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New superconformal extensions of d ¼ 1 Calogero-type systems are obtained by gauging the UðnÞ
isometry of matrix superfield models. We consider the cases of N ¼ 1, N ¼ 2, and N ¼ 4 as one-

dimensional supersymmetries. The bosonic core of the N ¼ 1 and N ¼ 2 models is the standard

conformal An�1 Calogero system, whereas the N ¼ 4 model is an extension of the U(2)-spin Calogero

system.
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I. INTRODUCTION

Superconformal extensions of the Calogero model [1]
provide nice examples of integrable supersymmetric
quantum-mechanical systems and as such are of vast in-
terest from various points of view (see [2,3] for the survey
of physical applications of the Calogero model). In par-
ticular, by a conjecture of Gibbons and Townsend [4],
N ¼ 4 superconformal models might be closely related
to the M theory. While theN ¼ 2 super-Calogero models
for any number of interacting particles were constructed in
full generality rather long ago [5] (see also [6,7]), until now
there is not such an exhaustive understanding of the generic
N ¼ 4 models despite the existence of extensive litera-
ture on this subject (see e.g. [6–11]). It seems important to
develop some universal approach to superconformal
Calogero-type models including the N ¼ 4 ones.

The purpose of this paper is to present a candidate
approach of this type suitable for an arbitrary number of
interacting particles. It is based on the superfield gauging
of some non-Abelian isometries of the d ¼ 1 field theories.
This gauging procedure was worked out in [12] to under-
stand off-shell dualities between d ¼ 1 supermultiplets
with different sets of physical bosonic components.

Our starting point is the nice interpretation of the bo-
sonic n-particle Calogero model as a UðnÞ, d ¼ 1 gauge
theory [13] (see also [14–16]). In the formulation of [13],
the model is described by the Hermitian n� n-matrix field
Xb
aðtÞ, ð �Xb

aÞ ¼ Xa
b, the complex n-plet ZaðtÞ, �Za ¼ ð �ZaÞ, a,

b ¼ 1; . . . ; n, and n2 nonpropagating ‘‘gauge fields’’ Ab
aðtÞ,

ð �Ab
aÞ ¼ Aa

b. The action reads

S0 ¼
Z

dt

�
TrðrXrXÞ þ i

2
ð �ZrZ�r �ZZÞ þ cTrA

�
;

(1)

where the covariant derivatives are defined as

rX ¼ _X þ i½A; X�; rZ ¼ _Zþ iAZ:

The real constant c of the Calogero interaction comes out
from a Fayet-Iliopoulos (FI) term in (1).

The action (1) is invariant with respect to the local UðnÞ
transformations, gð�Þ 2 UðnÞ,
X ! gXgy; Z ! gZ; A ! gAgy þ i _ggy; (2)

and we can fully fix the UðnÞ gauge freedom by choosing

Xb
a ¼ xa�

b
a; �Za ¼ Za: (3)

Inserting these gauge conditions and the algebraic equa-
tions of motion ðZaÞ2 ¼ c (which implies c > 0) and Ab

a ¼
ZaZb=½2ðxa � xbÞ2�, a � b, back into the action (1), we
arrive at the standard Calogero action

S0 ¼
Z

dt

�X
a

_xa _xa �
X
a�b

c2

4ðxa � xbÞ2
�

(4)

as a fixed gauge of (1). Note the important role of the
auxiliary UðnÞ multiplet Z with the d ¼ 1 Wess-Zumino
(WZ) action in (1) for recovering the Calogero action.
The original action (1) is invariant under the d ¼ 1

conformal SO(1, 2) transformations: �t ¼ a, �Xb
a ¼

1
2
_aXb

a, �Za ¼ 0, �Ab
a ¼ � _aAb

a, where aðtÞ obeys the con-
straint a

:::¼ 0. This property implies the well-known con-
formal invariance of the eventual Calogero model.
Our approach is a minimal superfield generalization of

this bosonic UðnÞ gauging. Requiring the supersymmetric
gauge models to possess N -extended superconformal
symmetry essentially constrains the structure of the corre-
sponding actions and allows one to reveal, in their bosonic
sector, either the standard Calogero model (4) (in the cases
of N ¼ 1 and N ¼ 2) or the U(2)-spin Calogero model
[3,17,18] modified by a conformal potential for the center-
of-mass coordinate (in the N ¼ 4 case). In this short
paper we outline the basic features of our construction,
leaving details, quantization, and comparison with the
previously known superextended Calogero models for a
longer paper.

