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We take a first step towards the solution of QCD in 1þ 1 dimensions at nonzero density. We regularize

the theory in the UV by using a lattice and in the IR by putting the theory in a box of spatial size L. After

fixing to axial gauge we use the coherent states approach to obtain the large-N classical Hamiltonian H
that describes color neutral quark-antiquark pairs interacting with spatial Polyakov loops in the back-

ground of baryons. MinimizingH we get a regularized form of the ‘t Hooft equation that depends on the

expectation values of the Polyakov loops. Analyzing the L dependence of this equation we show how

volume independence, à la Eguchi and Kawai, emerges in the large-N limit, and how it depends on the

expectation values of the Polyakov loops. We describe how this independence relies on the realization of

translation symmetry, in particular, when the ground state contains a baryon crystal. Finally, we remark on

the implications of our results on studying baryon density in large-N QCD within single-site lattice

theories and on some general lessons concerning the way four-dimensional large-N QCD behaves in the

presence of baryons.
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I. INTRODUCTION

QCD simplifies in the ’t Hooft limit of a large number of
colors, and as a result it has been a long-standing goal to
understand the properties of the theory in that limit [1],
including on the lattice [2]. One alternative to conventional
large-volume simulations is the use of the large-N equiva-
lence of QCD at large volume to QCD with zero volume
[3–11] (see also the related Ref. [12]). These large-N
volume reductions allow one, in principle, to study very
large values of N �Oð100–400Þ with modest resources.

Volume reduction holds only if the ground states of the
large and zero-volume theories respect certain symmetries
[8]. Unfortunately, in the most interesting case of QCD in
four dimensions these symmetries spontaneously break in
the continuum limit when a naive reduction prescription is
used [4,5]. An extension of that prescription is thus re-
quired and for a recent summary of the literature on this
topic we refer to the reviews in the recent Refs. [13,14].

In the case of two space-time dimensions—the ‘t Hooft
model—a naive large-N volume reduction is expected to
hold and so this theory is generally thought to be com-
pletely independent of its volume. In the current paper we
analyze this volume dependence. Our motivation is two-
fold. First, the ‘t Hooft model is analytically soluble at
large N. Thus we can explicitly see how large-N volume
reduction works in this case and what may cause it to fail.
This topic was also addressed for zero baryon number by
the authors of Ref. [15], and our treatment here differs from
that paper by being manifestly gauge invariant, by going
beyond zero baryon number, and by using the lattice
regularization. Our approach also makes a direct connec-
tion with Eguchi-Kawai reduction and shows how the
expectation values of spatial Polyakov loops play a crucial
role in the validity of volume independence.

Second, this paper is a prelude to our companion pub-
lication Ref. [16] where we use the formalism presented
here to solve the theory in the presence of nonzero baryon
density. Considering the current incomplete understanding
of the way four-dimensional QCD behaves at low tempera-
tures and large (but not asymptotic) baryon densities, we
believe that such a study is useful. Also, there exist certain
confusions in the literature about the way large-N gauge
theories behave at nonzero baryon number [17], and seeing
how these confusions go away in the soluble two-
dimensional case is very helpful.
Surprisingly, QCD in two dimensions and nonzero den-

sity has not been solved yet: While Ref. [18] studied only
one and two baryons in an infinite volume, then Ref. [19]
attempted to extend this but restricted to either (1) transla-
tional invariant states which were seen to be inconsistent,
or (2) a particular translational noninvariant ansatz for a
baryon crystal in the vicinity of the chiral limit. Since 1þ
1-dimensional baryons become massless for massless
quarks, it is natural to expect that they behave very differ-
ently than four-dimensional massive baryons. Further-
more, most of the current literature on the ‘t Hooft model
has so far focused on its infinite volume limit where a
certain set of gluonic zero modes are irrelevant. With a
finite density of baryons, however, these become important
and cannot be neglected (at least if the density is increased
by fixing the baryon number and decreasing the volume).
Thus, given the current status surveyed above, it seems
wise to study the dense ‘t Hooft model for arbitrary quark
mass, by making as few assumptions on the form of the
ground state as possible and by incorporating correctly the
gluonic zero modes. In this paper we develop the machi-
nery to achieve this goal. For the actual solution of the
theory for arbitrary baryon numbers we refer to Ref. [16]
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and for all other discussions on the way nonzero chemical
potential affects the system to Ref. [20].

Former studies of the ‘t Hooft model used a plethora of
mathematical methods—for example see [21] for some
papers relevant to this work. Common to all these is the
need to control the severe IR divergences of this two-
dimensional model. A particular clear approach that we
will follow in our study is the one advocated in the seminal
Refs. [22,23]. There, one works in the Hamiltonian formal-
ism defined in a spatial box of side L and uses the axial
gauge to remove all redundant degrees of freedom. This
approach is also most suitable for our purpose of inves-
tigating the L dependence of this Hamiltonian’s ground
state.

The outline of the paper is as follows. In Sec. II we
present the details of the Hamiltonian approach to lattice
QCD. A reader who is familiar with this approach can skip
to Sec. III where, by generalizing Refs. [22,23] to the
lattice, we show how to fix the axial gauge in the
Hamiltonian formalism. Since such gauge fixing is less
familiar than the gauge fixing in the Euclidean formalism,
we do so in detail. Next, in Sec. IV, we show how to resolve
Gauss law and rewrite the electric fields in terms of the
fermion color charge densities. This rewriting can be done
for all components of the electric field except for those
conjugate to the eigenvalues of the spatial Polyakov loops.
This set of eigenvalues and their conjugate electric fields is
what we refer to above as zero modes, and in Sec. V we
focus on them. Specifically, we show how to represent the
zero modes’ electric fields in the Schröedinger picture as
differential operators. The end result of Secs. II, III, IV, V,
and VI is a Hamiltonian that depends only on the fermions
and on the zero modes, with an overall color neutrality
enforced on its Hilbert space. For the convenience of the
reader we summarize this emerging structure in Sec. VI.
We then turn to find the ground state of this Hamiltonian.
At large N this is done in two steps: (1) Solution of the
gluon zero modes dynamics—discussed in Sec. VII A.
(2) Solution of the fermion sector—Sec. VII B. In the
second step we use the coherent state approach of
Refs. [24] which seems particularly suitable for our prob-
lem. The end product is a regularized form of the ‘t Hooft
classical Hamiltonian describing color neutral operators
that correspond to quark-antiquark pairs and Polyakov
loops (that wrap around the spatial circle) and that interact
in the presence of a fixed overall baryon number.1 In
Sec. VIII we survey other relevant works in the literature
that obtain a similar Hamiltonian, pointing out the way
they differ from our approach. In Sec. IX we analyze the
resulting Hamiltonian and its L dependence for arbitrary
baryon number B. We show how large-N volume depen-

dence emerges and that for it to hold we need to assume
that the ground state has some degree of translation invari-
ance. We also show how it can be violated by giving the
Polyakov loops nonzero expectation values.2 An interest-
ing phenomena occurs when the ground state contains a
baryon crystal and we show how a ‘‘soft’’ form of volume
independence emerges. This leads us to remark on the way
our results affect studies of nonzero chemical potential that
try to rely on large-N volume independence. We conclude
in Sec. X by noting some general lessons one can learn
about the way large-N QCD behaves in the presence of
baryons.

II. HAMILTONIAN QCD IN 1þ 1 DIMENSIONS:
A BRIEF REMINDER

In this section we introduce the Hamiltonian formalism
of lattice QCD restricted to one spatial dimension and one
flavor. A reader familiar with this formalism can skip to
Sec. III.
This Hamiltonian of lattice QCD was first introduced by

Kogut and Susskind in 1975 [26], shortly after Wilson’s
Euclidean formulation. This canonical formalism defines
the theory of strong interactions on a spatial lattice with
lattice spacing a and continuous time t. In one dimension a
lattice site is denoted by a single index x taking integer
values. We also use x to denote the lattice link that is to the
right of the site x. Because we define the theory on a finite
box we set x ¼ 1; 2; . . . ; Ls, where Ls ¼ L=a is the num-
ber of lattice sites and L the physical length of the box. The
boundary conditions of the gauge fields are taken to be
periodic. In this section and throughout the paper we use
standard lattice notations and so the factors of the lattice
spacings are implicit and all fields are dimensionless.
The quantum fields that describe quarks are the fermion

fields c a�
x that live on the sites x of the lattice. They have

color indices a ¼ 1; . . . ; N and Dirac indices � ¼ 1, 2
(again, recall we are in 1þ 1 dimensions). The Fermi
fields obey the following anticommutation relations:

fc a�
x ; c yb�

y g ¼ �xy�ab���: (1)

Choosing to work in the temporal gauge that fixes A0 ¼
0 removes one degree of freedom (and its conjugate mo-
mentum). This leaves the spatial gauge field operators
ðUxÞab living on the lattice link between x and xþ 1. For

definiteness we note that the operator ðUy
x Þab is defined to

be equal to ððUxÞbaÞy, and so the following holds as a
operator identity:X

a

ððUxÞabÞyðUxÞac ¼
X
a

ðUy
x ÞbaðUxÞac ¼ �bc: (2)

1We note here that, in contrast to what happens in the lattice
strong-coupling expansion [25], the baryons are not tied to
lattice sites in our approach and their wave functions are deter-
mined dynamically.

2As discussed below, this will give rise to extra zero modes (in
addition to the ones already mentioned above) but because the
real ground state has vanishing Polyakov loops and no extra zero
modes, we do not investigate this issue further.
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The conjugate momenta of the U’s also reside on links and
are denoted by Ei

x, i ¼ 1; . . . ; N2 � 1. The following are
the commutation relations of this set of operators:

½Ei
x; ðUxÞab� ¼ ð�iUxÞab; (3)

½Ei
x; E

j
x� ¼ ifijkEk

x: (4)

Here �i are matrices that represent the traceless generators
of SUðNÞ in the fundamental representation, and fijk are
the structure constants of SUðNÞ. We choose a normaliza-
tion where

tr ð�i�jÞ ¼ 1
2�

ij; (5)

XN2�1

i¼1

�i
ab�

i
cd ¼

1

2

�
�ad�cb � 1

N
�ab�cd

�
: (6)

Let us now discuss the lattice Hilbert space. A general
state j�i is the direct product on all lattice sites,

j�i ¼ j�iG � j�i�: (7)

Here the first factor is the projection of the state j�i to the
gauge field sector, while the second factor describes the
fermionic sector. Any state j�i� is the following direct
product:

j�i� ¼ Y
�x

ðj�i�Þx: (8)

Concentrate on the Hilbert space of each site: the ‘‘lowest’’
state is the no-quantum ‘‘drained’’ state jdrix, defined as

c a�
x jdrix ¼ 0: (9)

Applications of various c ya�
x create the corresponding

quarks on that site,

ja�ix� ¼ c ya�
x jdrix: (10)

For the free theory, � ¼ 1 corresponds to creation of
positive energy excitations and � ¼ 2 corresponds to cre-
ation of negative energy excitations. To use the usual
quark–antiquark language we write for each site and color

c ¼ b
dy

� �
: (11)

by creates a quark and dy an antiquark. From Eq. (9) we
see that b and dy annihilate the drained state, which means
that this state is empty of quarks and filled with antiquarks.
The local baryon density operator is

Bx � 1

N

XN
a¼1

½byaba � dyada�x ¼ 1

N

X
a

c ya
x c a

x � 1: (12)

According to Eq. (12), the baryon number of the drained
state is �1, corresponding to filling the site with anti-
quarks. The vacuum j0i is the state with no quarks and
no antiquarks. This state is the filled Dirac sea on a single

site and obeys

bj0i ¼ dj0i ¼ 0: (13)

The baryon number of this state is B ¼ 0. Because of the
Pauli exclusion principle we cannot put too many fermions
on a single site. For a single flavor theory the maximum
number of local baryon number will be 1 and is found only
in the state jfilledi

byjfilledi ¼ djfilledi ¼ 0: (14)

Below we will see that gauge invariance puts more restric-
tions on the single-site Hilbert space in order that it be
color neutral.
Moving to the gauge Hilbert space, we also write it as a

direct product of the form

j�iG ¼ Y
�x

ðj�iGÞx: (15)

Next, we denote the state with no electric field E by j0iG,
Eij0iG ¼ 0; 8 i: (16)

Any application of the link operators ðUxÞab on j0iG creates
states which correspond to flux lines on the link x. The state
j0iG is the only state with no flux at all. Using the fact that
the electric field operators generate a SUðNÞ algebra, one
can distinguish between the different quantum states cre-
ated by the link operators as follows. Define the quadratic
Casimir operator

~E 2
x �

XN2�1

i¼1

Ei2
x : (17)

It is clear that the fluxless state j0iG is an eigenstate of this
Casimir, with zero eigenvalue. Next, the commutations of
the Casimir with the link operators are verified from Eq. (3)
to be

