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We identify the nonlinear evolution equation in impact-parameter space for the ‘‘Supercritical

Pomeron’’ in Reggeon field theory as a two-dimensional stochastic Fisher-Kolmogorov-Petrovski-

Piscounov equation. It exactly preserves unitarity and leads in its radial form to a high-energy traveling

wave solution corresponding to a ‘‘universal’’ behavior of the impact-parameter front profile of the elastic

amplitude; its rapidity dependence and form depend only on one parameter, the noise strength,

independently of the initial conditions and of the nonlinear terms restoring unitarity. Theoretical

predictions are presented for the three typical distinct regimes corresponding to zero, weak, and strong

noise.
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I. INTRODUCTION

The question of the high-energy behavior of soft hadron-
hadron amplitudes and, in particular, of their expanding
impact-parameter disk with rapidity is a rather old subject,
but still not solved, being in the basically unknown realm
of nonperturbative QCD. However, one promising theo-
retical approach at early time is the Reggeon calculus [1]
and, in the formalism which we will be dealing with in the
present work the Reggeon field theory (RFT) [2], where the
amplitude is described in terms of an effective quantum
field theory of ‘‘Pomeron fields.’’ It derives from a
Lagrangean in 2þ 1 dimensions, where ‘‘space’’ is the

2d impact parameter ~b and ‘‘time,’’ the overall rapidity Y.
In the studies performed during the 70’s, and after a series
of works dedicated to the renormalization group approach
to the RFT [2], it appeared also [3–5] that a physically
interesting case is when one considers instead a ‘‘super-
critical’’ bare Pomeron P, i.e. when the intercept � is
greater than 1 (in fact �> �c > 1, where �c includes the
quantum effects of the renormalizable RFT when the
Pomeron field is at criticality [2]). In that case, unitarity
is violated by the bare Pomeron (equivalent to a Born term)
but expected to be recovered thanks to damping Pomeron
interactions. It was shown that the impact-parameter disk
was expanding like the rapidity Y, expressing a dynamical
instability of the RFT [5]. However, the field theoretical
techniques known at that time did not seem to give much
more indication on the solutions.

The notion of a Reggeon field theory and its use to
describe ‘‘soft’’ hadronic interactions appeared, since that
time and until recently, under various forms which may
differ from the original version depicted in [2]. For in-
stance, they may refer to the similar approach deduced or
inspired by QCD and its dipole model [6,7]. Also, there
exists a phenomenological interest for using a ‘‘supercriti-
cal Pomeron’’ in models based on interacting Pomerons

[8]. So, we want to specify now in which sense we use the
RFT and what is different in our approach from the pre-
vious ones. First, we want to address the problem of finding
the solutions of the full two-dimensional transverse space
problem including an explicit form of the impact-
parameter dependence of the elastic amplitude. To our
knowledge, explicit solutions have been only found in
the zero-dimensional approximation only. Two-
dimensional formulations of the QCD Pomeron calculus
in the dipole approach are also widely discussed [6,7], but
explicit solutions seem to be difficult to acquire. So, we
restrict our analysis to the initial formulation [2] and thus
our starting point for the Lagrangean is the original one [2].
Hence, when we use the term Reggeon field theory (RFT)
we refer in the present paper to that precise formulation, up
to a suitable generalization to be discussed further on.
The goal of our paper is to update the original study of

RFT by introducing new powerful tools known under the
name of ‘‘traveling wave solutions’’ of nonlinear evolution
equations and already used in a different context for QCD
evolution equations [9]. In fact one of our motivations is to
try and give a theoretical answer to an old question raised
by the phenomenology of elastic hadronic reactions and its
approach by interacting supercritical Pomerons. The soft
hadronic elastic amplitudes seem to follow a common
behavior at high energy, independent of the reaction one
considers. While this property could be understood by the
factorization properties of a single Regge pole exchange
(see, e.g. [10]), it is not known how a property may be
obtained from an interacting Pomeron framework where
the ‘‘bare’’ Pomeron input is deeply modified by the
interactions.
The relation of RFT with nonlinear evolution equations

(which will allow to use the traveling wave framework) has
appeared since long in relation with statistical mechanics
of out-of equilibrium processes. Starting with the deep
relation between the original RFTwith directed percolation
[11], there is a long list of works using this kind of
connection, in particular, with a stochastic evolution equa-*robi.peschanski@cea.fr

PHYSICAL REVIEW D 79, 105014 (2009)

1550-7998=2009=79(10)=105014(15) 105014-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.105014


tion of Langevin type. In fact some of the works (see, e.g.
[6,7]) are using this connection to try and derive the
stochastic evolution equation corresponding to QCD
Reggeon calculus. We shall indeed use some tools from
statistical mechanics, in particular, those developed in
Ref. [12] to transform the RFT formulation in terms of a
Langevin equation of known type and possessing traveling
wave solutions.

The main feature of traveling wave solutions of non-
linear evolution equations is that they lead to ‘‘universal-
ity’’ properties, properties which will be of general value,
i.e. irrespective of particular initial conditions or on fea-
tures of the equation such as the form of the nonlinear
damping terms responsible for the unitarity restoration.
Our hope is thus to provide through the traveling wave
approach, an explicit high-energy solution of the RFT and
in the same footing a physical understanding of the em-
pirical universal properties of soft scattering amplitudes at
high energies which are difficult to explain in a supercriti-
cal Pomeron framework. Our paper thus contains the theo-
retical derivation of the solutions of the ð2þ 1Þ
dimensional RFT [2] via the identification of the related
stochastic nonlinear Langevin equations.

The paper is organized as follows. In Sec. II, we show
that the RFT, with a supercritical bare Pomeron as input,
can be found equivalently realized by the two-dimensional
version of the stochastic Fisher and Kolmogorov,
Piscounov, Petrovsky (sFKPP) equation, and that the elas-
tic amplitude is a solution of its reduction to the one-
dimensional radial (azimuthally symmetric) form. In
Sec. III, we derive the main feature of the mean-field (or
deterministic) radial FKPP equation: the existence and
universal properties of circular traveling wave asymptotic
solutions. In Sec. IV we introduce the effect of stochastic-
ity by analyzing the solution dependence on the noise term.
It appears with two markedly different regimes at weak and
strong noise strengths. In Sec. VI we present our conclu-
sions and an outlook on the theoretical implications of the
traveling wave picture. In the appendices we show the
derivation of the solution in the deterministic radial case
and an overview on possible phenomenological
implications.

