2sg2sÞF2

z�z þ 2ðDþ�iDþ�i

þD��iD��iÞþ 1

l2sg
2
s

½�i;�j�½�i;�j�

þ 2 �c ð�þDþ þ��D�Þc þ 2

gsls
�c�i½�i;c �

�
; (3.28)

where we consider long intersecting strings with the large
winding numberw. By the identification �

g2
� 1

l2s
, the action

(3.28) is very close to the action (3.4). The different point is
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the gs dependence which appears explicitly in (3.28). Thus,
we perform the fluctuation analysis for the action (3.28)
and investigate the gs dependence. Since the action is the
same apart from the gs dependence, if we consider the
same solution, we obtain the same tachyon mode as in
Sec. III A.

By regarding the tachyon effective action as the quan-
tum mechanics of the particle moving in the inverse har-
monic oscillator, the parameters gs and q appear in the
mass and frequency of the particle as

m � g2s
8�

ffiffiffiffiffiffi
�

2q

s
; ! � ffiffiffi

q
p

: (3.29)

The only different point with respect to the analysis in
Sec. III A is the gs dependence. The recombination proba-
bility at a time t is estimated from the previous calculation
(3.24) as

PðtÞ ¼ 1� Erf

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2s

ffiffiffiffi
�

2

r
q sin2�

s
e�

ffiffi
q

p
t

�
: (3.30)

Thus, the recombination probability per unit time is

dP

dt
¼ 21=4

�3=4
gsq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2�

p

� exp

�
� 1

2
ffiffiffiffiffiffiffi
2�

p g2sq sin2�e�2t
ffiffi
q

p � ffiffiffi
q

p
t

�
: (3.31)

By the rescaling

t ! gst; (3.32)

we obtain

dP

dt
¼ 21=4

�3=4
g2sq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2�

p

� exp

�
� g2sq

2
ffiffiffiffiffiffiffi
2�

p sin2�e�2gst
ffiffi
q

p � ffiffiffi
q

p
gst

�
: (3.33)

This result is equivalent with the previous result (3.24) if
we replace q $ qg2s . Thus, the identification we have
derived in Sec. III B is consistent with matrix string theory.

At a large time t�Oð 1
gs

ffiffi
q

p Þ in the small q limit, the

leading contribution is proportional to g2sq. The higher
order corrections which come from the expansion of the
exponential part are

ðleading contributionÞ � X1
n¼1

Png
2n
s ; (3.34)

which is consistent with the perturbative string theory.
In [15], the classical BPS solutions that interpolate

between the initial and the final string configurations are
constructed in matrix string theory. They interpret the
amplitude of matrix string theory as the transition ampli-
tude between initial and final configurations, and show that
the leading contribution is proportional to g��

s , where � is

the Euler characteristic of the interpolating Riemann sur-
face. Thus, they have reproduced the perturbative string
amplitude from matrix string theory, which is consistent
with our result.

IV. CONCLUSION

We have identified the string coupling gs in the IIB
matrix model. We have constructed the classical solution
of the strings in the action which is obtained from the IIB
matrix model. Starting from the configuration with the
intersection angle� ¼ 2tan�1q and no transverse distance
and relative velocity, the recombination happens. This is
triggered by the tachyonic fluctuations around the classical
solution. After the recombination, we obtain the single
closed string. We have estimated the probability of the
recombination of two strings per unit time in this situation.
The recombination probability is also calculated by the
perturbative string theory. The leading contribution is pro-
portional to g2s . The higher order corrections are seen asP1

n¼2 Png
2n
s . Comparing our results with these behaviors,

we have identified the string coupling q� g2s .
We have also estimated the recombination probability

per unit time in the matrix string theory. The result shows
the consistent behavior with that of the perturbative string
theory. In the matrix string theory, the Yang-Mills coupling
has the dimension ½length��1 in the world sheet and it is
inversely proportional to the string coupling gs. Thus, gs
has the dimension [length] in the world sheet. Since q has
the world-sheet dimension ½length��2, the dimensionless
parameter is qg2s . Since the probability is the dimensionless
quantity, q should appear with g2s which is consistent with
the result obtained from IIB matrix model.
The parameter q represents the ratio between the target

space coordinate �i and the world-sheet coordinate �.
Another parameter which has this kind of property is the
velocity v. Although the recombination probability de-
pends on the relative velocity v, we have put v ¼ 0 in
this paper. It might be interesting to calculate the proba-
bility of the recombination of intersecting strings with
nonzero relative velocity.
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APPENDIX A: NOTATION

1. Light-cone coordinates

@� are the derivatives with respect to

y� � 1ffiffiffi
2

p ð
� i�Þ; (A1)

and they are related to @0 and @1 as
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@0 ¼ 1ffiffiffi
2

p
�
@þ
z

þ @�
�z

�
; @1 ¼ iffiffiffi

2
p

�
@þ
z

� @�
�z

�
: (A2)