½ ~E2
x; ðUxÞab� ¼ CFðUxÞab; (18)

where CF ¼ ðN2 � 1Þ=2N is the Casimir operator in the
fundamental representation. This means that the state
½ðUxÞabj0iG� is also an eigenstate of (17), with eigenvalue
equal to CF. One can now classify the states in j�iG
according to their ~E2 eigenvalue. The result is a Hilbert
space with a ladderlike structure. The lowest state is j0iG,
with zero flux, and is a singlet of SUðNÞ. Repeated appli-
cations of the gauge field operators ðUxÞab create states

with higher and higher values of flux and the operators ~E2
x

measure the flux on the link x. Indeed we shall see shortly
that it is proportional to the (kinetic) energy of the gauge
fields.
To complete the picture we now discuss gauge invari-

ance. First recall that the starting point of this formalism
was to choose the timelike gauge. This leaves only time-
independent gauge transformations as a symmetry. The
fermion operators belong to the fundamental representa-
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tion of the gauge symmetry and transform as

c a
x ! ðVxÞabc b

x; (19)

with V 2 SUðNÞ given in general by

Vx ¼ exp

�
i
XN2�1

i¼1

�ix�
i

�
: (20)

Using the anticommutation relations (1), one can show that
the quantum operator V F that realizes Eq. (19) in Hilbert
space as

c a
x ! V Fc

a
xV

y
F (21)

is

V F ¼ exp

�
�i

X
x

XN2�1

i¼1

�ixðc ya
x �i

abc
b
xÞ
�
: (22)

The gauge fields transform according to

ðUxÞab ! VGðUxÞabV y
G ¼ ðVxUxV

y
xþ1Þab: (23)

Using the commutation relations in Eq. (3), one shows that
the quantum operator VG that generates these rotations is
given by3

V G ¼ exp

�
þi

X
x

XN2�1

i¼1

�ixðEi
x � ðUAdj:

x�1ÞjiEj
x�1Þ

�
; (24)

where here the matrix of operators ðUAdj:
x�1Þji is the link

matrix in the adjoint representation, i.e.4

ðUAdj:
x Þij ¼ 2 trð�iUx�

jUy
x Þ: (25)

Putting Eqs. (22) and (24) together, we see that the
operator that induces gauge transformations is

V ¼ exp

�
i
X
x

XN2�1

i¼1

�ixð�i
G � �i

FÞx
�
; (26)

where �i
Fx and �i

Gx are the color charge densities of the

fermions and of the gauge fields. These two quantities are
given by

�i
Fx ¼ c ya

x �i
abc

b
x; (27)

�i
Gx ¼ Ei

x � ðUAdj:
x�1ÞjiEj

x�1 � DEi
x: (28)

Since the lattice Hamiltonian is gauge invariant, we
know that the generators of the gauge transformations
commute with the Hamiltonian

½H;�i
Gx � �i

Fx� ¼ 0; 8 i 8 x: (29)

This means that we can choose to work with a basis that
block diagonalizes �i

G � �i
F. This breaks the Hilbert space

to separate sectors classified by their eigenvalue
�i
external;x � �i

G � �i
F on the lattice. Each set of values

�i
external;x describes a different physical case, with a differ-

ent external distribution of color charge (that can corre-
spond, for example, to infinitely heavy quarks, etc.). To
describe the physics of zero external gauge fields, we work
with the choice �i

external ¼ 0. Working in this subspace

means that all physical states must be color singlets, since
all gauge transformations are trivial. This means that in this
sector the following equations hold as operators identities:

Ei
x � ðUAdj:

x�1ÞjiEj
x�1 ¼ �i

Fx: (30)

Finally, we write the lattice Hamiltonian H of the 1þ
1-dimensional SUðNÞ gauge theory with one flavor of
fermions. H is given by (in one dimension there is no
magnetic field and so the plaquette term is identically zero)

H ¼ HE þHF: (31)

Here HE is the electric term, a sum over links x of the
SUðNÞ Casimir operator

HG ¼ g2

2

XLs

x¼1

ðEi
xÞ2: (32)

Next is the fermion Hamiltonian,

HF ¼ � i

2

XLs

x¼1

c ya�
x ð�3Þ��Ux;abc

b�
xþ1 þ H:c:

þm
X
x

c ya�
x ð�1Þ��c a�

x : (33)

Here we choose a particular representation of the one-
dimensional Dirac matrices using the Pauli matrices �1;3

and periodic boundary conditions on the fermions, i.e.

c x ¼ c xþLs
, and c y

x ¼ c y
xþLs

.

Superficially, the first term in the Hamiltonian is sym-
metric under a Uð1ÞR �Uð1ÞL chiral symmetry which is
explicitly broken by the mass term to the vector Uð1Þ. One
can, however, spin diagonalize the fermions by writing

c �
x ! ðe�i��2=2�x

3Þ��c �
x and see that

HF ¼ � i

2

X
x

c ya�
x Ux;abc

b�
xþ1 þ H:c:

þm
X
x

ð�1Þxc ya�
x ð�3Þ��c a�

x : (34)

Here, while the first term is invariant under a Uð2Þ group,
the mass term is invariant only under aUð1Þ �Uð1Þ. In our
actual calculations we will drop the second component of
this spin-diagonalized Hamiltonian (the � ¼ 2), and thus
work with staggered fermions [27]. To go back to Dirac
fermions is easy and for our purpose it is useful to note that

3Here we take �x to be periodic in x.
4Some useful properties of the operator ðUAdj:Þij are that its

representation in Hilbert space is Hermitian, ðUAdj:Þij ¼ððUAdj:ÞijÞy, and that
P

kðUAdj:ÞikðUAdj:Þjk ¼ �ij. The latter rela-
tion means that for the operator identity ðUAdj:UyAdj:Þij ¼ �ij to
hold we need to define ðUyAdj:Þij � ðUAdj:Þji.
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the continuum chiral condensate and baryon number local
densities, at position X, ð �c c ÞðXÞ, and ðc yc ÞðXÞ, are
given, up to overall renormalization factors, by [27]

ðc yc ÞðXÞ ¼ 1ffiffi
2

p ðc y
x c x þ c y

x�1c x�1Þ; (35)

ð �c c ÞðXÞ ¼ 1ffiffi
2

p ðc y
x c x � c y

x�1c x�1Þ; (36)

where we take X=a ¼ x, and x denotes an even site.5.

III. AXIAL GAUGE FIXING

In this section we show how to fix the axial gauge. Since
axial gauge fixing in the Hamiltonian approach is less
familiar than it is in the Euclidean approach we begin
with an explanation of the general strategy.

Temporal gauge fixing left us with a Hamiltonian that is
invariant under time-independent gauge transformations
discussed in the previous section. With no external charges
the generator of such transforms needs to vanish on physi-
cal states and this gives rise to a set of local and global
Gauss-law constraints that the quantum fields and their
conjugate momenta need to obey. Of these constraints,
the local ones can be solved (and will be solved in the
next section) and consequently a large subset of the gauge
fields’ conjugate momenta is written in terms of the fer-
mion color charges. The fact that these momenta become
nondynamical implies that their conjugate gauge fields are
not physical and can be removed from the Hamiltonian.
These are the fields that, in the action formalism, can be
‘‘gauged away.’’

Indeed, from the path integral formalism we know that
in a compact system of one spatial dimension almost all
gauge fields can be gauged away. The only gluonic modes
that remain are those corresponding to a constant spatial
gauge field. Furthermore, one can gauge away all but the
N � 1 independent eigenvalues of this zero mode.
Anticipating a similar scenario in the Hamiltonian ap-
proach, one expects that the following fermionic
Hamiltonian will be the remnant of the Hamiltonian equa-
tion (33) after the axial gauge fixing:

H0
F ¼ �i

X
x

c ya
x �3e

i’ac a
xþ1 þ H:c:þm

X
x

c ya
x �1c

a
x:

(37)

Here we denote by ei’a the ath eigenvalues of the constant
spatial gauge field operator. Clearly, to get Eq. (37) from
Eq. (33) one needs to remove all but the eigenvalues of the
spatial Polyakov-loops operator from the system. Using a
sequence of a change of variables, this is easy to do in the
path integral approach. But in the Hamiltonian there seems

to be a conceptual difficulty with such a process: the
degrees of freedom we wish to gauge away are represented
by quantum operators and it is not clear how to ‘‘gauge
them away.’’
To proceed we choose to generalize, to the lattice, the

formalism constructed in the seminal Ref. [23]. The gen-
eral idea is to find a Hilbert space realization of a unitary
operator F that will rotate quantum states into a basis
where the Hamiltonian looks like Eq. (37). To do so we
follow the path integral picture as a guide: first we define
the spatial Polyakov loop operator P to be

Pab ¼ XN
c;d;���;z¼1

U1;acU2;cd � � �ULs;zb; (38)

and second we define the ‘‘eigenvalue operators’’ ’a

through

Pab ¼ X
c

SyacðPÞeiLs’cðPÞScbðPÞ: (39)

Here the matrix of operators ðSðPÞÞab is a functional of the
operators Pab and is defined implicitly through Eq. (39).
Next we ask to find a form of F that will induce the
following transformations:

c a
x ! c 0a

x ¼ F c a
xF y ¼ X

b

Vx;abc
b
x; (40)

c ay
x ! c 0ya

x ¼ F c ya
x F y ¼ X

b

c ybVy
x;ba; (41)

Ux;ab ! U0
x;ab ¼ FUx;abF y ¼ Ux;ab; (42)

Uy
x;ab ! U0y

x;ab ¼ FUy
x;abF

y ¼ Uy
x;ab: (43)

Crucially, here the operator ðVxÞab is chosen to be the
following functional of the gauge fields operators ðUxÞab,

Vx;ab ¼
XN

cde���yz¼1

Uy
x�1;acU

y
x�2;cd � � �Uy

1;yzS
y
zbðPÞei’bðPÞx:

(44)

This guarantees that V obeysX
bc

ðVy
x ÞabðUxÞbcðVxþ1Þcd ¼ ei’a�ad (45)

as an operator identity. The form of F that induces
Eqs. (40)–(42) is then written as

F ¼ exp

�
�i

X
xi

�i
x;F�

i
xðfUgÞ

�
; (46)

where� is again an operator in Hilbert space that depends
on the gauge field operators Ux;ab and that is defined

through its following relation to the operator V:

5Here all fields are still dimensionless. The continuum expec-

tation values h �c ð1;	0Þc icontinuumffiffiffiffiffiffiffi
g2N

p are given by dividing the right-hand

side (r.h.s.) of Eqs. (35) and (36) by a
ffiffiffiffiffiffiffiffiffi
g2N

p
(g has dimensions of

mass in 1þ 1).
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Vx;ab ¼
�
exp

�
i
X
i

�i�i
xðfUgÞ

��
ab
: (47)

Note that F is not a gauge transformation (i.e. it is not of
the form Eq. (26)).

The end result of Eqs. (40)–(47) is that when we rotate
the Hilbert space by F or, equivalently, conjugate the
fermionic part of the Hamiltonian by F we indeed get
Eq. (37):

HF ! H0
F ¼ FHFF y

¼ �i
X
x

c ya
x �3e

i’ac a
xþ1 þ H:c:þm

X
x

c ya
x �1c

a
x:

(48)

This change of quantum basis is how the process of axial
gauge fixing works in the Hamiltonian formalism.

We now proceed to find the transformed version of HE,
of the commutation relations, and of the Gauss-law con-
straint. We begin by defining the transformed electric fields
E0 via

E0i
x � FEi

xF y; (49)

which allows us to write the transformed electric field
Hamiltonian as

HE ! H0
E ¼ FHEF y ¼ g2

2

X
x;i

ðE0i
x Þ2: (50)

It is clear that the commutation relation between the E0
fields and the U fields are the same as in Eqs. (3) and (4)
(this is so because of Eq. (42)). Next, we turn to transform
the Gauss-law constraint. For that we conjugate Eq. (30) by
F

F ðEi
x � ðUAdj:

x�1ÞjiEj
x�1ÞF y ¼ F�i

F;xF
y: (51)

This equation, in terms of E0i
x , reads

E0i
x � ðUAdj:

x�1ÞjiE0j
x�1 ¼ F�i

F;xF
y ¼ X

ab

�i
abF c ya

x c b
xF y

¼ X
ab
a0b0

�i
abc

ya0
x c b0

x V
y
x;a0aVx;bb0 : (52)

Multiplying this equation by �i
cd, summing over i, and

writing it in terms of the adjoint representation of the
operator V, we getX

i

ðVAdj:
x ÞikðE0i

x � ðUAdj:
x�1ÞjiE0j

x�1Þ ¼ �k
F;x: (53)

Finally, if we define

E00k
x ¼ ðVAdj:

x ÞikE0i
x (54)

and

E0j
x ¼ ðVAdj:

x ÞjkE00k
x ; (55)

then we get

E00i
x � ðVy

x U
y
x�1Vx�1ÞAdj:ij E00j

x�1 ¼ �i
F;x: (56)

Using Eq. (44) this gives

E00i
x � ðe�i’ÞAdj:ij E00j

x�1 ¼ �i
F;x: (57)

Equation (57) is the starting point to the discussions in
Secs. IVand V: first, in Sec. IV, we solve Eq. (57) and write
the fields E00i

x in terms of the color charge densities �i
F;x.