II. FROM REGGEON FIELD THEORY TO THE 2-D
SFKPP EQUATION

The RFT with a supercritical Pomeron is defined [2]
from the following ingredients, namely, one propagator
P ! P , with coupling � corresponding to the bare super-
critical Pomeron intercept 1þ�> 1. There is a kinetic
term in impact-parameter space with coupling identified
with �0, the slope of the bare Pomeron trajectory. For the
Pomeron interaction vertices, one includes the triple-
Pomeron vertex, which gives rise to two possible contri-
butions, i.e. the merging triple Reggeon term P þ P ! P

and the splitting term P ! P þ P , with initially equal
strength � corresponding to the triple-Pomeron coupling.
The field theory action is defined in terms of quantum

bosonic fields ’ and the conjugate �’ by the action [2]

S½’; �’� ¼ 1

�0
Z

d2bdYf �’½@Y � �0r2�’�� �’’

� i�ð �’’2 þ �’2’Þg: (1)

As discussed in [2], the imaginary coupling constant makes
this theory non-Hermitian and thus the fields ’ and �’ do
not play a symmetric role through time reversal. It is
indeed convenient to perform the field transformation ’ !
i’, �’ ! �i �’, giving rise to the modified action

S½’; �’� ¼ 1

�0
Z

d2bdYf �’½@Y � �0r2�’�� �’’

þ � �’’2 � � �’2’g: (2)

One important outcome of RFT is its remarkable connec-
tion with problems of nonequilibrium statistical physics
[11]. Following a known technique [12], the fields �’ can be
integrated out and play the role of auxiliary fields appear-
ing as external source fields for the deterministic part (for
linear terms in �’) and the noise terms (for quadratic terms
in �’) of a nonlinear Langevin equation, as we shall now
see. Following [12], one linearizes the remaining quadratic
�’2 contribution in (2) by introducing a stochastic white
noise via a Stratonovitch transformation,1 in such a way
that all terms become linear in �’. Then performing the path
integral over �’ boils down to a nonlinear Langevin equa-
tion for the field’which now acquires the interpretation of
random realizations of the (properly normalized) elastic
scattering amplitude T, namely

d

dY
TðY; ~bÞ ¼ �0r2

bT þ�T � �T2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0�T

p
�ðY; ~bÞ;

(3)

where the white noise verifies

h�ðY; ~bÞ; �ðY0; ~b0Þi ¼ �ðY0 � YÞ�2ð ~b0 � ~bÞ: (4)

We have now to introduce the appropriate normalization
of the scattering amplitude in impact-parameter space
which is imposed by the unitarity limit T � 1. This comes
as a constraint both on the deterministic and on the sto-
chastic part of (3), since T � 1 should appear as a stable
fixed point of the equation2 (the other fixed point is the

1The linearization of the quadratic terms in the action is a well-
known procedure. The interested reader will find in Ref. [12] a
detailed derivation of the transformation of the action (2) leading
to the Langevin formulation (3).

2The stable fixed point is finally reached at infinite rapidity. In
fact, one could technically equivalently consider a unitarity-
preserving fixed point of (3) at T � �=� � 1. However, it is
more often considered that the black disk limit T � 1 is the
physical one.
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‘‘unstable’’ fixed point at T ¼ 0, since the rapidity evolu-
tion increases, at least in average, the value of T). The
unitarity constraint thus leads us to modify Eq. (3) to get
the following form:

d

dY
TðY; ~bÞ ¼ �0r2

bT þ�ðT � T2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0��ðT � T2Þ

q
�ðY; ~bÞ; (5)

where it imposes equal coupling � � � to the terms in T
and T2 of the deterministic equation and adding a T2 term
in the noise factor in order to ensure it to vanish at the black
disk limit.

A key feature of Eq. (5) compared to the initial formu-
lation (3) is the introduction of the parameter � which
plays a crucial role both physically and mathematically
on the nature of the solutions. At first we note that unitarity
imposes no a priori constraint on the noise strength and
thus allows for the introduction of the parameter �.
Physically, � introduces a parametric factor between the
strength of the merging term P þ P ! P and the splitting
term P ! P þ P . This degree of freedommay come from
at least two physical motivations. First, we will see that the
traveling wave solutions possess universal features, in
particular, they will remain valid for more complicated
merging factors (e.g. Tn, n > 2 or even with a positive
monotonous function T2fðTÞ with fð1Þ ¼ 1). Hence there
is a priori no constraint of equal coupling betweenmerging
and splitting terms. A more intriguing motivation may
come from an analogy with the dipole picture. Taking
into account their size, the merging and splitting rules for
dipoles imply a size dependence of their effective coupling
strength. Indeed, ‘‘fat’’ dipoles may merge more easily
than ‘‘thin’’ ones, since it requires a matching of their
transverse coordinates, while splitting does not seem to
require such an effect. All in all, we find it physically
suitable to consider the generalized Eq. (5) as the basic
equation to be solved. Obviously taking � ¼ 1, we recover
the original RFT, up to a quadratic T2 term in the noise
which is easy to reinterpret as a four-vertex, see further.

Our basic starting point is to point out that Eq. (5) is (by
introducing canonical variables, see further) the extension
in two spatial dimensions of the FKPP equations (for � ¼
0), or (for � � 0) its stochastic extension (sFKPP), see
Refs. [9,13–17]. This will allow us to find the solutions of
the RFT for a supercritical bare Pomeron, thanks to mod-
ern tools3 applied to the old and yet unsolved RFT
problem.

Mathematically speaking, we are looking for solutions
which are not dependent of the forms of the nonlinear
terms provided they ensure a stable fixed point, that is T ¼
1 in our case. Universality also means that the solution is

independent of the initial conditions after some time (here,
rapidity) evolution interval. This defines a ‘‘universality
class’’ of solutions, which will ultimately depend only on
the value of �, that is on the noise strength. If we were in
the situation of statistical physics at equilibrium, we could
consider � as the order parameter of the problem. In our
case it will allow to separate different regimes (but not
necessarily separated by critical points.) We also note that
the quadratic term in the noise can be easily reinterpreted
in the field theoretical framework as a P þ P ! P þ P
coupling in the RFT framework. This is equivalent to the
following RFT action:

S½’; �’� ¼ 1

�0
Z

d2bdYf �’½@Y � �0r2�’�� �’ð’� ’2Þ
� �� �’2ð’� ’2Þg: (6)

To complete the theoretical preliminaries it is worth men-
tioning that from the point of view of statistical physics, it
is known that more general Langevin equations can in turn
be analyzed in terms of a bosonic quantum field theory4

[20]. This formalism is particularly convenient to treat
fluctuations superimposed to mean-field equations. Hence
both techniques coming from statistical and particle phys-
ics can be joined together to get a deeper understanding of
the original RFT problem and find the structure of its
solutions, i.e. identifying its ‘‘universality class.’’
Let us introduce now canonical variables allowing to put

(5) in the generic form of the sFKPP equation. By suitable
redefinitions

TðY; ~bÞ � Uðt; ~rÞ; �ðY � Y0Þ ¼ t;ffiffiffiffiffi
�

�0

r
~b ¼ ~r; � ¼ ffiffiffiffiffiffiffiffiffiffi

2��
p

;
(7)

Eq. (5) can be recast in the canonical form

d

dt
Uðt; ~rÞ ¼ r2

rUþU�U2 þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uð1�UÞ

p
�ðt; ~rÞ; (8)

where the only remaining dimensionless parameter defines
the normalized noise-strength � as a function of the prod-
uct of the ‘‘splitting over merging’’ factor �, and the
‘‘supercriticality parameter’’�. Equation (8) is the canoni-
cal form of the nonlinear sFKPP equation. It is worthwhile
to note that the time relation in (7) is defined up to a
rapidity translation Y � Y0.
To remind of known properties in dimension one, the

remarkable feature of the FKPP class of equations
[9,13,14,16] is to admit asymptotic traveling wave solu-
tions, i.e. solutions which depend neither on the initial
conditions nor on the precise form of the nonlinear term
at large enough evolution time. In the example of the

3It is to be mentioned that a first connection between Reggeon
field theory and circular traveling waves applied to cluster
growth appeared already in [18].