II. N ¼ 1 SUPERSYMMETRIC EXTENSION

We use the Grassmann-even Hermitian N ¼ 1 matrix
superfield Xb

aðt; �Þ, ðXÞy ¼ X, belonging to the adjoint
representation of UðnÞ, as well as the Grassmann-even
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complex N ¼ 1 superfield Zaðt; �Þ, �Zaðt; �Þ ¼ ðZaÞy, in
the fundamental of UðnÞ. The spinor and time derivatives,

D ¼ @� þ i�@t; fD;Dg ¼ 2i@t;

are gauge covariantized by the anti-Hermitian Grassmann-
odd connections Ab

aðt; �Þ, ðAÞy ¼ �A:

DX ¼ DX þ i½A;X�; rtX ¼ �iDDX;

DZ ¼ DZþ iAZ:

The minimal gauge invariant action has the following form
(�1 ¼ dtd�):

S1 ¼ �i
Z

�1

�
TrðrtXDX þ cAÞ

þ i

2
ð �ZDZ�D �ZZÞ

�
: (5)

It is invariant under the local UðnÞ transformations:

X 0 ¼ ei�Xe�i�; Z0 ¼ ei�Z;

A0 ¼ ei�Ae�i� � iei�De�i�;

where �baðt; �Þ 2 uðnÞ is the Hermitian matrix parameter. It
is also invariant under the N ¼ 1 superconformal group.
Conformal supersymmetry �0t ¼ �i��t, �0� ¼ �t has the
following realization on the involved superfields:

�0X ¼ �i��X; �0A ¼ i��A; �0Z ¼ 0:

Its closure with the Poincaré N ¼ 1, d ¼ 1 supersymme-
try yields the full N ¼ 1 superconformal symmetry.

Because of theUðnÞ gauge invariance, we can choose the
WZ gauge for the spinor connection:

A ¼ i�AðtÞ: (6)

Substituting this into the action (5), integrating there over �
and eliminating the auxiliary fields by their equations of
motion, we obtain

S1 ¼ S0 þ S�1 ; S�1 ¼ �iTr
Z

dt�r�; (7)

where� ¼ �iDXj is the matrix Grassmann-odd field and

r� ¼ _�þ i½A;��. The bosonic limit of (7) [and hence of
(5)] is just the Calogero action (1). Its gauge UðnÞ symme-
try is the residual symmetry of the WZ gauge (6).

An alternative supersymmetric gauge choice is

X b
a ¼ 0; a � b , Xb

a ¼ Xa�
b
a; Za ¼ �Za: (8)

In this gauge the model is described by n2 real N ¼ 1
superfields Ab

a, a � b, and Xa (the superfields Za and
those on the diagonal of Ab

a are auxiliary). In the two-
particle case (n ¼ 2), the resulting N ¼ 1 system pos-
sesses an additional hidden N ¼ 1 supersymmetry, so
that the n ¼ 2 model is in fact N ¼ 2 superconformal
mechanics plus anN ¼ 2 free multiplet corresponding to
the center-of-mass motion. Starting with n ¼ 3, one gets

new N ¼ 1 superextensions of the n-particle Calogero
models which cannot be recovered by any truncations of
the standard N ¼ 2 superextensions [5].