This cannot be done to all of the components of E00, and a
subset of these remains independent of the fermionic
charge densities. The way we treat these remaining com-
ponents is explained in Sec. V.

IV. RESOLUTION OF THE GAUSS-LAW
CONSTRAINT

In this section we resolve the Gauss-law constraint of
Eq. (57) and write the electric field operators E00 in terms of
the fermion color charge densities �F. For that purpose we
first specify the basis of the color group generators �i. We
choose the N � 1 traceless generators �i¼1;2;...;N�1 to span
the traceless Cartan subalgebra, and the remaining NðN �
1Þ generators to have no diagonal entries. In this basis we
see that

ðe�i’ÞAdj:ij � 2eið’a�’bÞ�i
ab�

j
ba

¼
��ij if i;j2½1;N�1�;
0 if i2½1;N�1� but not j; and vice versa :

(58)

As a result, if we focus on the Cartan subalgebra (let us
denote its generators by i ¼ I), and Fourier transform the
operators E00 and � according to

E00I
x ¼ 1ffiffiffiffiffiffi

Ls

p X
p

eipnE00I
p ; (59)

�I
x ¼ 1ffiffiffiffiffiffi

Ls

p X
p

eipn�I
p; (60)

with p ¼ 2�n
Ls

; n ¼ 0; 1; . . . ; Ls � 1, then we can resolve

the nonzero momentum components of E00I
p�0:

E00I
p ¼ �I

F;p

1� e�ip ; for p � 0: (61)

For p ¼ 0 Gauss law cannot be resolved and instead
becomes a constraint on the fermionic global color
charges:

8 I ¼ 1; 2; . . . ; N � 1 : QI � X
x

c y
x �Ic x ¼ 0: (62)

The N � 1 requirements of Eq. (62) can be written as

8 a ¼ 1; . . . ; N :
X
x

c ya
x c a

x ¼ independent of a; (63)
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and since the baryon number B is equal to 1
N

P
x;ac

ya
x c a

x �
Ls (see Eq. (12)) then Eq. (62) becomesX

x

c ya
x c a

x ¼ Bþ Ls; 8 a ¼ 1; 2; . . . ; N: (64)

For the rest of the generators i � I we can indeed
resolve Gauss law even for zero momentum: multiplying
Eq. (57) by �i

ab with a � b, and defining E00
x;ab ¼P

i�I�
i
abE

00i
x and �F;x;ab ¼ P

i�I�
i
ab�

i
F;x, one finds that the

Fourier components of E00
x;a�b obey

E00
p;ab ¼

�F;p;ab

1� e�iðpþ’a�’bÞ (65)

(here the Fourier transformations of E00
x;a�b and �x;a�b are

defined in a way similar to Eqs. (59) and (60)). Note that
we work in a Schröedinger picture where ’a is a c number.
Also, in Eq. (65) we assume the absence of states with
’a � ’b þ p ¼ 0. Since p is quantized in units of 2�=Ls,
this assumption will indeed become true—see the discus-
sion below on the importance of the Jacobian of the cur-
vilinear coordinates ’.

We can now use the relations between E00 and �F and
write the electric Hamiltonian in terms of the fermions and
the gluonic zero modes. For that we use the Hermiticity of
E0
x and get

H0
E ¼ g2

2

X
ix

ðE0i
x Þ2 ¼ g2

2

X
ix

E0iy
x E0i

x ¼ g2

2

X
ix

E00iy
x E00i

x

¼ g2

2

X
ip

E00iy
p E00i

p

¼ g2

2

�
2

Ls

X0
ab
x;y;p

�x;ab�y;bae
iðy�xÞp

4sin2ðpþ’a�’b

2 Þ þ XN�1

I¼1

E00Iy
p¼0E

00I
p¼0

�
:

(66)

Here, by the primed sum, we mean that one must sum over
all a, b, and p for which the denominator is nonzero. This
restriction is a direct consequence of one’s inability to
resolve all of the Gauss-law constraints and will become
the source of the principle value prescription often used in
the ‘t Hooft model.

V. REALIZATION OF THE ZERO MODES IN THE
SCHRÖEDINGER PICTURE

The resolution of Gauss law left us in the glue sector
with a restricted set of dynamical degrees of freedom—the
N � 1 eigenvalues of the spatial Polyakov loops, ’a, and

their N � 1 conjugate momenta EI00
p¼0. In this section we

focus on these operators to which we collectively refer as
the zero modes. Specifically, we calculate their commuta-

tion relations and also find a simple way to realize EI00
p¼0 in

the Schröedinger picture, where ’a are c numbers. For that
purpose we first calculate the commutation relations of E0i

x

and the operator

ðPyÞab ¼ ðU1U2 � � �UyÞab: (67)

The result is easy to obtain and can be written in terms of
the operators S and ’ (see Eq. (39)), and the operator V
(Eq. (44)),

½E0i
x ; ðPyÞab� ¼ �ðy� xÞðSyei’xVy

x �iVxe
�i’xSPyÞab:

(68)

Here �ðxÞ ¼ 1 if x � 0 and zero otherwise. Next we use
the definition of E00I in Eq. (54) and after some algebra find
that (here note that we focus only on the Cartan subalge-
bra)

½E00I
x ; ðPyÞab� ¼ �ðy� xÞðSy�ISPyÞab: (69)

Since the dependence on the site index x in the r.h.s. of
Eq. (69) is trivial, we can easily write the commutation
relation of the zero mode E00I

p¼0 ¼ 1ffiffiffiffi
Ls

p P
xE

00I
x , and we find

½E00I
p¼0; ðPyÞab� ¼ yffiffiffiffiffiffi

Ls

p ðSy�ISPyÞab: (70)

In particular, for y ¼ Ls, we use Eq. (39) and get

½E00I
p¼0; Pab� ¼

ffiffiffiffiffiffi
Ls

p ðSy�Iei’LsSÞab: (71)

If we now define Ea � P
I�

I
aaE

00I
p¼0, we get

½Ec; ðSyei’LsSÞab� ¼ 1

2

ffiffiffiffiffiffi
Ls

p �
Syacei’cLsScb � 1

N
Pab

�
:

(72)

In Appendix A we show that

E a ¼ Ey
a ; (73)

½Ea; Eb� ¼ 0; (74)

and we note in passing also that
P

aEa ¼ 0.
The form of Eqs. (72)–(74) leads us to write the follow-

ing realization of the E operators in the Schröedinger
picture:

2
ffiffiffiffiffiffi
Ls

p
Ea ¼ �i

�
�

�’a

� 1

N

X
c

�

�’c

�

� i

2

�
� log�2ð’Þ

�’a

� 1

N

X
c

� log�2

�’c

�
; (75)

where here �2ð’Þ is the well-known Vandermond deter-
minant

�2ðf’gÞ ¼ Y
a<b

sin2
�
Ls

’a � ’b

2

�
: (76)

It is easy to check that the first term in Eq. (75) indeed
satisfies Eq. (72): the ’a¼1;...;N behave like the coordinates

of N particles, while �
�’a

� 1
N

P
b

�
�’b

behave like their

momenta, relative to the motion of the center of mass
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coordinate ’c:m: �
P

a’a. This separation into relative
coordinates and a center of mass is anticipated in the
SUðNÞ case where ’c:m: is not a true degree of freedom.

It is also not hard to understand the origin of the second
term in Eq. (75): while it trivially obeys Eq. (72), it is
necessary for Eq. (73). To see this recall that in the
Schröedinger picture the measure of the ’a coordinates
is not flat—it is given by the Haar measure dP over the
spatial Polyakov loop P (which is the only remnant of the
gauge field degrees of freedom). Since the Hamiltonian
only depends on the eigenvalues ’aLs of P, then we can
replace

Z
SUðNÞ

dP !
Z �Y

a

d’a

�
�2ðf’gÞ�ð’c:m:Þ: (77)

Because of the �2 factor in the measure, the simple de-
rivative operator �i �

�’ will not be Hermitian (its action to

the right will differ from its action to the left by a derivative
of �2). It is easy to check the particular choice of Eq. (75)
fixes this and makes Eq. (75) Hermitian.6

Our final step will be to simplify Eq. (75) even further.
For that we define a new wave function �new for the
curvilinear coordinates ’ that will make their measure
flat. Specifically, we write

�ð’Þ � �newð’ÞQ
a<b

sinðLs
’a�’b

2 Þ : (78)

In terms of the new wave function the Vandermond dis-
appears from the measure and the kinetic term becomes the
simple quadratic form (here we rescaled ’ ! ’=Ls):

g2

2

X
I

ðE00I
p¼0Þ2 ¼ �g2Ls

4

XN
d¼1

�
�

�’d

� 1

N

X
c

�

�’c

�
2
: (79)

This will be our final simplified form for the zero mode
contribution to H0

E.

VI. RECAP: THE HAMILTONIAN AND THE
RESTRICTIONS ON THE HILBERT SPACE

To conclude let us write the lattice Hamiltonian H in
terms of the operators that cannot be gauged away. It
describes the interactions between the lattice fermions c
and the eigenvalues of the spatial Polyakov loop ’, and is
given by

H ¼ HG þHK þHC; (80)

HG ¼ �g2Ls

4

XN
d¼1

�
�

�’d

� 1

N

XN
c¼1

�

�’c

�
2
; (81)

HK ¼ � i

2

X
x

c ya
x ei’a=Lsc a

xþ1 þ H:c:

þm
X
x

ð�1Þxc ya
x c a

x; (82)

HC ¼ g2

Ls

X0

abp

�ab
F;x�

ba
F;ye

ipðy�xÞ

4sin2ðð’a�’bÞ=Lsþp
2 Þ ; (83)

�ab
F;x �

1

2

�
c yb

x c a
x � �ab

N

X
c

c yc
x c c

x

�
: (84)

Here the primed sum in Eq. (83) means that we should not
sum over terms whose denominator is zero (for the deri-
vation of this restriction see Sec. IV). From here on we
discard the lower component of the fermions and so discuss
the staggered fermions formulation of lattice QCD [27]
(this also means that we need to replace the r.h.s. of
Eq. (64) by Bþ Ls=2 and choose the number of lattice
sites, Ls, to be even). The reason we choose to work with
staggered fermions is twofold. First, these one-component
Grassmann variables are simpler to treat in our formalism
and the computational effort involved in the numerical
minimization of their classical Hamiltonian (for details
see [16]) is a factor of two smaller than for the naive
prescription of fermions considered above. Second, unlike
the situation in four-dimensional Euclidean calculations,
staggered fermions in the one-dimensional Hamiltonian
approach are ‘‘undoubled’’ and correspond to a single
Dirac fermion in the continuum limit.
Finally, the Hilbert space of the system obeys the fol-

lowing:

(i) The operators
P

xc
ya
x c a

x are, for each value of the
color index a ¼ 1; . . . ; N, constants and equal to
Bþ Ls=2.

VII. DIAGONALIZATIONOFTHEHAMILTONIAN:
THE COHERENT STATES APPROACH

In this section we use the coherent state approach to
study the ground state properties of the Hamiltonian in its
large-N limit. This approach is summarized in Refs. [24]
and we refer to these papers for detailed discussions, while
here we only describe its strategy.
The main paradigm that underlies the coherent state

approach is that QCD, in its large-N limit, becomes a
classical theory.7 This means that instead of diagonalizing

6The integral over ’ can be either restricted to obey ’a � ’b

for a > b, or can be simply unrestricted. The difference between
these two choices will be reflected by whether the operators SðPÞ
include permutations of the eigenvalues or not.

7Here we implicitly assume that we take the large-N limit
when all other parameters are fixed. These include the volume L,
the temperature T, the mass mq, the ‘t Hooft coupling g2N, and
the baryon number B.
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its quantum Hamiltonian, one can instead minimize a
corresponding classical function H , referred to as the
‘‘classical Hamiltonian.’’ The minimization is done with
respect to a set of coordinates, C, that correspond to ex-
pectation values of gauge invariant operators. The coherent
state approach provides the mathematical prescription for
calculating the function H ðCÞ and it is shown to be given
by

H ðCÞ ¼ hCjHjCi: (85)

Here jCi is the so-called ‘‘coherent state’’ obtained by
applying a unitary color singlet operator, that we denote
by UðCÞ, on an arbitrary color singlet element j0i of
Hilbert space, the so-called ‘‘reference’’ state:

jCi ¼ UðCÞj0i: (86)

The operatorU is a functional of gauge invariant operators
like spatial Wilson loops of contour �

tr W�; (87)

as well as spatial Wilson loops decorated by a single

insertion of the electric field matrix operator ðExÞab �P
N2�1
i¼1 Ei�ab, at point x along the loop, i.e.

tr Ex2�W� and trW�Ex2� (88)

(the two operators that appear in Eq. (88) are different
since the electric fields do not commute with the gauge
fields). Also, in the presence of fermions, U depends on
stringlike operators of the form

c y
xUx!yc y; (89)

where here Ux!y is a string of gauge field operators con-

necting site x with site y. The generic way UðCÞ depends
on these operators is

U ðCÞ � UF �UG; (90)

U F � exp

�X
xy

CxyF c y
xUx!yc y

�
; (91)

UG � exp

�X
�

C�G trW�

þX
�

X
x2�

ðCx;�G;1 trExW� þ Cx;�G;2 trW�ExÞ
�
; (92)

where CxyF , C�G, and Cx�G;1;2 are c numbers.