4Doi and Peliti, Refs. [19], addressed the related problem of
mapping master equations for reaction-diffusion processes to a
field theory action.
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deterministic case (without noise), we display a sketch of
the traveling wave solutions of the 1d FKPP equation on
Fig. 1. For sFKPP, the stochastic form of the 1-d equation,
following a series of applications to QCD [6,9], the re-
cently found solutions [21] can be interpreted as a stochas-
tic superposition of traveling waves (see also [22]).

Our aim is to look for similar properties for the 2-d
version of the FKPP equation and find their consequences
for the high-energy elastic amplitude, solution of the RFT.
Our main result is the prediction of an asymptotic universal

scaling form of the soft elastic amplitude TðY; ~bÞ and, in
particular, the prediction of an asymptotic expression for
the expanding impact-parameter disk.

The study of the general 2-d sFKPP equation (8) is
interesting in itself and some results have been obtained
already in the statistical physics literature (e.g. studies on
the instabilities of the front wave [23]). In the following,
due to the rotational symmetry in impact-parameter space
of the elastic amplitude5 we shall concentrate our analysis
of Eq. (5) to radial amplitudes, i.e. depending spatially only
on the radial coordinate r ¼ j~rj. A comment is in order at
this stage. Indeed, one could consider nonazimuthally
symmetric fluctuations contributing to a symmetric aver-
age. However, both the stochastic and the nonlinear char-
acter of the equation seems to invalidate this possibility. In
particular anisotropic evolution may be caused by the noise
[23] and thus lead to a forbidden azimuthal symmetry
breaking of the solution. We will assume that, if physical
azimuthally asymmetric fluctuations of the amplitude may
exist, they are azimuthally averaged after a characteristic

time much smaller than the typical evolution time in
rapidity.
One then obtains, after obvious integration over the

azimuth, the following equation to be studied:

d

dt
Uðt; rÞ ¼ @rrUþ 1

r
@rUþU�U2

þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uð1�UÞ

2�r

s
�ðt; rÞ; (9)

where a curvature term 1
r @rU appears in addition to the

original one-dimensional FKPP equation (5). Note also the
modification of the noise strength by a factor 1=2�r re-
flecting the symmetry constraint on the fluctuation
strength. The white noise satisfies h�ðt; rÞ; �ðt0; r0Þi ¼
�ðt0 � tÞ�ðr0 � rÞ. Looking for the asymptotic universal
solutions of Eq. (9) in terms of circular traveling waves
in impact-parameter space is the goal of our paper.

III. CIRCULAR TRAVELING WAVES:
DETERMINISTIC CASE

Let us first consider the Eq. (9) without the noise term,
i.e. � ¼ 0, namely, the radial extension of the 2-d determi-
nistic FKPP equation. It corresponds to neglecting the
Pomeron loop contributions in the high-energy elastic
amplitude. A series of results have been obtained for the
one-dimensional FKPP equation. The same methods,
which we will adapt for the radial case, lead to new results.
Indeed, the radial case is adding the derivative term 1

r @rU

to the standard FKPP equation and work in the half line
r 2 ½0;1�. The deterministic equation to be studied is thus

d

dt
Uðt; rÞ ¼ @rrUþ 1

r
@rUþU�U2: (10)

We will prove the existence of traveling wave asymptotic
solutions, which appear now as circular traveling waves
(pictorially reminiscent of those created by a stone falling
in water).
Let us recall first the main guiding principles of the

FKPP traveling wave analysis. One distinguishes [16]
different regions, starting from the forward towards the
backward of the wave, namely, the ‘‘very-forward’’ region,
the ‘‘leading-edge’’ region, the ‘‘wave-interior’’ region,
and the ‘‘saturation’’ region. The universality properties
mainly pertain to the leading-edge region and its transition
to the wave interior. In order to fulfill these universality
conditions, characterizing the ‘‘critical’’ regime whence
the traveling waves are formed, the initial conditions
should be sharp enough in impact parameter, i.e. Uðt ¼
t0; r � r0Þ< e�r. This condition is fulfilled by consider-

ing an initial Gaussian form e�r2=4B in impact parameter.6

-3 -2 -1 1 2 3 4
x

0.2

0.4

0.6

0.8

1

u(t,x)

t

Transparency

Strong absorption

FIG. 1. Traveling waves in 1 dimension.—The traveling waves
are asymptotic solutions uðx; tÞ of the one-dimensional FKPP
equation, translation invariant in time and joining the unstable
fixed point (transparency i.e. dilute medium), to the stable fixed
point (strong absorption i.e. dense medium). The figure is from
Ref. [9].

5Note that nonazimuthally symmetric fluctuations could play a
role in diffractive inelastic amplitudes, or other amplitudes
which are not constrained by rotation symmetry.

6It corresponds by Fourier transform to an exponential e�Bk2T ,
i.e. a simple diffraction peak in transfer momentum for the
elastic cross section.
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We will keep this point of view in the following by con-
sidering e.g. a supercritical bare Pomeron equipped with a
Gaussian form in impact parameter.

Indeed, in the critical regime of high rapidity, the very-
forward region is driven by the initial condition, while the
leading-edge one develops a universal behavior where
three terms of the asymptotic expansion of the amplitude
do not depend either on the details of the initial condition
or on the nonlinear damping term. The wave interior
possesses an exact scaling property (see further) while
the saturation region depends on the nonlinear term. So,
for completion, we will also give some hint on this region
in the particular case of the initial RFT (� ¼ 1) with a
triple-Pomeron coupling.

In fact the main universal property of the traveling wave
solutions in the deterministic case is the scaling property,
namely

Uðt; rÞ � Uðr� rsðtÞÞ; (11)

where the time-dependent radius rsðtÞ plays the role of the
‘‘saturation scale’’ in QCD [9]. All features of the solu-
tions, and, in particular, the scales associated with each of
the above-mentioned regions, can be specified as a func-
tion of rsðtÞ, as we shall now demonstrate.