A� are related to A0 and A1 as

A0 ¼ 1ffiffiffi
2

p ðAþ þ A�Þ; A1 ¼ iffiffiffi
2

p ðAþ � A�Þ: (A3)

The definition of Fz�z in (2.11) is

Fz�z � �z@þð �z�1A�Þ � z@�ðz�1AþÞ � ½Aþ; A��
¼ @þA� � @�Aþ � ½Aþ; A��: (A4)

2. Pauli matrices

The Pauli matrices in (3.8) satisfy the following relation:

½�i; �j� ¼ i�ijk�k; trð�iÞ2 ¼ 1
2: (A5)

APPENDIX B: CALCULATION

1. The equation of motion for (3.11)

The derivation of the eigenfunctions (3.14) is summa-
rized in this Appendix.

By using the relation

@þ þ @� ¼ � ffiffiffi
2

p
i@t; 2@þ@� ¼ �@2t þ @2�;

@þ � @� ¼ � ffiffiffi
2

p
i@�;

(B1)

and imposing the gauge fixing condition aþ ¼ �a� � affiffi
2

p ,

we obtain the Lagrangian (3.11).
The equation of motion for the fluctuation Lagrangian

(3.11) is

Ô
aðt; �Þ
’ðt; �Þ

� �
¼ 0; (B2)

where

Ô ¼ �ðq�Þ2 � @2t �q�@� þ q
q�@� þ 2q �@2t þ @2�

� �
: (B3)

For the mass eigenvalues m2
n which satisfy the free field

equation

ð@2t þm2
nÞCnð
Þ ¼ 0; (B4)

the equation of motion is given by

�ðq�Þ2 þm2
n �q�@� þ q

q�@� þ 2q @2� þm2
n

� �
~að�Þ
~’ð�Þ

� �
¼ 0: (B5)

This differential equation is solved with the mass eigen-
value

m2
n ¼ ð2n� 1Þq: (B6)

For the lowest mode n ¼ 0, the eigenfunctions are calcu-
lated as

C0ð
Þ ¼ C0 
 expð ffiffiffi
q

p
tÞ;

~a0ð�Þ ¼ ~’0ð�Þ ¼ exp

�
� q

2
�2

�
:

(B7)

For general n, the eigenfunctions are

~anð�Þ ¼ �e�q�2=2
Xn

j¼0;2;



ð�1Þj=2 4

j=2

j!

� nðn� 2Þ 
 
 
 ðn� jþ 2Þ
2n� 1

ðj� 1Þ
�
�

ffiffiffi
q

2

r �
j
;

~’nð�Þ ¼ e�q�2=2
Xn

j¼0;2;



ð�1Þj=2 4

j=2

j!

� nðn� 2Þ 
 
 
 ðn� jþ 2Þ
2n� 1

ð2n� j� 1Þ
�
�

ffiffiffi
q

2

r �
j

(B8)

for n ¼ 0; 2; . . . , and

~anð�Þ ¼ �e�q�2=2
Xn

j¼1;3;...

ð�1Þðj�1Þ=2 4
ðj�1Þ=2

j!

�
j� 1

2

�

� ðn� 3Þ 
 
 
 ðn� jþ 2Þ
�
�

ffiffiffi
q

2

r �
j
;

~’nð�Þ ¼ e�q�2=2
Xn

j¼1;3;...

ð�1Þðj�1Þ=2 4
ðj�1Þ=2

j!

�
n� jþ 1

2

�

� ðn� 3Þ 
 
 
 ðn� jþ 2Þ
�
�

ffiffiffi
q

2

r �
j

(B9)

for n ¼ 3; 5; . . . .

2. Solving the Schrödinger equation (3.21)

We summarize the derivation of the solution (3.22) in
this Appendix.
We describe the momentum conjugate to the C as �:

� ¼ L

 _C
¼ 2m _C: (B10)

The Hamiltonian is given by

H ¼ � _C� L ¼ 1

4m
�2

0 �m!2C2
0: (B11)

The Schrödinger equation (3.21) is solved by the wave
function of the form

c ðC; tÞ ¼ AðtÞ expð�BðtÞC2Þ; (B12)

if A and B satisfy the equation

i _A ¼ 1

2m
AB;

i

m
_B ¼ !2 þ 1

m2
B2: (B13)

These are solved in [16] as
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A ¼ ð2�Þ�1=4ðb cosð�� i!tÞÞ�1=2;

B ¼ m! tanð�� i!tÞ ¼ m!
sin2�� i sinh2!t

cos2�þ cosh2!t
;
(B14)

where

a2 � 1

2m!
; b ¼ aðsin2�Þ�1=2: (B15)

We put the initial condition of the wave function as

c ðC; t ¼ 0Þ ¼ ð2�Þ�1=4ðb cos�Þ�1=2 expð�m! tan�C2Þ:
(B16)

The parameter � controls the initial condition.
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