Since all the three types of operators defined in
Eqs. (87)–(89) form a closed algebra, the structure of
Eqs. (90)–(92) guarantees that UðCÞ is an element of a
Lie group referred to as the coherence group. Indeed CxyF ,
C�G, and Cx�G;1;2 parametrize this Lie group and furnish

coordinates on its manifold. More precisely, the fermionic
part of the coherence group is parametrized by the fermi-

onic coordinates CF, and the gluonic part by CG and CG;1;2.
8

The values Cmin that minimizeH ðCÞ then determine the
values of all gauge invariant observables in the ground state
ofH, so, for example, the ground state energy Eg:s: is given

by

lim
N!1Eg:s: ¼ H ðC ¼ CminÞ; (93)

etc.
In the large-N limit of QCD with the number of flavors,

Nf, kept fixed, the minimization of H proceeds in two

steps: one begins by minimizing the leading OðN2Þ con-
tribution ofH ðCÞ. At leading order the latter is equal to the
classical function H G given by the classical Hamiltonian
of the pure gauge theory

H G ¼ h0gjUy
GHGUGj0gi; (94)

where the operator HG is given in Eq. (81) and j0gi is a
reference state in the pure gauge system. This step sets the
value of the expectation values of the gluonic color singlet
operators such as the spatial Polyakov loops. For brevity,
let us refer to these expectation values by the generic
symbol P and by Pmin to their value at the minimum of
H G.
Next, one minimizes the OðNÞ contribution to H . To

leading order it is given by calculating the expectation
value of HK þHC from Eqs. (82) and (83) in the subset
of coherent states whose gluonic coordinates have already
been determined by the gauge dynamics. This contribution
is thus given by

H FðCFÞ � h0FjUy
FðHK þHCÞUFj0FijP¼Pmin

; (95)

with j0Fi denoting a fermionic reference state. This two
step process reflects the dominance of the gauge field
dynamics over the fermion dynamics. Indeed the back-
reaction of the fermions on the gauge fields comes from
terms which we do not consider in this work and that are
subleading in 1=N. This is true as long as there is no
enhancement of these 1=N terms by massless modes,
which we assume to be the case.9

For our purposes it will be easier to simply calculate
H FðCFÞ and substitute the set of expectation values P by
its value in the exact ground state of HG. The latter is
known analytically and we repeat its derivation in
Sec. VII A. The solution of the fermion sector, however,
is done as described above and we calculate the classical
function H FðCFÞ in Sec. VII B.
We now turn to make the following remark on the way

H is calculated and minimized. As mentioned above, the
coordinates C correspond to expectation values of different

8To ensure thatUðCÞ is unitary, the coordinates C need to obey
certain conditions and in the next section we make these explicit.

9We thank V. P. Nair for pointing this to us and L.G. Yaffe for
a discussion related to this.
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color singlet operators. More accurately, one can focus
ones attentions to expectation values of only ‘‘nonfactor-
izable’’ operators such as the string operators of Eq. (89).
Naively, however, one might expect thatH should also be
minimized with respect to coordinates that correspond to
expectation values of ‘‘factorizable’’ operators such as

1

N
ðc y

x c xÞ � ðc y
y c yÞ; 1N ðc y

xUx!yc yÞ � ðc y
z c zÞ; . . . :

(96)

This, however, is incorrect: at large N the expectation
values of such operators factorize, and, for example,

hc y
x c x � c y

y c yi ¼N¼1hc y
x c xi � hc y

y c yi: (97)

As a result, the expectation values of factorizable operators
become determined by the expectation values of the non-
factorizable operators and should not be thought of as
independent coordinates that parametrize the coherent
state manifold or the point within that manifold that rep-
resents the ground state.

The unique role of nonfactorizable operators is also
reflected by the structure of the unitary operator of
Eqs. (90)–(92) which depends only on such operators.
Indeed in Ref. [24] it is shown that to generate the whole
coherence group, it is sufficient to include in its algebra
only the nonfactorizable operators that appear in Eqs. (90)–
(92). Adding other operators greatly complicates the alge-
bra of the coherence group and is unnecessary. An impor-
tant result of the discussion above, which we wish to
emphasize, is that the coherent state jCi defined in
Eq. (86) is sufficiently general to look for all possible
large-N ground states. Put differently, the form in
Eq. (86) does not correspond to assuming an ansatz for
the ground state of the gauge theory.

In the next two subsections we show how to implement
the program outlined above in practice. We begin in
Sec. VII A with the treatment of the pure gauge case that
allows us to calculate the expectation values of the color
singlet gluonic operators, namely, the traces of different
powers of spatial Polyakov loops. The pure gauge
Hamiltonian in our two-dimensional case is sufficiently
simple that we can do so exactly and for any value of N.
The next step is to apply the coherent state approach to the
fermionic part of the Hamiltonian and we do so in
Sec. VII B.

A. Solution of the gauge sector

The solution of the pure gauge sector is well known [28].
The starting point is to notice that Eq. (78) means that the
gauge wave functions need to be antisymmetric to an
exchange of two angles, and for odd values of N, periodic
in 2�:

�ð’1; ’2; . . . ; ’k; . . . ; ’l; . . . ; ’NÞ
¼ ��ð’1; ’2; . . . ; ’l; . . . ; ’k; . . . ; ’NÞ: (98)

�ð’1; ’2; . . . ; ’k þ 2�; . . . ; ’NÞ
¼ þ�ð’1; ’2; . . . ; ’k; . . . ; ’NÞ: (99)

These properties, together with the form of the
Hamiltonian, tell us to think of the ’a as the positions of
N nonrelativistic fermions with mass 2=g2Ls, moving on a
circle with periodic boundary conditions and a fixed center
of mass. The single particle wave functions of such a
system are the plane waves ei’n with n ¼ 0;	1;	2; . . . ,
and the ground state wave function of this N-fermion
system is, up to a phase, the N � N slater determinant
obtained by occupying momentum states distributed sym-
metrically around zero and limited by ‘‘Fermi momenta’’
nF ¼ ðN � 1Þ=2:

�ðf’gÞ ¼ det
�nF
a;b
þnF

eib’a : (100)

This wave function Eq. (100) is an eigenstate of HG with

eigenenergy that has the large-N limit of LsN
2

48 � g2N.

It is easy to show that this determinant differs from the
Vandermond determinant Eq. (76) by a phase that depends
only on the ‘‘center of mass’’ of the fermions,

P
c’c, and in

SUðNÞ we set this phase to zero. The result is

j�ðf’gÞj2 ¼ �2ðf’gÞ; (101)

and so when we calculate expectation values of gauge
invariant gluonic operators Oðf’gÞ we need to perform
the following integral (here we set the normalization
such that h1i ¼ 1 and denote

P
c’c by ’c:m:)

hÔiG ¼
Z

d’�2ðf’gÞ�ð’c:m:ÞÔðf’gÞ; (102)

Z
d’ � 1

N!

Z YN
a¼1

d’a

2�
: (103)

B. Solution of the fermion sector: large-N coherent
states

We diagonalize the fermion sector in a variational man-
ner. As discussed above, the most general form of the
coherent state jCFi is given by

jCFi � UðCFÞj0i

¼ exp

�
�i

X
x2ZLs

X
y2Z

CxyF c ya
x ei’aðy�xÞ=Lsc a

y

�
j0i;

(104)

and parametrized by the infinite dimensional Hermitian
matrix CF. The state j0i is a fermionic reference state

which we choose to be a state annihilated by c y
x for a
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subset of lattice sites that are full of fermions and that we
denote by S. More precisely j0i is defined to obey

c y
x;aj0i ¼ 0; 8 x 2 S: (105)

On the complementary set of sites, x 2 �S, the reference
state is annihilated by c x. This means that we choose Bþ
Ls=2 of the lattice sites to be full of baryons and the rest
empty of baryons. This choice is convenient for our calcu-
lation, but the results are insensitive to it: the only thing
that matters is that the overall baryon number that j0i
contains is Bþ Ls=2 (such that the renormalized baryon
number is B).

We emphasize here that in the exponent of Eq. (104), the
index x runs over 1; 2; . . . ; Ls, while the sum over y is
unrestricted: y ¼ 0;	1;	2; . . . ;	1. The identification

c a
x ¼ c a

xþkLs
; k 2 Z; (106)

means that CF needs to obey

C xy
F ¼ CxþkLs;yþkLs

F ; k 2 Z; (107)

in order to have UðCFÞUyðCFÞ ¼ 1.

To find what is CF we minimize the classical
Hamiltonian H defined by

H F �
Z

d’hCFjHK þHCjCFi�2ð’Þ � �ð’c:m:Þ;
(108)

in the space of all possible choices of CF. The calculation
of hCFjHK þHKjCFi is somewhat lengthy and we post-
pone it to Appendix B.
The resulting expression can be written in terms of the

following ‘‘density matrices’’ �q
xy and ��q

xy with x, y 2
½1; Ls� and q 2 Z

�q
xy �

X
p2Z
z2S

ðeiCF ÞzþpLs;xðe�iCF Þy;zþðqþpÞLs ; (109)

�� q
xy � �q;0�xy � �q

xy: (110)

In terms of �q
x;y and ��q

x;y the classical Hamiltonian is

hCFjHK þHCjCFi ¼
X
x2ZLs
q2Z

��
� i

2
�q
x;xþ1 þ c:c:

�
þmð�1Þx�q

xx

�
�X

a

ei’a

þ g2

4Ls

X
xy2ZLs

X
p

a�b

X
qq02Z

�q0
xy ��

�q
yx e�iðx�yÞp � e�i’aðx�yþqLsÞ=Lsþi’bðx�yþq0LsÞ=Ls

4sin2ðð’a � ’bÞ=Ls þ pÞ=2 þOð1=NÞ: (111)

Note that in contrast to the form Eq. (83), here the second
term does not contain any contributions from the a ¼ b
terms. They are shown to be subleading in Appendix B.

To obtain a compact form for the classical Hamiltonian
H C we define Pk to be the Polyakov loop operator that
winds k times around the torus as

Pk � 1

N

X
a

ei’ak; (112)

and use the identity

1

4sin2ððkþ i
Þ=2Þ ¼ � 1

2

X
Q2Z

jQje�
jQjþiQk; (113)

with 
 > 0 regularizing the pole of the left-hand side, to
rewrite the second term of Eq. (111) as a sum over terms

that only contain powers of eið’a�’bÞ=Ls . Indeed, substitut-
ing Eq. (113) into the second term of Eq. (111), we find that
the terms contributing to the sum over the momentum
variable p ¼ 2�l=Ls can be isolated and read

XLs�1

l¼0

e�i2�lðx�y�QÞ=Ls ¼ Ls

X
�Q2Z

�y�xþQ; �QLs
: (114)

This allows us to substitute Q in Eq. (113) by x� yþ

�QLs. Since the dummy summation variable �Q obtains all
possible integer values, we drop the ‘‘bar’’ from its nota-
tion in the rest of the paper. Thus, the final result of the
manipulations in the last paragraph is that Eq. (111) gets
the following form:

H Fð�Þ=N ¼ X
x2ZLs
q2Z

��
� i

2
�q
x;xþ1 þ c:c:

�
þmð�1Þx�q

xx

�

� hPqiG � g2N

8

X
xy2ZLs

X
Qqq02Z

�q0
xy ��

�q
yx jx� y

þQLsje�
jx�yþQLsj
�
hPQ�qP�ðQ�q0ÞiG

� 1

N
hPq0�qiG

�
; (115)

where here we define the gluonic exception values h; iG in
Eq. (102).

1. Remarks on the form of the classical Hamiltonian

Equation (115) above is quite an important ingredient in
our paper and so let us now pause here and make the
following remark on its form and its implications. What
Eq. (115) tells us is that the fermionic properties of the
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system, which are represented by the density matrices �q
xy,

self-interact as well as couple to the Polyakov loops Pq.

The expectation values of the latter are determined by the
gauge dynamics and feel no backreaction from the fermi-
ons. Thus, performing the minimization in Sec. VII A cor-
rectly and determining the properties of the gluonic
vacuum in a consistent way, is crucial to get the correct
fermion dynamics. For example, in the Secs. VIII and IX
we emphasize that mistreating the glue sector, which is
what one does when one ignores the zero modes, leads,
through the way Eq. (115) couples the glue sector to the
fermion sector, to erroneous results for various fermionic
expectation values.