A. Universal leading-edge region

Let us now derive the traveling wave properties in the
radial case. For the leading edge, following a similar
procedure for the one-dimensional problem [15,22], one
introduces in (10) an ansatz

Uðt; s ¼ r� vctÞ / exp½�	cðsþ cðtÞÞ�t�G
�
sþ cðtÞ

t�

�
;

(12)

where vc (resp	c) is the critical wave velocity (resp.,
critical slope) of the traveling wave front and cðtÞ describes
the subasymptotic correction to the velocity vðtÞ � vc þ
@cðtÞ=@t. This ansatz describes the ‘‘velocity blocking’’
due to the critical mechanism. The point is that, being
situated in the forward region where the nonlinear terms in
(10) may be neglected, the form of the ansatz can be
deduced from the linear part of the deterministic equation
(10). The only effect of the nonlinearity is to ensure the
‘‘velocity blocking’’ by the compromise between the fast
moving very-forward regime and the damping due to the
nonlinear unitarity bound (see, e.g. [9]).

Inserting the ansatz in the Eq. (10) and neglecting the
small contribution from the nonlinear term to the leading
edge, we can verify the equation for the dominant terms

(successively in t0, t�1=2, t�1) of the time expansion, see
Appendix A. Note that the condition GðzÞ ! z when z !
0, is required in order to match with the scaling region
(called the wave interior in [16]).

Adapting to the radial case the standard procedure
[15,22], one finds

Uðr� rs; tÞ � ðr� rsÞ exp
�
�ðr� rsÞ � ðr� rsÞ2

4t

�
;

rs ¼ vctþ cðtÞ ¼ 2t� 2 logt; (13)

where rs is the average time position of the wave front (or
saturation scale in the language of QCD [9]). Note that the
form of the leading-edge front is the same as the one
obtained in the one-dimensional problem [9,15] while the
saturation scale is rs ¼ 2t� 2 logt instead of rs ¼ 2t�
3
2 logt, due to the contribution of the new term 1

r @rU

characteristic of the two-dimensionality of the initial
physical picture. The saturation scale evolution is thus
slower by a logarithmic factor 1

2 logt. This 1=2 shift is

due to the purely geometrical ‘‘curvature contribution’’
of the two-dimensional problem [24] which combines
with the coefficient 3=2 of the FKPP solutions. A third

(and last) universal term in rs behaving as t
�1=2 can also be

derived and will add some new curvature contributions.
The scaling (11) is recovered from (13) in the region

ðr�rsÞ2
4t � 1 giving rise to the simple expression

Uðr� rsÞ � ðr� rsÞ exp½�ðr� rsÞ�; (14)

where it ensures the transition with the wave-interior do-
main. The range of scales characterizing the leading-edge
region is clear from formula (13), namely

rsðtÞ þ cst: & r & rsðtÞ þ 2
ffiffi
t

p
; (15)

while the very-forward region is in the tail of the Gaussian
front, i.e. when r � rsðtÞ þ 2

ffiffi
t

p
. To specify the range of

scales for the wave-interior region which constitutes the
bulk of the wave front, and, in particular, to give an
estimate of the constant in formula (15) one needs to
make some more hypotheses on the nonlinear terms of
the evolution equation, e.g. considering the case of a
triple-Pomeron coupling.

B. Circular wave properties for a triple-Pomeron
coupling

1. Deep wave-interior region

Taking into account now the specific quadratic nonlinear
term of (10) (reflecting the original triple-Pomeron cou-
pling), we can explore the deep wave-interior regime,
adapting a method [25] used for the similar problem in
the QCD case [26].
Considering a scaling ansatz with an expansion in a

small parameter ��2 to be determined by consistency
with the scaling form (14),

U � U

�
z � r� R

t dt0vðt0Þ
�

�
¼ U0 þ ��2U2 þ ��4U4 þ � � � ; (16)

one obtains (see Appendix B)
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U ¼ 1

1þ ez
þ ��2 ez

ð1þ ezÞ2 log
ð1þ ezÞ2

4ez
þOð��4Þ

(17)

with

z � r� R
t dt0vðt0Þ
�

, r� rs
2

; (18)

where the equality is obtained by matching7 at high enough
t with the critical velocity of the leading-edge solution,
namely � ¼ 2. Note that it is easy to determine higher
order terms by a system of nested linear differential
equations.

Using Eqs. (17) and (18), one also finds that the typical
scale range of the wave-interior region, when the nonlinear
term is due to the triple-Pomeron coupling, is of order

rsðtÞ � 2 & r & rsðtÞ þ 2: (19)

Probably, the range for more general nonlinear terms is
given also by a constant interval in r centered on rsðtÞ, with
a possibly different extension. Consequently, the saturation
region, starting at r ¼ 0, ends around the left-hand side of
inequalities (19).

2. Saturation region

The circular traveling waves being concentric around
r ¼ 0, the saturation region at small r is naturally expected
to be different from the one-dimensional one depicted in
Fig. 1, where saturation starts from�1. This is also made
explicit by the @rU=r term in Eq. (10), which can no more
be neglected or considered as giving second order effects
as in the previous regions. For describing the saturation
region, it is useful to go back to the full two-dimensional
form (8). It is convenient to introduce the S-matrix element
S ¼ 1� T, which is expected to be small in the saturation
region. In those terms the deterministic8 2-d equation
writes

d

dt
Sðt; ~rÞ ¼ r2

rS� Sþ S2: (20)

Taking into account that S2 is negligible, Eq. (20) boils
down to a linear equation whose radial solution is easy to
obtain if one notices that e�tS ¼ W is a solution of the
two-dimensional heat equation, namely d

dtW ¼ r2
rW. A

simple, azimuthal-invariant solution is thus

Sðt; rÞ � 1�Uðt; rÞ ¼ e�tWðt; rÞ ¼ e�tða� be�r2=4tÞ;
(21)

where the constants a, b have to be determined by match-

ing with the wave-interior region. This result shows the
general feature of a time evolution towards the black disk
limit S ¼ 0, at large t. It does that in a nonscaling way,
since the approach to the black disk is not characterized by
a single function r� rsðtÞ.