III. N ¼ 2 SUPERSYMMETRIC EXTENSION

The relevant superfield content consists of the Hermitian
matrix superfieldXb

aðt; �; ��Þ, ðXÞy ¼ X with the off-shell
field content ð1; 2; 1Þ, and bosonic chiral UðnÞ-fundamental

superfield ZaðtL; �Þ, �ZaðtR; ��Þ ¼ ðZaÞy, tL;R ¼ t� i� ��,

�DZa ¼ 0; D �Za ¼ 0; (9)

with the field contents ð2; 2; 0Þ. Here
D¼ @� þ i ��@t; �D¼�@ �� � i�@t; fD; �Dg ¼ �2i@t:

The gauge prepotential is an n� n Hermitian matrix
Vb
a ðt; �; ��Þ, ðVÞy ¼ V. The action reads (�2 ¼ dtd2�)

S2 ¼
Z

�2

�
Trð �DXe2VDXe2VÞ þ 1

2
�Ze2VZ� cTrV

�
;

(10)

the gauge-covariant derivatives being defined as

DX ¼ DX þ e�2VðDe2VÞX;

�DX ¼ �DX �Xe2Vð �De�2VÞ:
The action (10) is invariant under the local UðnÞ trans-
formations:

X 0 ¼ ei�Xe�i ��; Z0 ¼ ei�Z; e2V
0 ¼ ei

��e2Ve�i�;

(11)

where n2 complex gauge parameters � ¼ ð�b
aÞ are (anti)

chiral superfields: �ðtL; �Þ 2 uðnÞ, ��ðtR; �Þ ¼ ð�Þy 2
uðnÞ. The action is also invariant under the superconformal
group SUð1; 1j1Þ. The conformal supersymmetry acts on
the coordinates as

�0t ¼ �ið� ��þ ���Þt; �0� ¼ �ðtþ i� ��Þ
and on the superfields as

�0X ¼ �ið� ��þ ���ÞX; �0V ¼ 0; �0Z ¼ 0:

The chirality conditions (9) are preserved by these
transformations.
In the WZ gauge

Vðt; �; ��Þ ¼ �� ��AðtÞ (12)

the action (10) takes the form

S2 ¼ S0 þ S�2 ; S�2 ¼ �iTr
Z

dtð ��r��r ���Þ;
(13)

where � ¼ DXj is a Grassmann-odd field and

r� ¼ _�þ i½A;��; r �� ¼ _��þ i½A; ���: (14)

SERGEY FEDORUK, EVGENY IVANOV, AND OLAF LECHTENFELD PHYSICAL REVIEW D 79, 105015 (2009)

105015-2



We see that the bosonic core of the action (13) exactly
coincides with the Calogero action (1).

The action (13) is invariant with respect to the residual
local bosonic UðnÞ transformations, defined by (2) and
� ! g�gy; therefore we can choose the gauge (3). As a
result we obtain an N ¼ 2 superextension of the
n-particle Calogero model. In the two-particle case (n ¼
2) we found that the N ¼ 2 supersymmetric gauged
system actually describes N ¼ 4 superconformal me-
chanics plus one N ¼ 4 free multiplet corresponding to
the center-of-mass motion, so that there is a hidden extra
N ¼ 2 symmetry in this case. For n > 2 we obtain some
new N ¼ 2 extensions of the n-particle Calogero models
with n bosonic variables and n� n fermionic ones, as
opposed to the standard N ¼ 2 super-Calogero with n
complex fermions [5].

The presence of the matrix Grassmann-odd field � in
the action (13) [and also in (7)] is imperative for d ¼ 1
supersymmetry and superconformal symmetry. Similar
structures with the bosonic analogs of � appeared e.g. in
[15,16] in connection with the quantum Hall effect.

IV. N ¼ 4 SUPERSYMMETRIC EXTENSION

This case surprisingly yields U(2)-spin Calogero system
[17,18] in the bosonic sector. The most natural formulation
of N ¼ 4, d ¼ 1 models is achieved in the harmonic
superspace [19,20] parametrized by the coordinates
ðt; �i; ��k; u�i Þ, i, k ¼ 1, 2, where commuting mutually con-
jugate SU(2)-doublets u�i are harmonic coordinates,
uþiu�i ¼ 1. The harmonic analytic subspace is parame-
trized by the coordinates ð�; uÞ ¼ ðtA; �þ; ��þ; u�i Þ, tA ¼
t� ið�þ ��� þ �� ��þÞ, �� ¼ �iu�i , ��� ¼ ��iu�i . The inte-
gration measures are defined as �H ¼ dudtd4� and