In particular, one can see that if the expectation values of
the different Polyakov loops are incorrectly chosen to be
unity,

Pq ¼ 1; 8 q; (116)

then by using large-N factorization of the double trace term

hPQ�qP�ðQ�q0Þi ¼N¼1hPQ�qihP�ðQ�q0Þi, one finds that the

second term in Eq. (115) is strongly dependent on Ls

(this is shown explicitly in Sec. IXA). This volume depen-
dence is contradicting general arguments on large-N gauge
theories such as those of Ref. [3].

2. Further manipulations of the classical Hamiltonian
and preparing for its minimization

In this section we make further important simplifications
of Eq. (115) that will also allow us to minimize it (see, for
example, Ref. [16] and the next sections).

For a UðNÞ theory one drops the delta functions in
Eq. (102), and the gluonic expectation values hPqiG and

hPqPq0 iG are calculated in Appendix B (see Eqs. (B16) and

(B17)). In the SUðNÞ case the integral in Eq. (102) changes
only by restricting the sum

P
’a to be zero, and so we

expect the Polyakov loops to be the same in the large-N
limit (we show this explicitly for hPqiG in Appendix B).

Using Eqs. (B16) and (B17) we see that, as expected, the
leading contribution to Eq. (115) is from the q ¼ 0 term in
the first line and from the q ¼ q0 ¼ Q in the first term of
the second line. This gives us10

H Fð�Þ=N ¼ X
x2ZLs

��
� i

2
�0
x;xþ1 þ c:c:

�
þmð�1Þx�0

xx

�

� g2N

8

X
xy2ZLs

X
Q2Z

�Q
xy ��

�Q
yx

� jx� yþQLsje�
jx�yþQLsj: (117)

Since the index Q runs over all integers we can write

�Q
xy ¼

Z �

��

dp

2�
�xyðpÞeipQ; (118)

which, reusing the identity equation (113) gives the form

H Fð�Þ=N ¼
Z dp

2�

X
x2ZLs

��
� i

2
�x;xþ1ðpÞþ c:c:

�

þmð�1Þx�xxðpÞ
�
þg2N

4

ZZ dp

2�

dp0

2�

1

Ls

� X
xy2ZLs

XLs

l¼1

�xyðpÞ ��yxðp0Þei2�lðx�yÞ=Ls

4sin2ððp�p0Þ=Ls þ 2�l=LsÞ=2
:

(119)

The pole at p ¼ p0 and l ¼ Ls in Eq. (119) might seem
alarming and tracking back its source to Eq. (111) one finds
that it is the double sum over the color indices a and b that
appears in the second term there. Specifically, terms in that
sum for which ja� bj is small are causing this divergence.
For these terms the argument of the sine in the denominator
can be small; for example, if p ¼ 2� and the Polyakov
loops have zero expectation value in the gluonic ground
state, then heuristically ’a � 2�a=N. (This is not a gauge
invariant statement, but for the current discussion this
subtlety is not important. In the rest of this paper we take
great care to avoid such statements when it is important to
do so.) Thus, we see that when ja� bj & Oð1Þ, then the
argument of the sine in Eq. (111) is very small and corre-
sponds to the pole in Eq. (119) above.
This pole is the source of the IR divergence in the usual

treatments of the ‘t Hooft model, and that is usually re-
solved with the ad hoc principle value prescription. In our
case this is not needed. The a ¼ b terms were excluded
from the sum in Eq. (111). The way this restriction emerges
in Eq. (119) is through certain conditions obeyed by the

density matrices �Q
xy and ��Q

xy which we present in
Appendix B (see Eqs. (B10) and (B11)) and that reflect
the unitarity of the operator UðCFÞ. In the language of
�xyðpÞ these conditions read

X
y2ZLs

�xyðpÞ ��yzðpÞ ¼ 0: (120)

Thus the divergence in Eq. (119) is removed and we get the
principle value prescription. To show that the near vicinity
of p ¼ p0 (corresponding to ja� bj small but nonzero) is
not causing any lower divergences we need to assume a
form for the p dependence of �xyðpÞ. Instead we have

confirmed this numerically while minimizing H ð�Þ with
respect to � [16].
We conclude this section by writing Eq. (119) in a way

which is convenient for its minimization. We first solve the

constraint equations (B10) and (B11) on �Q
xy by writing

10According to Eqs. (B16) and (B17) the terms with q ¼ q0 �
Q are also nonzero, but using the representation in Eqs. (121)
and (122) we verified that they are subleading in N if we take
M ! 1 with or after we take N ! 1.
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�Q
xy � 1

M

XM
a¼1

XBþLs=2

n¼1

�n
aðxÞeð2�iQaÞ=N�n?

a ðyÞ; (121)

��Q
xy � 1

M

XM
a¼1

XLs

n¼BþLs=2þ1

�n
aðxÞeð2�iQaÞ=N�n?

a ðyÞ; (122)

where for each a ¼ 1; . . . ;M, the single particle wave
functions �n

aðxÞ; n 2 ½1; Ls� span an Ls � Ls dimensional
space,

X
x2ZLs

�n
aðxÞ�m?

a ðxÞ ¼ �mn: (123)

Equation (121) is nothing but a discretized way to write the
most general expression for � and ��, that also obeys
Eqs. (B10) and (B11) and we show that this is correct in
Appendix C. Note that the full space of solutions for � and
�� is accessible only if M ¼ 1.
In terms of �n

aðxÞ we get

H Fð�Þ=N ¼ 1

M

X
a

X
x2ZLs

��
� i

2
�a
x;xþ1 þ c:c:

�
þmð�1Þx�a

xx

�

� g2N

4

1

LsM
2

X0

abl

X
xy2ZLs

�a
xy�

b
yxe

�iðx�yÞfð2�Þ=Ls½ða�bÞ=Mþl�g

4sin2ð2�Ls
ða�b
M þ lÞ=2Þ þ g2NðBþ Ls=2Þ

4

1

LsM
2

X0

abl

1

4sin2ð2�Ls
ða�b
M þ lÞ=2Þ ;

(124)

�a
ab �

XBþLs=2

n¼1

�n
aðxÞ�n?

a ðyÞ: (125)

Here, by the prime on the sums we mean that the terms
with a ¼ b and l ¼ Ls are excluded.

11

We now perform the variation of H with respect to the
M functions �a

�

�ð�n
aðxÞÞ?

�
H �X

m;b


bm
X
x

�m
b ðxÞ�m?

b ðxÞ
�
¼ 0; (126)

and we find that they must obey the following M coupled
nonlinear differential equations (here we use the Lagrange
multiplier 
an to enforce Eq. (123))X

y2ZLs

haxy�
n
aðyÞ ¼ 
an�

n
aðxÞ; (127)

with

haxy ¼ þ i

2
ð�y;xþ1 � �y;x�1Þ þmð�1Þx�xy � g2Nva

xy;

(128)

va
xy ¼ 1

2M

X
b

Kabðy; xÞ
� XBþLs=2

m¼1

�m
b ðxÞ�m?

b ðyÞ
�
; (129)

and

Kabðy; xÞ ¼ 1

Ls

X0

l2ZLs

e½2�iðx�yÞ=Ls�½ðða�bÞ=MÞþl�

4sin2ð12 ð2�ða�bÞ
MLs

þ 2�l
Ls
ÞÞ : (130)

Since Kab explicitly depends on � then the solution of
Eq. (126) is a self-consistent process.
Within the space of all functions � that obey Eq. (127),

the correct solution is the one that has the lowest value of
H . The latter is not equal to

P
an


a
n, since this will count

the Coulomb interaction twice. Instead we find

H solution=N ¼ 1

2M

XBþLs=2

n¼1

XM
a¼1

�

na þ

X
x

½Imð�n
aðxÞ�n?

a ðxþ 1ÞÞ þmð�1Þx�n
aðxÞ�n?

a ðxÞ�
�

þ g2NðBþ Ls=2Þ
4

1

LsM
2

X0

abl

1

4sin2ð2�Ls
ða�b
M þ lÞ=2Þ : (131)

VIII. COMPARISON TO OTHER RELEVANT WORKS

In this section we wish to discuss the way that our resulting equations differ from those appearing in other works that
also regularize the ‘t Hooft model on a finite circle L.

11In our numerical studies we find that, while irrelevant for the minimization ofH F, the last term in Eq. (124) is crucial to include in
order to get the right baryon mass.
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(1) Reference [22]: this work looked at QCD1þ1 with
the light-cone Hamiltonian, but neglected the curvi-
linear character of the variables ’. Thus the ground
state with ’a ¼ 0 was chosen, that in fact has zero
measure within the correct solution. This is equiva-
lent to assuming the Polyakov loops are all nonzero,
and in Sec. IX we discuss the consequences of such
a choice, but in essence it violates volume reduction.
In fact, Ref. [22] showed that this erroneous
ground state leads to a phase transition as a function
of L, which clearly contradicts large-N volume
independence.

(2) Reference [23] looked at the Hamiltonian of QCD in
axial gauge (in any number of dimensions) and in
the continuum. It pointed out the error made in [22]
but did not discuss the consequences of this on the
1þ 1 solution presented in [22]. In our paper here
we generalize the theoretical framework developed
in [23] to the lattice regularization.

(3) Reference [15]: This interesting paper formed one
of the motivations for our study. Here the authors
showed how the phase transition found in [22] dis-
appears when one chooses an appropriate ansatz for
the ground state. The way this choice is made in
Ref. [15], however, is not manifestly gauge invariant
and breaks a residual gauge symmetry of the
Hamiltonian. This has the disadvantage of making
it hard to argue that the ansatz used is exact at large
N, and to construct a gauge invariant fermionic
ground state. We avoid this issue in our paper by
working with manifestly gauge invariant operators
and states. This is most naturally done with the
coherent state approach. Other differences between
our paper and [15] is the fact that we use the lattice
regularization, we do not restrict to zero baryon
number or to a particular ansatz for the ground state,
and we analyze the role of translation symmetry for
volume reduction. In particular, in the following
section, we show how a ‘‘soft’’ form of large-N
volume independence works if translation invari-
ance breaks to one of its subgroups. Finally, we
make the connection with the Eguchi-Kawai volume
independence manifest.

(4) Reference [18]: To our knowledge this paper is the
only one that solves the ‘t Hooft equation at nonzero

baryon number for a general ratio
ffiffiffiffiffiffiffiffiffi
g2N

p
=m.12

Unfortunately, the authors restrict to study a single

baryon only, and, like Ref. [22], ignore the curvilin-
ear nature of the ’ coordinates. Consequently, at
short lengths (or large baryon densities) their ap-
proach would fail and exhibit the same phase tran-
sition seen in [22]. Clearly this calls for revisiting of
the topic which we aim to perform in Ref. [16].

The list we give above demonstrates the usefulness of
our current paper: First, it uses the coherent state approach,
which is manifestly gauge invariant throughout. Second, it
generalizes all former studies to the lattice regularization
and extends the study of volume independence to systems
with nonzero baryon density and partial translation invari-
ance. Third, it opens the way to study the ‘t Hooft model
for arbitrary values of the quark mass, spatial volume, and
Baryon number. To our knowledge this is the first time
these steps are taken.

IX. LARGE-N VOLUME INDEPENDENCE

It is generally expected of large-N QCD in 1þ 1 di-
mensions to be independent of its volume. This equiva-
lence of large-N gauge theories with different volumes was
first suggested in [3] and caused great excitement since it
was seen to be a potentially easy way to solve large-N
QCD on the lattice. Shortly after [3], the papers [4,5]
showed that this equivalence breaks down in the continuum
limit for three or more space-time dimensions. This break-
ing of reduction is signaled by the fact that Polyakov loops
that wrap around the volume acquire nonzero expectation
values.
It is useful to put this large-N equivalence in the more

general context of orbifold projections between mother and
daughter gauge theories: in our case the mother theory is
large-volume QCD while the daughter theory is small-
volume QCD. These projections are expected to become
equivalences when the rank of the gauge group, N, be-
comes large. For a review on this topic we refer to Ref. [8].
As shown there, these equivalences hold only between
certain sectors of the mother and daughter theories which
are defined to be neutral under certain symmetries. In the
original Eguchi-Kawai paper it was stressed explicitly that
the ground state in both theories needs to be symmetric
under the center of the gauge group. For SUðNÞ gauge
theories this means that the global ZN subgroups of the
local SUðNÞ, that correspond to multiplying Polyakov

loops in different directions by a ZN phase e2�i=N , must
be unbroken. Thus these Polyakov loops are the order
parameters of these symmetries and must have vanishing
expectation values for the equivalence to hold.
Another symmetry that the ground states of the mother

and daughter theories should respect in the volume projec-
tion case is translation symmetry. This is clear intui-
tively—how can we describe a theory which breaks
translations and that as a result has operators with expec-
tation values that depend on the space-time coordinate, by
a theory that has no volume? The requirement of intact

12Another paper that discusses nonzero baryon number in the
‘t Hooft model is [19], but there the authors restrict to translation
invariant dense systems, which as they show, is inconsistent. For
translation noninvariant states, the authors discuss only the
vicinity of the chiral limit. As we already mentioned, the fact
that the baryons are massless in this limit makes them very
different from the four-dimensional QCD case, and it is impor-
tant to study the m � 0 case.
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translation symmetry can of course be anticipated from the
construction of Ref. [8], since this is one of the symmetries
that define that neutral sectors of a large-to-small volume
mapping. Indeed this was already explicitly pointed out in
the first paper in [24]. When this symmetry breaks it is no
longer true that the physical observables in the large-
volume theory have a one-to-one mapping to observables
in the zero-volume theory. If the attempt to map the large
and small volume theories fails, then clearly they cannot be
large-N equivalent. Unfortunately, we believe that the role
of translation symmetry in the Eguchi-Kawai equivalence
is not fully stressed in some of the relevant literature. The
reason, however, is obvious: the QCD vacuum respects
translation symmetry!