IV. CIRCULAR TRAVELING WAVE: STOCHASTIC
CASE

A. Quantum fluctuations and the Langevin equation

As is known from the seminal studies of Ref. [15], the
effect of even very small fluctuations has an important
impact on the solutions of the sFKPP equation. They
may drastically modify the solutions of the sFKPP equa-
tions compared to the deterministic FKPP ones described
in the previous section. Indeed, in the standard sFKPP case,
one has been able to analyze [21] that the small noise
contribution has two superimposed effects. In the 1-d
case, the typical expansion parameter appears to be not �
itself but 1= log�, that is the inverse logarithm of the noise
strength. At first order (starting in fact as 1=log2�) the
correction has negative sign and corresponds to an effec-
tive cutoff on the amplitude as in [15]. At the next order
1=log3�, a positive contribution comes from rare but large
fluctuations of the noise.
In fact we shall now show that formula (B2) for the

analysis of the wave interior in the deterministic case the
circular traveling waves with noise can be analyzed in a
similar way as for the 1d sFKPP case. However, some
modifications will be due to the radial extension. Indeed,
considering the initial Langevin equation (9) and the rela-
tion between the noise strength and the effective cutoff
approximation [15,21,22], we are naturally led to an effec-
tive noise strength


ðtÞ ¼ �½2�rsðtÞ��1=2; (22)

where in (10) we have substituted 1
2�r ! 1

2�rsðtÞ in the ex-

pression of the cutoff. Indeed, this approximation can be
justified by the accompanying factor Uð1�UÞ � 0 out-
side r� rs. We see that for the radial case, the effective
noise strength depends itself on the saturation scale and
thus will possess a rapidity dependence.
In fact the geometrical meaning of the noise strength

(22) is quite transparent. It takes into account the fluctua-
tions at the periphery of the expanding disk in an azimu-
thally symmetric way. As an important consequence, the
rapidity dependence of the effective noise will play an
important physical role, both at weak and strong noise
regimes, as discussed now.

B. Stochastic traveling waves: weak noise

Let us solve the weak-noise regime of (9). Noting that
choosing the variable z ¼ r� R

t dt0vðt0Þ ¼ r� 2tþ 1
2 	

logð4t� 1Þ allows to take into account the radial term in
the deterministic part of (9) and to match the 2-d radial

7The matching between (18) and the leading-edge velocity
(13) is not exact at subleading level, see Appendix B.

8In fact, the noise term would not play a big role anyway, since
it is expected to have small effect in the ‘‘dense medium’’
characteristic of the saturated phase.

ROBI PESCHANSKI PHYSICAL REVIEW D 79, 105014 (2009)

105014-6



case with the standard 1-d case (up to the modification (22)
of the noise). Hence, taking into account the parallel
properties of the radial equation with the 1-d, it is justified
to export the detailed results obtained for the 1-d sFKPP
equation [21]. However an important modification of the
discussion for the radial configuration will appear due to
the time-dependent noise strength (22).

The detailed effect of fluctuations has been derived [21]
and leads, after stochastic average over the noise [27,28],
to the following results:

hUðr; tÞi / erfc

�
r� rs
D

ffiffi
t

p
�
þ exp

�
D2t

4
�ðr� rsÞ

�

	
�
2� erfc

�
r� rs
D

ffiffi
t

p �D
ffiffi
t

p
2

��
;

rs ¼ t

�
2� �2

log2ð4�rs
�2

Þþ 6�2
loglogð4�rs

�2
Þ

log3ð2�rs
�2

Þ þ �� �
�
; (23)

where erfcðxÞ is the complementary error function and

D ¼ 2�2

3log3ð4�rs
�2

Þ (24)

is the stochastic dispersion of the front. A complete de-
scription of the stochastic front, resumming over all higher
moments of the amplitude at weak noise, can be found in
Ref. [29].

As a matter of fact, it is interesting to note that the first
logarithmic correction on the saturation scale rs due to
fluctuations can be interpreted as due to an effective deter-
ministic cutoff previously derived in [15]. The correspond-
ing effective deterministic solution reads the

Uðr; tÞ � log

�
4�rs
�2

�
sin

�
�ðr� rsÞ
logð4�rs

�2
Þ
�
e�ðr�rsÞ: (25)

The full stochastic result of (23) is due to the superposition
of this effective cutoff effect, due to small but frequent
fluctuations, with that of rare but large fluctuations which
contribute to the last logarithmic correction term in the
expression (23) of the saturation scale.

On a more general ground, as shown in [27] and sug-
gested by numerical simulations for the QCD case [28],
one predicts a structure of ‘‘diffusive scaling,’’ namely

Uðr; tÞ �U

�
r� rs
2D

ffiffi
t

p
�
; (26)

where the parameter D is a characteristic diffusion coeffi-
cient, which may differ from the asymptotic (24). All in all,
the solution of the stochastic equation can be understood as
a dispersive distribution of event-by-event traveling waves
with dispersion D. The random superposition of traveling
waves transforms the ‘‘geometric scaling,’’ valid for each
of them into a ‘‘diffusive scaling’’ property (26) for the
average defining the final solution for the amplitude.
However, following the numerical studies in the frame-

work of QCD [28], diffusive scaling may require some
evolution time to develop a sizable diffusion coefficient
and thus may not be distinguished from ‘‘geometric scal-
ing’’ at physical rapidities.

C. Stochastic traveling waves: strong noise

When the noise strength is tuned to increase, one ob-
serves a strong decrease of the average wave velocity, with
a neat change of regime in the vicinity of a (normalized)
noise-strength of order one, see Fig. 2. Following Ref. [30],
the overall properties of the strong noise regime are as
follows:
The solution of Eq. (10) is a stochastic average of

traveling waves at an average speed

v ¼ 2


2
� 4�rsðtÞ

�2
; (27)

where 
 is the normalized noise-strength defined in (22).
Hence the saturation scale rs follows from the equation

v � drs
dt

¼ 4�rsðtÞ
�2

) rsðtÞ / e4�t=�
2
; (28)

where the rapidity dependence of the radial noise plays the
important role. Note that the limiting speed condition any-
way requires v < vc � 2 and thus from (27) 4�rsðtÞ< �2.

FIG. 2. Average wave speed as a function of the noise for the
sFKPP equation.—Vertical axis: v=vc is the average traveling
wave speed normalized to the speed vc ¼ 2 of the deterministic
FKPP equation; Horizontal axis: dimensionless noise strength;
Dots: numerical results; Left line: weak-noise analytic predic-
tion; Right line: strong-noise prediction. One observes (and may
derive [31]) a maximal speed around a noise strength of order 10.
The figure is from Ref. [17].
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Hence the exponential behavior of (28) must break down
before the time evolution reaches the limit defined by

2�e4�t=�
2 ! �2. In fact, due to the rapidity decrease of

the effective noise 
 of (22), the strong-noise regime trans-
forms progressively into the weak-noise one, following
from right to left the velocity curve depicted in Fig. 2.

In the strong noise regime, there exists [30] an analytic
solution for the average solution of the evolution equation
(10), namely

hUðt; rÞi ¼ 1

2
erfc

�
r� rsðtÞ
2

ffiffi
t

p
�

¼ 1

2
ffiffiffiffiffiffi
�t

p
Z 1

�1
dr�ð~r� rÞ exp�ð~r� rsðtÞÞ2

4t
;

(29)

where erfcðxÞ is the complementary error function.
This result confirms the decrease of the velocity with

increasing noise strength. It contrasts with the speed ob-
tained in the weak-noise limit by perturbative analysis
around the FKPP speed ’ 2� �2j logð2
2Þj�2. The ex-
pression (29) shows that the amplitude could be obtained
from a superposition of step functions around rs ¼ vt with

a Gaussian form of width
ffiffiffiffiffiffiffiffiffi
2Dt

p
. The interesting point here

lies in the dispersion coefficient: in the weak-noise analy-
sis, it behaves like j logð2
2Þj�3. We have thus shown that
the dispersion goes to a constant value 2 when the noise
becomes strong.