�ð�2Þ
A ¼ dud� ð�2Þ.
The N ¼ 4 supersymmetric model with UðnÞ gauge

symmetry is described by the action

S4 ¼ SX þ SFI þ SWZ: (15)

The first term in (15)

SX ¼ � 1

2

Z
�H TrðX2Þ (16)

is the gauged action of the ð1; 4; 3Þmultiplets. The latter are
described by Hermitian matrix superfieldsX ¼ ðXb

aÞ sub-
jected to the gauge-covariant constraints

DþþX ¼ 0; (17)

DþD�X ¼ 0; ðDþ �D� þ �DþD�ÞX ¼ 0: (18)

The constraint (17) involves the covariant harmonic de-
rivative Dþþ ¼ Dþþ þ iVþþ, where the gauge matrix

connection Vþþð�; uÞ is an analytic superfield.1 The gauge
connections entering the spinor covariant derivatives in
(18) are properly expressed through Vþþð�; uÞ [12]. The
parameters of the UðnÞ gauge group are analytic, soDþ ¼
Dþ, �Dþ ¼ �Dþ. Note that X is in the adjoint of UðnÞ, so
DþþX ¼ DþþX þ i½Vþþ;X�, etc.
The second term in (15) is the FI term,

SFI ¼ i

2
c
Z

�ð�2Þ
A TrVþþ: (19)

The third term in (15),

SWZ ¼ 1

2

Z
�ð�2Þ

A V 0
~ZþZþ; (20)

is a WZ action describing n commuting analytic super-
fieldsZþ

a (analogs of the superfieldsZa of theN ¼ 1 and
N ¼ 2 cases). They represent off-shellN ¼ 4multiplets
ð4; 4; 0Þ and are defined by the constraints

DþþZþ ¼ 0; DþZþ ¼ 0; �DþZþ ¼ 0: (21)

At last, the superfield V 0ð�; uÞ is a real analytic gauge
superfield, DþV 0 ¼ 0, �DþV 0 ¼ 0, which is defined by
the integral transform [12]

X 0ðt; �i; ��iÞ ¼
Z

duV 0ðtA; �þ; ��þ; u�Þj��¼�iu�i ; ��
�¼ ��iu�i

;

which resolves the constraints (17) and (18) for the singlet
U(1) part X0 � TrðXÞ.
The action (15) is invariant under the N ¼ 4 super-

conformal groupDð2; 1;�Þwith� ¼ � 1
2 . To show this we

should use the Dð2; 1; �Þ transformation laws given in
[12,20], in particular, that of conformal supersymmetry,

�0�H ¼ �H

�
2�� 1þ �

�
�0

�
; �0�ð�2Þ

A ¼ 0;

with � ¼ 2i�ð ����þ � �� ��þÞ, �0 ¼ 2��D���þþ,
�þþ ¼ Dþþ�. The involved d ¼ 1 superfields are trans-
formed as follows:

�0X ¼ ��0X; �0Zþ ¼ �Zþ; �0Vþþ ¼ 0:

The variation of the action (16) is vanishing only at � ¼
� 1

2 , whereas the constraints (17), (18), and (21), as well as

the actions (19) and (20), are superconformally invariant
for an arbitrary parameter �. It is important that just the
field multiplier V 0 in the action (20) provides this invari-
ance due to its transformation law �0V 0 ¼ �2�V 0 [12].
Note that at � ¼ �1=2 the supergroup Dð2; 1;�Þ is iso-
morphic to OSpð4j2Þ [21,22], so our gauge approach in the

1Besides the covariant derivative Dþþ which commutes with
Dþ, �Dþ and so preserves the analyticity, one can define the
derivative D�� ¼ D�� þ iV��, so that ½Dþþ;D��� ¼ D0

and D0 is the operator counting the external U(1) charges of
superfields. The nonanalytic connection V�� is expressed
through Vþþ from this commutation relation [19].
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N ¼ 4 case implies a different N ¼ 4 superconformal
group as compared to the more customary SUð1; 1j2Þ used
e.g. in [9].