But there is at least one physical scenario where one can
expect to get broken translation symmetry in QCD and that
is at nonzero baryon number or chemical potential, where
crystals of different sort can form (for relevant literature on
the topic we refer the interested reader to the review in
[29]). What happens to large-N volume independence in
that case ? To answer this question we find it useful to see
what happens in a well-defined and systematic calculation,
and the choice of this paper is the ‘t Hooft model.13

Thus our goal in this section is to show how the volume
dependent ‘t Hooft classical Hamiltonian H , derived in
Eq. (108), behaves in different cases. We first study the
case of a translational invariant ground state (for any value
of B). We do so for both the original Hamiltonian and also
ask what happens if one forces the Polyakov loops to
acquire expectation values of different sorts. We then
move to discuss what happens when we allow translation
symmetry to break.

A. Full translation symmetry

Since the staggered fermion Hamiltonian is invariant to
translations by two lattice sites, it will be easier to discuss
the original ‘‘naive fermions’’ case in these sections. These
fermions are two-component spinors and it is straightfor-
ward to repeat the analysis in Sec. VII B for them. The

result is that �Q
xy becomes a 2� 2 matrix and that the

classical Hamiltonian in Eq. (119) now has the following
form (here and below the trace refers to this extra two-
dimensional Dirac space),

H F=N¼� i

2

X
x

tr�3�
0
x;xþ1þc:c:þm

X
x

tr�1�
0
x;x

þg2N

8

X
x;y2ZLs
Q2ZN

tr�Q
xy�

�Q
yx jx� yþQLsje�
jx�yþQLsj:

(132)

Note that to get Eq. (132) we dropped the constant term
that appears when one uses Eq. (110) to writeH F in terms
of only � (and not ��).
Restricting to translation invariant states means that the

coherent states have

C xy
F ¼ Cx�y

F : (133)

Using Eqs. (109) and (107) this means that �Q
xy is a function

of the combination x� yþQLs:

�Q
xy � �ðx� yþQLsÞ: (134)

Combining the sums over x and Q into a single sum over
the integers, we get

H F=ðNLsÞ ¼ tr

��
� i

2
�ð�1Þ�3 þ H:c:þm�1�ð0Þ

��

þ g2N

8

X
r2Z

tr�ðrÞ�ðrÞjrje�
jrj: (135)

Since �ðrÞ is defined for all integer values r, we can write

�ðrÞ ¼
Z dp

2�
eipr�ðpÞ: (136)

In terms of �ðpÞ the constraint equation (B12), applied to
naive fermions, becomes

Z dp

2�
tr�ðpÞ ¼ nB þ 1; (137)

with nB equal to the baryon density B=Ls, and the classical
Hamiltonian has the form

H F=ðNLsÞ ¼
Z 2�

0

dp

2�
tr½�ðpÞð��3 sinðpÞ þm�1Þ�

� g2N

4

Z
�

Z
� dp

2�

dq

2�

trð�ðpÞ�ðqÞÞ
4sin2ððp� qÞ=2Þ :

(138)

Here by
R� we mean the principle value which now has

a precise meaning in the form of the primed sum in
Eq. (124).

13We note that the following confusion may arise: a tool one
can use to make measurements in small volume theories is the
Gross-Kitazawa ‘‘momentum feeding’’ trick presented in [10].
For example, this was used successfully in [12]. This trick allows
one to extract, from a zero-volume theory, the meson propagator
GðxÞ for any value of the separation x and measure the meson
mass from the exponential decay in jxj. This reflects how
large-N projections repackage (but not lose) the large-volume
degrees of freedom into the color indices. A natural question
now appears: can one also ‘‘repackage,’’ in a similar way, a
baryon crystal that breaks translations into the color degrees of
freedom of a zero-volume theory? As we shall see below the
answer to this is no. This confusion arises because GðxÞ, which
depends on x, can be calculated from zero volume. This, how-
ever, is a direct result of translation invariance. When the latter is
broken, the meson propagator depends on two space-time coor-
dinates, and the Gross-Kitazawa trick cannot be used.
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The crucial point that we want to make is that Eqs. (137)
and (138) are independent of Ls and this is the way volume
reduction works in our model.14

It is easy to repeat the above steps for a gluonic state that
gives nonzero expectation value to some windings of the
Polyakov loop. This can be realized by adding a potential
for the Polyakov loops, in similar lines to the potential
suggested in [14] (although, of course, with an opposite
sign since the potential of [14] was devised to null all
expectation values of all Polyakov loops). A potential
can be chosen such that it induces, in the gluon sector, a
spontaneous breaking of the ZN symmetry of the form

ZN ! �: (139)

In this case we have

hPqiG ¼ 1; 8 q; (140)

and it can be easily shown that the only change this causes

to Eq. (132) is to replace �Q
xy by the Q-independent func-

tion ~�xy, which is given by

~� xy ¼
X
Q2Z

�Q
xy: (141)

Next, for a translational invariant state we write

~� xy ¼ 1

Ls

XLs

l¼1

~�ðlÞei2�l=Lsðx�yÞ: (142)

Since ~� is now independent of Q, one can use Eq. (113) to
perform the sum over Q in Eq. (132) and one gets

H F=ðNLsÞ ¼ 1

Ls

XLs

l¼1

tr

�
~�ðlÞ

�
��3 sin

�
2�l

Ls

�
þm�1

��

� g2N

4

1

L2
s

XLs

l;k¼1
l�k

trð�ðlÞ�ðkÞÞ
4sin2ð�ðl� kÞ=LsÞ

: (143)

The important point about Eq. (143) is that it depends on
Ls in a very strong way. Indeed, this is the reason Ref. [22],
which sets all Polyakov loops to be nonzero, saw a strong
volume dependence of physical observables which was
realized in a phase transition that occurs as a function of
L. It is also easy to generalize this result to a breaking of
ZN ! ZK. In that case Ls in the left-hand side (l.h.s.) of
Eq. (143) is replaced by KLs, which again means that
H F=Ls depends strongly on Ls.

An important remark noted also in Ref. [15] here is that
when we resolved the quantum Gauss law we assumed that

the following conditions hold:

’a � ’b � 2�n; n 2 Z: (144)

This is certainly correct for the correct solution with van-
ishing Polyakov loops where the field configurations that
do not obey Eq. (144) have zero Jacobian and thus zero
measure (see Eq. (76)). For nonzero Polyakov loops, how-
ever, Eq. (144) can indeed be violated. This means that
more zero modes (except for E00I) will be present. Since
this is not the main topic of this paper we do not treat these
here.
To conclude, if we assume translation symmetry and

unbroken ZN , then two systems with the same nB, yet
different volumes, will be large-N equivalent.
Reference [19] showed, in the continuum regularization,
that in the translation invariant sector, there is a density ncB
above which chiral symmetry is restored. Let us denote the

dimensionless combination ncB=
ffiffiffiffiffiffiffiffiffi
g2N

p
by xc.15 This can be

visualized in a simple phase diagram in the space B�
L

ffiffiffiffiffiffiffiffiffi
g2N

p
that we present in Fig. 1. Physics along lines of

fixed slope is L independent. Nonetheless along horizontal
lines, which have a fixed baryon number, one encounters
strong L dependence realized as a phase transition. The
only case where these two lines coincide is, of course, the
B ¼ 0 case. We note in passing that the authors of [19]
have shown that the translational invariant ansatz is incon-
sistent and suggests that the true ground state must break

FIG. 1. Phase diagram for chiral symmetry restoration if one
assumes translation invariance. Along fixed lines of fixed nB
there is exact volume independence. See [19] for more details on
the numeric value of the slope of the phase transition line.

14We note in passing that since all physical information on the
system is encoded in the classical Hamiltonian, then the theory’s
excitation spectrum will also be independent of the volume. For
example, the meson spectrum, which is encoded in the 1=N
fluctuations around the minimum of H , will also be indepen-
dent of the volume. For further details on how to extract the
spectrum of mesons and glueballs fromH , we refer to Ref. [24]. 15Reference [19] get xc ’ 0:0149.
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translations. This fits well with the calculation of Ref. [18]
for the B ¼ 1 case, and we find preliminary results for B>
1 which are consistent with this [16].

B. Broken translation symmetry and a crystal
of baryons

In this section we wish to emphasize that the volume
independence obtained above crucially depends on the
assumption that

�Q
xy ¼ �x�yþQLs

; (145)

i.e. that the ground state is translation invariant. This
condition is anticipated in advance from the point of
view of orbifold projections [8]: the symmetry by which
one projects QCD at large volume to QCD at small volume
is translation invariance.

It is useful to make a concrete example to demonstrate
this point, and we first consider the case of single baryon in
a box. At large N the baryon has mass of OðNÞ and is a
static particle.16 As a result, its presence in the system
spontaneously breaks translation invariance. Indeed the
calculation in Ref. [18] showed that the baryon wave
function in the ‘t Hooft model pictorially looks like
Fig. 2, where we present a sketch of the baryon density.
In Ref. [16] we plan to revisit this calculation and to extend
it to a finite baryon density. Let us assume that for suffi-
ciently large B a crystal of baryons will form—of the sort
sketched in Fig. 3. In both the single-baryon and the
baryon-crystal cases the ground state wave function has a
characteristic length scale �—it is the baryon width for
B ¼ 1 and the baryon-crystal wave length for B � 1.
These length scales must depend on g2N, m, and L, and
it is clear that decreasing the box size L will change the
ground state wave functions—the baryons will get
squashed. This is a result of the compactness of space
and the periodic boundary conditions. The only case where
the ground state represented by Figs. 2 and 3 is invariant
under a change in L is if � ¼ 1 which corresponds to
intact translational symmetry.

Nonetheless, there is an interesting subtlety to the state-
ment above: in contrast to the single-baryon case, the
baryon-crystal sketched in Fig. 3 has an unbroken symme-
try: shifts by � leave the ground state invariant. Thus the
following softer form of large-N volume independence
survives in this case.

Two systems I and II defined in volumes LI and LII, and
accommodating baryon crystals with baryon numbers BI

and BII, are large-N equivalent if their baryon densities
nI;II ¼ BI;II=LI;II are equal.

The meaning of this statement is depicted pictorially in
Fig. 3: the three-baryon system forms a crystal in a box of
unit size, and so in these units � ¼ 1=3. The statement

above means we can reproduce the physics of this three-
baryon system from a single-baryon systemwhose box size
is 1=3—the system bounded between the two dash-dot
vertical lines of Fig. 3. In these units the baryon number
density of both systems is 3, and this is the only relevant
parameter at large N. Let us now show how this happens.
The starting point is to modify the ansatz in Eq. (145) for

the way �Q
xy depends onQ; x, and y. It will be first useful to
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A cartoon of the baryon density for a single baryon

x

∆

FIG. 2 (color online). A cartoon of the baryon density of a
single baryon at large N where a complete breakdown of trans-
lation invariance takes place and large-N volume reduction does
not work at all.
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A cartoon of the baryon density for three baryons

∆

FIG. 3 (color online). A cartoon of the baryon density of three
baryons at large N—a partial breakdown of translation invari-
ance: translations by a third of a unit still leave this state
invariant. Thus large-N reduction holds only between this sys-
tem and a system with a single baryon on a box of size �.