V. THE POMERON AS A CIRCULAR TRAVELING
WAVE

Let us investigate the implications of the traveling wave
properties on the soft Pomeron, within the framework that
the soft interaction dynamics at high energies be governed
by a supercritical bare Pomeron input. As we have shown
in the previous theoretical sections, the circular traveling
wave solutions are expected to appear due to the combined
effect of the high-energy evolution and of unitarity, which
we will assume to be saturated.9 Our analysis will be
concerning the asymptotic regime of the circular traveling
waves, leaving for further study the transition to this
regime.

We have seen that the evolution towards the saturation
limit may depend on the nonlinear terms, see Eq. (20).
Those terms may be physically more complicated than the
single quadratic term of Eq. (5). Hence wewill focus on the
universal predictions, e.g. those which do not depend on
the initial conditions and/or the structure of the nonlinear
damping. On the contrary, the parameter �, which is not
fixed by the unitarity constraints, is the relevant parameter,
playing an essential role in the Pomeron properties.

A. ‘‘Phase diagram’’ as a function of noise

The first step is to discuss which evolution regime we
have as a function of �. For this sake, the noise strength
(22) can be conveniently written, restoring the Pomeron
variables (7)


2 ¼ �2

2�rs
� �

2�

ffiffiffiffiffiffiffiffiffi
�0�

p
bs

: (30)

It is important to note the following feature of the noise
strength directly related to the ð2þ 1Þ-d property of the
RFT problem: it decreases together with the expansion of
the impact-parameter disk and thus evolves towards
weaker noise. However, this decrease, being governed by
the evolution of the disk may be slow.
The basic relation we will get comes from the structure

of the wave speed reproduced in Fig. 2. It is obtained for
the 1-d case, but it happens to be indicative also for the
radial case, whose universal properties are essentially simi-
lar, as we shall see. In Fig. 2, one may distinguish how the
three different regimes we have analyzed in the previous
sections, namely, the zero, weak, and strong noise, respec-
tively, can be identified on the plot where the �-dependent
normalized speed v�=vc is displayed as a function of the
normalized noise-strength 
 . With our notations and using
(30), we write by straightforward relations

v�

vc
� 1

vc

drs
dt

¼ 1

2
ffiffiffiffiffiffiffiffiffi
�0�

p dbs
dY

¼ �

4�

1


2
2dbs
bsdY

; (31)

where we have denoted v� � drs
dt the actual wave front

velocity and vc ¼ 2, the deterministic critical speed.
Note that we have made use of (30) to substitute the bare

Pomeron parameters
ffiffiffiffiffiffiffiffiffi
��0p

by its expression in terms of the
normalized noise. Our final expression thus writes

v�

vc
¼

�
��

4�

�

�2; (32)

where � � 2dbs=bsdY ¼ d logA=dY, where A ¼ �b2s
is the area of the effective impact-parameter disk for the
collision. The obtained expression shows directly how the
noise strength � parametrizes the normalized-speed vs
normalized-noise relation depicted in Fig. 2. It allows
one to relate the ‘‘phase diagram’’ defining the different
regimes of the radial sFKPP equation to a physical soft
Pomeron feature, namely, the exponent � of the expanding
disk area A.
When interpreting Fig. 2, one may distinguish the differ-

ent regimes as follows using relation (31):
(i) The weak-noise regime:


 � 10�1; :9 � v�

vc

� 1;
�

4�
� 10�2

�
;

2
ffiffiffiffiffiffiffiffiffi
��0

q
&

1

2
�bs ¼ dbs

dY
: (33)

9As we have seen in Sec. III, the saturation limit at b ¼ 0 is
not T � 1 at finite Y, contrary to the 1-d problem, see Fig. 1. It
reaches T ¼ 1 when Y ! 1.
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(ii) The strong-noise regime:


 * 1:4; 
�2 ¼ v�

vc

& :5;
�

4�
¼ 1

�
;

2
ffiffiffiffiffiffiffiffiffi
��0

q
� 
2

2
�bs ¼ 
2

dbs
dY

* 2
dbs
dY

;

(34)

where we made use of the exact relation at strong
noise (27). To complete the picture, one adds

(iii) The zero-noise regime:


 ��1; v�

vc

� 1;
�

4�
� 0;

2
ffiffiffiffiffiffiffiffiffi
��0

q
� 1

2
�bs ¼ dbs

dY
:

(35)

(iv) The middle-noise regime:

:1 � 
 � 1:5; :2 � v�

vc

� :9;

10�2

�
� �

4�
� 1

�
;

dbs
dY

� 2
ffiffiffiffiffiffiffiffiffi
��0

q
� 2

dbs
dY

:

(36)

We see from relations (33)–(36) that the parameter �
plays the role of the order parameter of the RFT. Once
given the physical observable �, one knows the phase (cf.
evolution regime) of the system from the determination of
�. In particular for the original RFT action (1), the phase is
completely specified by �. Note also that the bare parame-

ter 2
ffiffiffiffiffiffiffiffiffi
�0�

p
corresponding to the maximal critical speed of

the disk relates to bs�=2 � dbs
dY which is a ‘‘dressed’’ pa-

rameter in terms of a field theory.
The question of determining the soft Pomeron properties

thus boils down to the determination of �. We postpone a
detailed phenomenological study for the future,10 but it is
not too difficult to evaluate the order of magnitude of �.
Indeed, if the black disk limit would have been nearly
reached, one would expect a geometrical cross section
�tot / A ¼ �b2s and thus �� d log�tot=dY � :08 where
the last number is the well-known popular determination

[10]. This value for � should be considered as a maximum
at present energies, since the black disk limit seems not to
be fully reached (see, e.g., [8], where one obtains smaller
values of order �� ð1� 3Þ10�2). As an example in
Appendix A we show the phase diagram characteristics
when choosing the conservative values of �� 10�2 and
bs � 1 fermi ¼ 5 GeV�1.
In any case, one interesting remark is that for the whole

range � 2 ½1–8�10�2, the original RFT with � ¼ 1 seats
within the limit of the weak-noise region. By comparison,
the order parameter � takes a factor 100 in the interval
between the weak and the strong-noise regimes.11 Such
high values of � are not a priori forbidden, even if far from
the original RFT action with a single triple-Pomeron cou-
pling. We will discuss in conclusion a possible QCD
interpretation of these large values of �.