The local UðnÞ transformations leaving the action (15)
invariant are given by

X 0 ¼ ei�Xe�i�; Zþ0 ¼ ei�Zþ;

Vþþ0 ¼ ei�Vþþe�i� � iei�ðDþþe�i�Þ; (22)

where �b
að�; u�Þ 2 uðnÞ is the ‘‘Hermitian’’ analytic ma-

trix parameter, ~� ¼ �. Using this gauge freedom we can
choose the WZ gauge

Vþþ ¼ �2i�þ ��þAðtAÞ: (23)

In this gauge we have

D�� ¼ D�� þ 2�� ���A; D� ¼ D� � 2 ���A;
�D� ¼ �D� � 2��A; (24)

and the constraints (17) and (18) are solved by

X ¼ X þ �� ���Nþþ þ ���þ þ ��� ��þ þ . . . ; (25)

where Nþþ ¼ Nikuþi uþk , �
þ ¼ �iuþi , ��þ ¼ ��iuþi and

the fields XðtAÞ, Nik ¼ NðikÞðtAÞ, �iðtAÞ, ��iðtAÞ are ordi-
nary d ¼ 1 fields having no dependence of the harmonics.
All other fields in (25) are expressed through these fields
and their covariant derivativesrtAX ¼ @tAXþ i½A; X�, etc.
The solution of the constraints (21) is

Zþ ¼ Zþ þ �þ’þ ��þ	þ 2i�þ ��þZ�; (26)

where Zþ ¼ ZiðtAÞuþi , Z� ¼ rtAZ
iðtAÞu�i .

Inserting the expressions (25) and (26) in the action (15)
and eliminating the fields Nik, 	, �	, ’, �’ by their equa-
tions of motion we obtain, in the WZ gauge,

S4 ¼ Sb þ Sf; (27)

Sb ¼
Z

dt

�
TrðrXrXþ cAÞ þ n

8
ð �ZðiZkÞÞð �ZiZkÞ

þ i

2
X0ð �ZkrZk �r �ZkZ

kÞ
�
; (28)

Sf ¼ �iTr
Z

dtð ��kr�k �r ��k�
kÞ

�
Z

dt
�ði

0
��kÞ
0 ð �ZiZkÞ
X0

; (29)

where

X0 � TrðXÞ; �i
0 � Trð�iÞ; ��i

0 � Trð ��iÞ:
Let us consider the bosonic limit of S4, i.e. the action

(28). We can impose the gauge Xb
a ¼ 0, a � b, using the

residual invariance of the WZ gauge (23): X0 ¼ ei�Xe�i�,
Z0k ¼ ei�Zk, A0 ¼ ei�Ae�i� � iei�ð@te�i�Þ, where �b

aðtÞ 2
uðnÞ are ordinary d ¼ 1 gauge parameters. As a result of

this, and after eliminating Ab
a, a � b, by the equations of

motion, the action (28) takes the following form [instead of

Zi
a we introduce the new fields Z0i

a ¼ ðX0Þ1=2Zi
a and omit

the primes on these fields],

Sb ¼
Z

dt

�X
a

_xa _xa þ i

2

X
a

ð �Za
k
_Zk
a � _�Z

a
kZ

k
aÞ

þ X
a�b

TrðSaSbÞ
4ðxa � xbÞ2

� nTrðŜ ŜÞ
2ðX0Þ2

�
: (30)

Here, the fields Zk
a are subject to the constraints2

�Z a
i Z

i
a ¼ c 8 a; (31)

and carry the residual Abelian gauge ½Uð1Þ�n symmetry,
Zk
a ! ei’aZk

a, with local parameters ’aðtÞ. In (30) we use
the following notation:

ðSaÞij � �Za
i Z

j
a; (32)

ðŜÞij �
X
a

�
ðSaÞij �

1

2
�j
i ðSaÞkk

�
: (33)

Note that at c ¼ 0 the constraint (31) implies Zi
a ¼ 0, i.e. a

nontrivial interaction exists only for c � 0 as in the pre-
vious cases. The new feature of theN ¼ 4 case is that not
all of the bosonic variables Zi

a are eliminated by fixing
gauges and solving the constraint; there survives a non-
vanishingWZ term for them in Eq. (30). After quantization
these variables become purely internal [U(2)-spin] degrees
of freedom.
In the Hamiltonian approach, the kinetic WZ term for Z

in (30) gives rise to the following Dirac brackets:

½ �Za
i ; Z

j
b�D ¼ i�a

b�
j
i : (34)

With respect to these brackets the quantities (32) for each
index a form uð2Þ algebras

½ðSaÞij; ðSbÞkl�D ¼ i�abf�l
iðSaÞkj � �j

kðSaÞilg: (35)

The quantities (33) are time-independent Noether charges
for the SU(2) invariance of the system (30), so the numera-
tor of the term �ðX0Þ�2 in (30) is a constant on the
equations of motion for Zi

a, �Z
a
i . So, as opposed to theN ¼

1; 2, cases, the N ¼ 4 action contains a conformal poten-
tial even in the center-of-mass sector (like in [9,11]). Up to
this extra conformal potential [last term in (30)], the bo-
sonic limit of theN ¼ 4 system constructed is none other
than the integrable U(2)-spin Calogero model [17] in the
formulation of [3,18].
While the coordinate X0 decouples in the bosonic limit,

when all fermions are discarded, this is not the case for the
full action because of the term �X�1

0 in (29). The full

SU(2) current contains extra fermionic terms, and its bo-
sonic part (33) is not conserved by itself.

2Here and in (32) we do not sum over the repeated index a.
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V. OUTLOOK

In this paper we proposed a new gauge approach to the
construction of superconformal Calogero-type systems as a
superextension of the bosonic construction of [13]. The
characteristic features of this approach are the presence of
auxiliary supermultiplets with WZ-type actions, the built-
in superconformal invariance, and the emergence of the
Calogero coupling constant as a strength of the FI term of
the U(1) gauge (super)field. Here we used theUðnÞ gauging
and obtained new superextensions of the An�1 Calogero
model and of its U(2)-spin extension (in theN ¼ 4 case).
Superextensions of other conformal Calogero models
could be obtained presumably by choosing other gauge
groups and/or representations for the matrix andWZ super-
fields. Superextensions of nonconformal models can be
constructed by adding proper gauge invariant (but not
conformally invariant) potentials to the original superfield
actions.

While in the N ¼ 1 and N ¼ 2 cases there is almost
no freedom in the choice of the original gauged action
(provided that it is required to be minimal and supercon-
formal), it is not so in theN ¼ 4 case due to the diversity
of the N ¼ 4, d ¼ 1 multiplets. For instance, any sort of
the N ¼ 4, d ¼ 1 multiplet has its ‘‘mirror’’ in which
another SU(2) from the full R-symmetry group SO(4) of
the N ¼ 4, d ¼ 1 superalgebra is manifest. We are plan-
ning to consider these possibilities elsewhere.

In the N ¼ 4 case we used as the basic matrix super-
field the new non-Abelian version of the multiplet ð1; 4; 3Þ
defined by the constraints (17) and (18). Its simplest,
quadratic action is invariant under the superconformal

group Dð2; 1;�Þ with � ¼ �1=2 [which is isomorphic to
OSpð4j2Þ]. It is worth noting that our gauging procedure is
compatible as well with other N ¼ 4 superconformal
groups [20–23]. For any value of � � 0 the superconfor-
mal N ¼ 4 gauged action has the generic form of (15)
with the same SWZ and SFI, the only difference being in the
form of the action for X,

S��0
X ¼ �

Z
�H½TrðX2Þ��1=ð2�Þ: (36)

It is important thatX is a matrix and, therefore, this action
is nontrivial even in the case of � ¼ �1 as opposed to the
standard case of the Abelian ð1; 4; 3Þmultiplet. The second
possibility at � ¼ �1 is to consider the matrix version of
the standard conformal action

~S �¼�1
X ¼

Z
�H TrðX lnXÞ: (37)

It seems, however, that all such actions except for the case
of � ¼ �1=2 yield nontrivial sigma-model–type kinetic
terms for the X fields, so the corresponding bosonic limits
are more general conformal models.
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