16We do not consider the chiral limit here, where two-
dimensional baryons become massless.
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change coordinates and define

r � xþQL� y; (146)

s � xþQLþ y; (147)

�rs � �Q
xy: (148)

Since x, y 2 ½1; Ls� andQ 2 Z, we have r 2 Z. Given one
fixes the value of r, the values s obtains are rþ 2; rþ
4; rþ 6; . . . ; rþ 2Ls. The periodicity in � means that

�r;sþ� ¼ �r;s: (149)

One solution to this condition is (here we assume that both
Ls=� and Ls are even)

�r;s ¼
Z dp

2�

X
q2Z2�

�qðpÞeiprþiqð2�=2�Þs: (150)

Substituting Eq. (150) into the first two terms of Eq. (132)
we have

1st-term ¼
Z dp

2�
tr½��3 sinðpÞð�2�ðpÞ � ��ðpÞÞ�;

(151)

2nd-term ¼
Z dp

2�
tr½m�1ð�2�ðpÞ þ ��ðpÞÞ�: (152)

Substituting Eq. (150) into the third term of H F gives

3rd-term=ðNLsÞ ¼ � g2N

4

X2�
q¼1

X4
k¼1

Z
�

Z
� dp

2�

dp0

2�

�
�

trð�qðpÞ�k��qðp0Þ
4sin2ððp� p0Þ=2þ �k=2Þ

�
;

(153)

where we define �q<0ðpÞ ¼ �q>2�ðpÞ ¼ 0, and �0ðpÞ �
�2�ðpÞ. The sum over k is a result of the summation over
x ¼ ðrþ sÞ=2 and y ¼ ðs� rÞ=2 that one performs upon
the substitution of Eq. (150) into the Coulomb interaction
term in the Hamiltonian. Finally, the global Gauss-Law
constraint applied on �rs becomes

Z dp

2�
trð��ðpÞ þ �2�ðpÞÞ ¼ nB þ 1: (154)

As it stands, the classical ‘t Hooft Hamiltonian density
H F=ðNLsÞ and the Gauss-law constraint, depend only on
the parameters m, g2N, nB, and �—the volume is irrele-
vant at large N.

Similarly to what we saw in Sec. IXA, this volume
independence is a direct result of the ansatz we took in
Eq. (150) that reflects a partial translation symmetry, and of
the fact that all nontrivial winding of the spatial Polyakov
loops have a zero expectation value. If we were to neglect
the zero modes then all Polyakov loops would effectively
be equal and nonzero. This will cause the infinite set of

density matrices �Q
xy to be replaced by the Q-independent

quantity ~�xy (see Eq. (141)) which depends only on the two

compact coordinates x and y. As a result the coordinate
r ¼ x� y would have been as well, and Eq. (150) will be
replaced by

�r;s ¼ 1

Ls

XLs

l¼1

X
q2Z2�

�q;le
2�iðlr=Lsþqs=2�Þ: (155)

Plugging this into the classical Hamiltonian will result in a
function that strongly depends on Ls and this is wrong.

C. Remark on lattice simulations of volume-reduced
large-N QCD at nonzero B or �

Finally, let us make a remark of relevance to lattice
practitioners. Consider large-N QCD defined in a very
small box with side L that obeys L � 1=�QCD. Let us

also assume reduction holds for zero baryon number (this
assumption is automatically fulfilled in two dimensions
and for higher dimensions is expected to hold in modified
versions of QCD—see [14]). Now, force the system to
accommodate a single or a few baryons. This can be
done by working in the canonical ensemble or by increas-
ing the chemical potential in the grand canonical ensemble.
Because the volume is small, the baryon density will be
huge, nB � ð�QCDÞd (here d is the number of spatial

dimensions), and what we prove in the previous section
tells us that at large N this small volume system is equiva-
lent to a ‘‘standard’’ large-volume system which is ex-
tremely dense. For a lattice theory the density will be one
in units of the cutoff and the following consequence is
immediate: trying to study baryons with single-site re-
duced models of the Eguchi-Kawai type drives the theory
towards the saturation regime of the lattice, where the
density is of Oð1=aÞ. This regime is dominated by lattice
artifacts and is unphysical.
This may well be (partly) the reason why Ref. [30],

which works with a single-site model at nonzero chemical
potential �, sees either a ground state that is empty of
baryons (for small �) or a ground state that is full of
baryons, with density of Oð1=aÞ, and that disappears in
the continuum limit. As we discuss above, such behavior is
expected from a single-site construction and cannot be
used to study the physical regime where the baryon density
is not at the cutoff scale.

X. CONCLUSIONS, SOME REMARKS, AND AN
OUTLOOK

In this paper we study the way large-N QCD depends on
its volume. General arguments, such as those found in
Ref. [8] and in its references, tell us what are the require-
ments that the ground state of a large-N gauge theory needs
in order to be volume independent. Nonetheless, we find it
is useful to see how this phenomenon emerges explicitly in

BARAK BRINGOLTZ PHYSICAL REVIEW D 79, 105021 (2009)

105021-18



a theory which is exactly soluble. This is the reason we
chose to study the ‘t Hooft model in this paper.

The formalism we use is the lattice Hamiltonian formal-
ism in axial gauge. Since we are working with a finite box
size, the gauge fields cannot be gauged away completely
and, in the gluon sector, one is left with a set of N � 1
curvilinear quantum zero modes. These describe theN � 1
eigenvalues of the spatial Polyakov loop. Together with
their conjugate momenta these zero modes determine the
leading OðN2Þ dynamics. Thus a systematic large-N treat-
ment of the full Hamiltonian proceeds as follows:

(i) Treat the pure gauge Hamiltonian—find the so-
called ‘‘large-N master field.’’

(ii) Solve for the dynamics of the fermions. They now
interact on the background of this master field.

Thus, the backreaction of the fermions on the gauge fields,
which is subleading in Oð1=NÞ compared to the gauge
fields, is neglected and this is consistent as long as these
1=N effects are not enhanced by any massless modes,
which we assume to be the case.

To perform steps (1) and (2) above we choose to use the
lattice UV regularization and so generalized the axial
gauge fixing of Ref. [23] in the Hamiltonian to the lattice.
We solve the fermion sector with the coherent state ap-
proach of Ref. [24]. The reason we choose this approach is
that it is manifestly gauge invariant and easy to justify at
large N. We then end up with a regularized form of the
‘t Hooft Hamiltonian that explicitly depends on traces of
the Polyakov loops and describes their interaction with
quark-antiquark pairs in the background of baryons.

Our next step was to analyze the volume dependence of
the emerging ‘t Hooft Hamiltonian. We showed that if
translation symmetry is intact then

(1) When the ZN symmetry, whose order parameters are
the spatial Polyakov loops, is intact, then the spatial
coordinate in the ‘t Hooft Hamiltonian decompacti-
fies and volume independence emerges.

(2) In contrast, when the ZN symmetry breaks to ZK,
then the ‘t Hooft Hamiltonian has a strong volume
dependence. We emphasize again that this analysis
ignores a set of additional zero modes that appear in
this case. Since this is not the main topic of this
paper we do not study this issue further, but the
reader should be aware of this point. (The focus of
this paper was the case with unbroken center sym-
metry, which is free from this subtlety)

In our case, the gauge dynamics tell us that the Polyakov
loops vanish, the ZN is intact, and so volume reduction
takes place.

A important component in the validity of volume reduc-
tion is the fact that the ground state is translation invariant.
In our calculation we see how this condition arises explic-
itly. Moreover in the case that translation invariance breaks
down by a crystal of baryons, we show that a softer form of

volume independence takes place and that, at large N,
instead of studying a crystal of B baryons in a volume L,
one can study a single baryon in a volume L=B. In both
cases the baryon number density is the same and together
with the gauge coupling and the quark mass, these are the
only relevant parameters determining the properties of the
large-N ground state—the volume is irrelevant.
Another aspect of large-N gauge theories which is ex-

plicitly exposed in this work is the dominance of the gauge
fields dynamics over the fermions dynamics at largeN, and
that it also happens at nonzero baryon number. This means
that the physics of the ground state is planar and that quark
loops are suppressed. This is in contrast to the conjecture
raised in Ref. [17], where the author suggests that quark
loops are important at nonzero baryon chemical potential,
even at N ¼ 1. This conjecture was originally proposed to
resolve a subtle apparent confusing contradiction between
standard diagrammatic large-N arguments and the phe-
nomenology of QCD. This confusion is absent from our
approach to the two-dimensional case, and we see that the
conjecture of Ref. [17] does not hold there. Briefly, the way
this contradiction gets resolved is by nonperturbative ef-
fects, and so using perturbation theory (even if it is planar)
is quite misleading. This means that the ‘‘contradiction’’ of
large N and phenomenology is only apparent also in four
dimensions. Further discussion on this point will be given
in Ref. [20].
To conclude, we show how volume independence

emerges in a clear and simple way in the Hamiltonian
approach to the ‘t Hooft model in the lattice regularization.
In the presence of a baryon crystal a partial form of volume
independence allows one to substitute the study of the
crystal of wavelength �, baryon number B, and box of
size L, with a system of a single baryon in a box of size
L ¼ �. The latter may be useful in our companion study
[16] where we aim to solve the ‘t Hooft Hamiltonian of
Eq. (108) given a baryon number B � 1. Surprisingly, this
has not been done yet for arbitrary quark mass (for the
vicinity of the chiral limit where the two-dimensional
baryons are nearly massless, see [19]). In fact, even in
the B ¼ 1 case, which was studied in Ref. [18], the spatial
Polyakov loops were set to unity. As discussed above this is
inconsistent with the gauge sector dynamics and will give
erroneous results at small enough volume (and by the
equivalence mentioned above, at large enough densities,
if one increases the density by fixing the baryon number
and decreasing the volume). In [16] we also plan to see
what will be the effect of correcting this issue.
Finally we hope that knowing how two-dimensional

QCD behaves at nonzero baryon number will be of value
for studies of the physical four-dimensional system. In
particular it seems that the partial independence of the
QCD ground state on the volume, that we see emerging
in the 1þ 1 case, is of a general nature and from the
orbifold projection point of view can be anticipated on
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general grounds. This makes the successful modification to
the Eguchi-Kawai reduction the four-dimensional case (of
the type of [14]) appealing, since it will allow one to study
a single baryon in a modestly sized box (but not of zero
size) and conclude on how large-N four-dimensional QCD
behaves at moderate/high densities.
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APPENDIX A: HERMITICITY OF Ea AND ITS
COMMUTATION RELATIONS

In this appendix we show that the zero mode E00I
p¼0 obeys

ðE00I
p¼0Þy ¼ E00I

p¼0; (A1)

½E00I
p¼0; E

00J
p¼0� ¼ 0: (A2)

To show Eq. (A1) we use Eq. (54) and write the difference
between E00I

p¼0 and its Hermitian conjugate

ðE00I
p¼0Þy � E00I

p¼0 ¼
1ffiffiffiffiffiffi
Ls

p X
x

½E0i
x ; ðVAdj:

x ÞiI�

¼ 1ffiffiffiffiffiffi
Ls

p X
x

½E0i
x ; ðUy

x�1 � � �Uy
1S

yei’xÞiI�

¼ 1ffiffiffiffiffiffi
Ls

p X
x

ðUy
x�1 � � �Uy

1 Þij½E0i
x ; ðSyei’xÞjI�

¼ 1ffiffiffiffiffiffi
Ls

p X
x

ðUy
x�1 � � �Uy

1 ÞijðVAdj:
x Þik

� ½E00k
x ; ðSyei’xÞjI�

¼ 1ffiffiffiffiffiffi
Ls

p X
x

ðUy
x�1 � � �Uy

1 ÞijðVAdj:
x ÞiK

� Syjl½E00K
p¼0; ðei’xÞlI�: (A3)

To get the last line we used the fact that, within the physical
Hilbert space, and except for E00k

p¼0 with k 2 ½1; N � 1�, all
other components of the operator E00 commute with the
gauge fields (see Eqs. (61) and (65)), and that E00I com-
mutes with the S operators. Finally, it is easy to show that

ðei’xÞlI ¼ �lI; (A4)

which proves that E00I
p¼0 is Hermitian within the physical

sector of Hilbert space. Since �I
aa is real this also means

that Ea is Hermitian.
Let us now show that Eq. (A2) is obeyed within this

subspace. We begin by writing the l.h.s. in terms of E0. The
result is

1

Ls

X
xy

½E00I
x ; E00J

y � ¼ 1

Ls

X
xy

ðVAdj:
x ÞiIðVAdj:

y ÞjJ½E0i
x ; E

0j
y �

þ 1

Ls

X
xy

fðVAdj:
x ÞiI½E0i

x ; ðVAdj:
y ÞjJ�

� E0j
y � ðI $ JÞg: (A5)

Using the commutation relations of E0 (which are the same
as those of E—see Eq. (49)) it is easy to show that the first
term on the r.h.s. is given by

1st-term ¼ 1

Ls

X
x

X
k

ðVy
x TkVxÞAdj:JI E0k

x : (A6)

Here the c-number matrix Tk is the k
th generator of SUðNÞ

in the adjoint representation. Also, because I; J 2 ½1; N �
1�, we can write this term as

1st-term ¼ 1

Ls

X
x

X
k

ð�k
xÞJIE0k

x ; (A7)

ð�k
xÞIJ � ðSU1 � � �Ux�1T

kUy
x�1 � � �Uy

1S
yÞJI: (A8)

Next we proceed to the second term and first evaluate the

commutation relation of E0i
x with ðVAdj:

x ÞjJ: because J 2
½1; N � 1� then ðVyÞjJ ¼ ðUy

y�1 � � �Uy
1S

yÞjJ, and we have

½E0i
x ; ðVAdj:

y ÞjJ� ¼ ðUy
y�1 � � �Uy

1 Þjl½E0i
x ; S

y
lJ�

þ CFðy� 1� xÞ½E0i
x ; ðU1 � � �Uy�1Þlj�SyjJ

¼ ðUy
y�1 � � �Uy

1 ÞjlðVy
x Þqi½E00q

x ; SylJ�
þ CFðy� 1� xÞðU1 � � �Ux�1Þlf
� ½E0i

x ; ðUxÞfg�ðUxþ1 � � �Uy�1ÞgjSyjJ:
(A9)

The first term vanishes since allE00 fields commute with the
S fields. We now need the commutation relation between
E0 and ðUxÞAdj:. We calculated them explicitly by using
Eq. (3), and after some algebra we find an expected result:

½E0i
x ; ðUAdj

x Þfg� ¼ ðTiUAdj:
x Þfg: (A10)

Using this we obtain the following expression for the 2nd

term of the r.h.s. of Eq. (A5)

2nd-term ¼ 1

Ls

X
x<y

ðVxÞiI

� ðSU1 � � �Ux�1T
iUxUxþ1 � � �Uy�1ÞJjE0j

y

� ðI $ JÞ: (A11)
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Since Ti
lk ¼ �Tk

li we can rearrange Eq. (A11) to get

2nd-term ¼ � 1

Ls

X
x<y

½ð�k
xÞJI � ð�k

xÞIJ�ðUx � � �Uy�1ÞkjE0j
y

¼ � 2

Ls

X
x<y

ð�k
xÞJIðUx � � �Uy�1ÞkjE0j

y : (A12)

Here we got the last equality by using the fact that �IJ ¼
�ð�ÞJI (which is a result of Tk

ij ¼ �Tj
ji).