B. Properties of the ‘‘wave front’’

1. An expanding impact-parameter disk

Having now identified the phase diagram of the RFT
solutions, we are able to discuss the characteristic features
of the soft Pomeron as a circular traveling way by recasting
the results of Sec. II (resp., III) for the deterministic (resp.,
stochastic) traveling waves in terms of the physical varia-
bles through the relations (7).
As a general result, valid in all cases, we find that the

front of the traveling wave is situated around the impact-
parameter value

bsðYÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�0=�

q
rsðt ¼ �YÞ: (37)

The expanding impact-parameter disk is thus related to the
increasing function rsðtÞ. This is the analogue of the
rapidity-dependent ‘‘saturation scale’’ [32] discussed also
in the framework of QCD traveling waves [9]. Let us
examine the equivalent ‘‘saturation scale’’ of the super-
critical Pomeron. As we have seen previously, it depends
on the phase diagram. Following Eqs. (13), (23), and (27),
respectively, we obtain

bsðYÞ � bsðY0Þ ¼ 2
ffiffiffiffiffiffiffiffiffi
�0�

q �
ðY � Y0Þ � 1

�
log

Y

Y0

þ � � �
�

for zero noise;

bsðYÞ � bsðY0Þ ¼ 2
ffiffiffiffiffiffiffiffiffi
�0�

q
ðY � Y0Þ

�
1� �2

2log2ð2
�2Þ þ
3�2 loglogð2
�2Þ

log3ð2
�2Þ þ � � �
�

for weak noise;

bsðYÞ ¼ bsðY0Þ exp
�
4�

�
ðY � Y0Þ

�
for strong noise: (38)

The middle-noise regime does not possess an analytic
expression but its numerical implementation is possible
and shown (in the reduced variables) on Fig. 2. The dots
( � � � ) stand for subleading and/or nonuniversal higher

order terms. Note that the constant terms implied by the
initial condition at Y ¼ Y0 are also naturally not con-

11It has been shown using field theory arguments [31] that a
maximal noise exists at 
 ¼ 8� beyond which the traveling
waves stop and the system no more ‘‘percolates’’, i.e. the disk
stops expanding with rapidity.

10A first qualitative phenomenological exploration is discussed
in Appendix D.
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strained by universality. The validity of relations (38) thus
require a large enough interval Y � Y0. For all cases one
finds from (38) that the disk expands with rapidity. For the
‘‘zero-noise’’ and ‘‘weak-noise’’ cases the asymptotic ve-
locity is 2

ffiffiffiffiffiffiffiffiffi
�0�

p
, which is the critical velocity, and thus

driven by the deterministic equation. The situation is dif-
ferent at ‘‘strong noise’’ where the solution is still moving
linearly with rapidity Y but with a velocity governed by the
order parameter �.

For the zero-noise and weak-noise cases, we have thus
identified new universal terms12 not depending on the
initial conditions nor on the specific nonlinear damping
terms. The existence of a universal rapidity expansion due
to the supercritical Pomeron is, to our knowledge, a new
result allowed by the Langevin formulation of the RFTand
its traveling wave solutions. Moreover they appear to be
quite different depending on the nontrivial phase diagram:
in the deterministic case, the first (negative) correction to
the radius bs / Y behaves like logY, while it is of order
Ylog�2Y for weak noise, and thus a priori quite more
important than in the deterministic case.

For strong noise, the obtained exponential behavior
would not lead ultimately to a violation of the Froissart
bound since the rise is tamed by the boundary of the strong
noise regime. From (30) and the relations (34), one has


�2 ¼ 2�bs

�
ffiffiffiffiffiffiffiffiffi
�0�

p ¼ v�=vc & :5 ) bs &
�

4�

ffiffiffiffiffiffiffiffiffi
�0�

q
: (39)

In fact this limit on the impact-parameter disk reflects the Y
dependence of the noise strength and thus the evolution
from strong noise towards weak noise through an inter-
mediate middle-noise regime. Interestingly enough, this
would mean for the radius (and thus for the cross section
near the black disk limit) a gradual transition from an
exponential towards a squared logarithmic behavior in
rapidity and thus an asymptotic restoration of the
Froissart bound.

2. Impact-parameter scaling

The scattering amplitude is related to the front profile of
the dominant asymptotic traveling wave solution through

TðY; bÞ ¼ U

�
t ¼ �Y; r ¼

ffiffiffiffiffi
�

�0

r
b

�
; (40)

at least in the region where universal results apply. Uðt; rÞ
being given by formulas (11), (26), and (29), respectively,
one obtains

TðY; bÞ � Tfb� bsðYÞg for zero noise; (41)

TðY; bÞ � T

�
b� bsðYÞ

DwðYÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ðY � Y1Þ

p �
for weak noise;

TðY; bÞ � T

�
b� bsðYÞ

Ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ðY � Y1Þ

p �
for strong noise; (42)

where the values of the front scales bsðYÞ have to be chosen
from (38) for each corresponding individual regime. Dw

and Ds are the dispersion parameters for weak and strong
noise, respectively. We have introduced a rapidity scale Y1

which denotes the effective rapidity where the dispersion
of the noisy traveling waves becomes sizable. Indeed,
numerical simulations for the QCD case [28] show that
such a threshold does exist. Below that threshold the scal-
ing is similar to the zero-noise case. From (24) and (29),
one finds

Dw ¼ 2�2

3log3½2
�2� ¼
2�2

3log3½4�bs=�
ffiffiffiffiffiffiffiffiffi
�0�

p � ; Ds � 2:

(43)

It is clear that the dispersion parameterDw / 1=log3Y may
be quite small and thus one would then recover the same
scaling as the zero-noise regime, but with the different
weak-noise evolution bsðYÞ. Moreover the dispersion is
proportional to

ffip
�0 which may be small even for a sizable

value of
ffiffiffiffiffiffiffiffiffi
�0�

p
for larger �.

3. Front profile

In the regions where there exists a universal form of the
wave front profile, i.e. within and forward to the wave front
(the previously called ‘‘wave-interior’’ and ‘‘leading-
edge’’ regions), one finds from formulas (11), (23), and
(29), respectively,

TðY; bÞ � ðb� bsÞ exp
�
�

ffiffiffiffiffi
�0

�

s
ðb� bsÞ � ðb� bsÞ2

4�0ðY � Y0Þ
�

for zero noise;

TðY; bÞ � erfc

�
b� bs

Dw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ðY � Y1Þ

p �
þ exp

�
�D2

wðY � Y1Þ
4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�0ðb� bsÞ

q �

	
�
2� erfc

�
b� bs

Dw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ðY � Y1Þ

p �Dw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðY � Y1Þ

p
2

��
for weak noise;

TðY; bÞ � erfc

�
b� bs

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ðY � Y1Þ

p �
for strong noise; (44)

12Note that a third universal term, behaving as 1=
ffiffiffiffi
Y

p
is expected to exist in the asymptotic expansion of the deterministic case from 1-

d studies [9,16]. We leave its determination in the present 2-d case for further study.
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where Dw, Ds were given in (43).
Some comments are in order about the front profiles. We

may note that Tðb; YÞ for the zero-noise case13 goes to zero
with b� bs, corresponding to the way saturation is im-
posed as an ‘‘absorbing condition’’ [33] to the leading-
edge approximations of the traveling waves’ tails. Around
and below b ¼ bs the solutions get corrections to the
spurious zero. However, these corrections (see, e.g. (17))
are more dependent on the specific form of the nonlinear
terms of the equation.