The outcome of the above paragraphs is that the com-
mutation relations between E00I

p¼0 and E00J
p¼0 are propor-

tional to a linear combination of ð�k
xÞIJ. Let us now show

that ð�k
xÞij ¼ 0 if i; j 2 ½1; N � 1�. For that we basically

write the definition of �:

ð�k
xÞij ¼ tr½�iSU1 � � �Ux�1�

gUy � � �Uy
1S

y�Tk
gf

� tr½�fUy
x�1 � � �Uy

1S
y�jSU1 � � �Ux�1�; (A13)

where here the trace is in the fundamental representation,
and we use the fact that Tk

gf ¼ 1
2 tr�

f½�g; �k� and the

completeness relation of the � matrices. After some alge-
bra we get

ð�k
xÞij ¼ 1

2 trð½�i; �j�SU1 � � �Ux�1�
kUy

x�1 � � �Uy
1S

yÞ;
(A14)

which shows that for i, j belonging to the Abelian Cartan
subalgebra, then ð�kÞij ¼ 0, and that consequently

½E00I
p¼0; E

00J
p¼0� ¼ 0: (A15)

Clearly this also means that ½Ea; Eb� ¼ 0.

APPENDIX B: CALCULATION OF H F

In this section we present the calculation ofH FðCF;P Þ.
We begin by evaluating the expectation value of the nu-
merator �abðxÞ�baðyÞ of Eq. (83) in the fermionic coherent
state jCFi ¼ UðCFÞj0i, where the reference state j0i is
defined in Sec. VII B. For that we write

hCFj�abðxÞ�baðyÞjCFi ¼ h0jUyðCFÞ�abðxÞUðCFÞ
�UyðCFÞ�baðyÞUðCFÞj0i: (B1)

To calculate UyðCFÞ�abðxÞUðCFÞ we write
UyðCFÞ�abðxÞUðCFÞ
¼ 1

2
½UyðCFÞc yb

x UðCFÞUyðCFÞc a
xUðCFÞ

� �ab

N

X
c

UyðCFÞc yc
x UðCFÞUyðCFÞc c

xUðCFÞ�; (B2)

and use the Hadamard lemma to show that

U yðCFÞc a
xUðCFÞ ¼

X
y2Z

ei’aðy�xÞ=Lsðe�iCF Þxyc a
y: (B3)

This then gives

hCFj�abðxÞ�baðyÞjCFi
¼ 1

4

X
vw2Z
v0w02Z

ðe�iCF ÞxvðeiCF Þwxðe�iCF Þyv0 ðeiCF Þw0yh0j

�
�
ei’aðv�xÞ=Lsþi’bðx�wÞ=Lsc yb

w c a
v

� �ab

N

X
c

ei’cðv�wÞ=Lsc cy
w c c

v

��
ei’bðv�yÞ=Lsþi’aðy�w0Þ=Ls

� c yb
w0 c a

v0 � �ab

N

X
c

ei’cðv0�w0Þ=Lsc cy
w0 c c

v0

�
j0i: (B4)

We proceed and need to evaluate fermionic contractions of
three types:
(i) Terms of type I: for the a � b terms of Eq. (83)

we need to evaluate h0jc yb
w c a

vc
ya
w0 c b

v0 j0i. Since

c a
~z j0i ¼ c ya

z j0i ¼ 0 for z 2 S and ~z 2 �S we get

h0jc yb
w c a

vc
ya
w0 c b

v0 j0i ¼
X
z2S
~z2 �S

� �wz� �v ~z� �w0~z� �v0z: (B5)

Here we use the notation where �x ¼ xmodLs (recall
that S( �S) are the set of sites that are full (empty) of
quarks).

(ii) Terms of type II: for the a ¼ b terms of Eq. (83) we

need to evaluate h0jc ya
w c a

vc
ya
w0 c a

v0 j0i. Here we

have more contractions and we get

h0jc ya
w c a

vc
ya
w0 c a

v0 j0i ¼
X
z2S
~z2 �S

� �wz� �v ~z� �w0~z� �v0z

þ X
z12S
z22S

� �wz2� �vz2� �w0z1� �v0z1 :

(B6)

(iii) Terms of type III: for the a ¼ b terms of Eq. (83)

we also need to evaluate h0jc ya
w c a

vc
yc
w0 c c

v0 j0i, with
a � c. Here we have only one contraction that
gives

h0jc ya
w c a

vc
yc
w0 c c

v0 j0i ¼
X
z12S
z22S

� �wz2� �vz2� �w0z1� �v0z1 :

(B7)

To express Eq. (B4) in a compact form we define the
following ‘‘matrix densities’’:

�q
xy ¼

X
p2Z
z2S

ðeiCF ÞzþpLs;xðe�iCF Þy;zþðpþqÞLs ; (B8)

�� q
xy ¼

X
p2Z
~z2 �S

ðeiCF Þ~zþpLs;xðe�iCF Þy;~zþðpþqÞLs : (B9)

The Hermiticity and periodicity of the matrix CF imply that
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these matrix densities obey

�� q
xy ¼ �xy�q;0 � �q

xy; (B10)

X
q2Z
y2Ls

�q
xy�

�q
yz ¼ �q¼0

xz ; (B11)

X
x2Ls

�q
xx ¼ ðBþ Ls=2Þ�q;0: (B12)

Substituting Eqs. (B5)–(B7) into Eq. (B4) we find that
hCFjHCjCFi can be brought to the form

hCFjHCjCFi ¼ g2

4Ls

XLs

l¼1

X
a�b

X
qq0

�q0
xy ��

�q
yx e�i2�lðx�yÞ=L

4sin2ðð’a � ’bÞ=Ls þ 2�l=LsÞ=2
� e�i’aðx�yþqLsÞ=Lsþi’bðx�yþq0LsÞ=Ls

þ g2

4Ls

XLs�1

l¼1

X
qq0

ð1� 1
NÞei2�l=Lðy�xÞ

4sin2ð�l=LsÞ
½�q

xy ��
�q0
yx þ �q

xx�
�q0
yy � �X

a

ei’ðq�q0Þ;

� g2

4LsN

XLs�1

l¼1

X
qq0

�q
xx�

�q0
yy ei2�l=Lsðy�xÞ

4sin2ð�l=LsÞ
� X

a�c

ei’aq�i’cq
0
: (B13)

To proceed we first show that the terms in the last two
lines of Eq. (B13) are subleading. To see this note that we
still need to perform the integral of Eq. (108). This will be
done conveniently if we write these terms as

g2N

4Ls

� XLs�1

l¼1

X
qq0

ð1� 1
NÞei2�l=Lðy�xÞ

4sin2ð�l=LsÞ
½�q

xy ��
�q0
yx þ �q

xx�
�q0
yy �

� Pq�q0 � XLs�1

l¼1

X
qq0

�q
xx�

�q0
yy ei2�l=Lsðy�xÞ

4sin2ð�l=LsÞ

�
�
PqP�q0 � 1

N
Pq�q0

��
: (B14)

Here we have defined the k-wound Polyakov loop operator
as

Pk � 1

N

X
a

ei’ak: (B15)

The averages over the Haar measure of Pk and Pk � Pk0

are known explicitly for the UðNÞ group [31,32]

hPki ¼ �k;0; (B16)

hPkP�k0 i ¼ �kk0

�
�k;0 þminðjkj; NÞ

N2

�
: (B17)

Using these results we can see that both these terms are at
most of Oð1Þ. For an SUðNÞ group these averages are
expected to differ by a small amount since the center of
mass of the eigenvalues

P
c’c is held fixed at zero. For

example, the average of Pk can be done explicitly: one can
expand the Vandermond as a polynomial of ei’a and see
that hPkiSUðNÞ ¼ 0 if jkj � 2N. Together with the ZN sym-

metry of the Vandermond measure and the methods in
Chapter 8 of [33] we get

hPki ¼ �k;0 þ 1

N
�jkj;N: (B18)

In contrast to the two subleading terms we discussed
above, the first term in Eq. (B14) includes a double sum
over color indices and is thus ofOðg2N2Þ � N. The same is
true for the scaling of kinetic contribution of the fermions
to the classical Hamiltonian: hCFjHKjCFi. Using Eq. (B3) it
is easy to show that it is given by

hCFjHKjCFi ¼ N
X
x

��
� i

2
�q
x;xþ1 þ c:c:

�
þmð�1Þx�q

xx

�

� Pq; (B19)

which simplifies even further if we use Eq. (B18).

APPENDIX C: RESOLVING THE CONSTRAINTS
ON �q

xy

In this appendix we wish to show how the constraints in
Eqs. (B10)–(B12) are resolved. Our starting point is to
write the Fourier transform

�q
xy ¼

Z �

��

dp

2�
�xyðpÞeipq: (C1)

This is the most general way to express the dependence of
�q
xy on the integer q since the range of the latter is the whole

integers. In terms of �xyðpÞ the constraints of Eqs. (B10)–
(B12) become the following infinite set of equations that
hold for any value of p 2 ð0; 2��,

�xyðpÞ ¼ �?
yxðpÞ; (C2)

XLs

x¼1

�xxðpÞ ¼ ðBþ Ls=2Þ; (C3)

X
y

�xyðpÞ�yzðpÞ ¼ �xzðpÞ: (C4)
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The equations above can be solved by setting up, for each
p, an orthogonal basis on the Ls � Ls space that is fur-
nished by the indices x and y. We denote the orthogonal
wave functions on that basis by �n

xðpÞ, with n ¼
1; 2; . . . ; Ls. In terms of these wave functions the
Hermitian matrices ð�ðpÞÞxy can be written as

�xyðpÞ ¼
XLs

n¼1

�n
xðpÞrnðpÞ�n?

x ðpÞ; (C5)

where rnðpÞ are the eigenvalues of the matrix �ðpÞ in the
basis spanned by �ðpÞ. Using Eq. (C2) we see that the
eigenvalues rnðpÞ are real, while using Eq. (C4), we see
that they obey

rnðpÞðrnðpÞ � 1Þ ¼ 0: (C6)

Thus rnðpÞ is either 0 or 1. Finally, Eq. (C3) tells us that

XLs

n¼1

rnðpÞ ¼ Bþ Ls=2; ; 8p; (C7)

and by ordering the eigenfunctions �nðpÞ according to
their values of rnðpÞ we see that

rnðpÞ ¼
�
1 n 
 Bþ Ls=2;
0 n > Bþ Ls=2:

(C8)

The end product of the discussion above is that the most
general way to resolve Eqs. (B10)–(B12) is to write

�q
xy ¼

Z 2�

0

dp

2�

XBþLs=2

n¼1

�n
xðpÞ�n?

y ðpÞeipq; (C9)

with the functions �n
xðpÞ forming an orthogonal basis for

each value of p (note that this basis is not necessarily the
same for each p and the precise form of �n

xðpÞ is deter-
mined by the dynamics of the H minimization).
The last step is only done for the convenience of nu-

merically minimizing H with respect to �: we discretize
the momentum space p 2 ð0; 2�� by using the standard
form

p !discretize 2�a

M
with a ¼ 1; 2; . . . ;M: (C10)

This discretization, together with Eq. (C9) gives Eqs. (121)
and (122) and becomes equivalent to the exact system only
in the limit of M ! 1.
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