Note also that the diffusive scaling (26) is exact for the
strong-noise case and with exact dispersion parameter
Ds � 2. It comes from an exact solution of the statistical
mechanic picture [30]. Indeed, the strong noise regime can
be interpreted as the stochastic superposition of traveling
waves of the simple form �ðb� bsÞ, suggested by Eq. (29).
Moreover, at strong noise, the average solution is domi-
nated by the strongest fluctuations, together with all corre-
lators, as shown in [30].

VI. CONCLUSIONS

We can summarize our results as follows:
(i) Reggeon field theory, when the bare Pomeron is

supercritical, can be formulated as a stochastic equa-
tion which is in the same universality class as the
two-dimensional version of the stochastic Fisher and
Kolmogorov-Petrovsky-Piscounov equation. In this
framework, time corresponds to a rapidity evolution

Y � Y0 and space to the 2-d impact parameter ~b of
the hadronic collision.

(ii) Thanks to the mapping to the 2d-sFKPP equation,
one is able to find the asymptotic and certain sub-
asymptotic solutions of the RFTwhich were beyond
reach of the purely field theoretical methods used in
the past. These solutions possess an appealing ‘‘uni-
versality ’’ property, which means that they do not
depend either from the initial conditions or on the
peculiar form of the nonlinear terms ensuring the
unitarity constraint on the elastic amplitude.

(iii) To our knowledge, it is yet the only example of a
supercritical Pomeron theory preserving a universal
behavior of the amplitude. Usually, the factorization
property of a Pomeron as a Regge pole, on which
relies the standard universality arguments (see, e.g.
[10]), is expected to be washed out by interactions
for a RFT based on a supercritical Pomeron. This
universality property is recovered in a very different
way, since it comes from a dynamical mechanism
based on the critical phenomenon associated to the
formation of circular traveling waves.

(iv) The universality class property remains valid when
the splitting and merging Pomeron vertices are of

ratio � � 1, which was the RFT value based on the
unique triple-Pomeron coupling. Indeed, �, which is
a measure of the strength of the Pomeron loop con-
tribution, plays the role of the order parameter in the
phase diagram of the RFT. Hence the original RFT
(with � ¼ 1) lies in a specific phase of the diagram.
A rough but realistic estimate (assuming RFT to be
physically applicable) places the original RFT in the
weak-noise regime of sFKPP. However, this choice
is not dictated by a theoretical constraint. The full
phase diagram should allow a model-independent
discussion of this degree of freedom, if compared
directly with the phenomenology.

(v) More generally, depending on the dimensionless
noise strength � the phase diagram is shown to
lead to three specific phases corresponding, respec-
tively, to zero noise (� ¼ 0), weak noise (� ¼ Oð1Þ),
and strong noise (� ¼ Oð100Þ), (plus an intermedi-
ate middle noise one (Oð1Þ & � & Oð100Þ), for
which explicit asymptotic regimes of solutions are
obtained in the front and in the tail of the impact-
parameter disk. Some other results, valid in the
whole range, are obtained in the case of triple-
Pomeron coupling.

There are intriguing theoretical14 lessons to be drawn
from our results. The striking theoretical feature of the
approach to the RFT through the mapping to the two-
dimensional sFKPP equation is its ability to avoid the
complications of a usual field theory formulation in the
case of a supercritical bare Pomeron. Indeed, if at first a
critical Pomeron theory for which the renormalization
group exists raised some hope (see e.g. [2]) it led to
unphysical results for hadronic reactions such as total cross

-sections behaving as Y1=12. For a supercritical Pomeron
the field theoretical methods, interesting as they may be
(see e.g. [5]), appeared to be technically complex with
difficulties to conveniently handle the solutions. It thus
seems that the traveling wave methods developed in the
present study are well suitable for avoiding the obstacles. It
is quite remarkable that, even a domain dominated by very
large ‘‘quantum loop’’ contributions such as the strong-
noise phase discussed here, can be handled in a quite
economic way.
It is useful to list a series of interesting theoretical

subjects which lie beyond the present study. One first
problem is to get rid of the approximations made for the
derivation of the solutions, the main one being to have
replaced in the original Eq. (9) the r-dependent coefficients
by their value on the wave front rs. It would improve the
analysis to solve, even numerically, the original equation to
check the validity of the approximation.

13It is also true for the noisy traveling wave solution (23) for
weak noise.

14The present paper is not devoted to a phenomenological
study. However, we have listed in Appendix D an outlook of
possibly relevant phenomenological remarks.
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The question of the azimuthal dependence of the noise is
perhaps challenging and thus interesting. Indeed, it could a
priori be possible for azimuthal symmetry to be recovered
after averaging over the noise. However, it is known from
the study of a plane front [23] that instabilities may be
created by the fluctuations beyond some threshold. It is
reasonable to expect that the unitarity constraint should cut
off such inhomogeneities, leaving the purely radial solu-
tion valid. For nonazimuthally symmetric variables, this is
not so obvious and studies e.g. related to the supercritical
Pomeron in diffraction dissociation or for particle produc-
tion could lead to some interesting problems, such as the
noisy structure of the diffraction disk [34].

Finally, it would be natural and interesting to address the
question of the relation of our results with QCD. A priori,
there is a long way to go from an effective and thus
‘‘macroscopic’’ theory of Pomeron interactions to a ‘‘mi-
croscopic’’ point of view based on quark and gluon inter-
actions. Perhaps a tentative approach would be to notice
that the RFT can be considered using the ‘‘hard’’ Pomeron
as an input and thus depending on the value of a QCD
coupling constant�S. Since, finally, the only order parame-
ter we have is �, this would mean that this parameter
should be considered depending on �S. It is interesting to
note that the strong-noise regime leads to the rapidity

dependence bs / e4�=�. A hard Pomeron behavior whose
value of intercept is proportional to �S would lead to
choose � / 1=�S. Hence a perturbative property for
QCD would be in relation with a highly quantum regime
(large Pomeron loops strength �) in terms of RFT. By
contrast, a quasiclassical regime of RFT (zero or weak
noise, small �) would be associated to a large effective
coupling constant of order �S � 1=�. This speculative but
intriguing ‘‘duality property’’ deserves certainly some
interest.
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APPENDIX A: DERIVATION OF THE RADIAL
‘‘LEADING EDGE’’

In the following we shall restrict our analysis to radial
amplitudes, i.e. depending only on the radial coordinate
r ¼ j~rj. One starts with

d

dt
Uðt; rÞ ¼ @rrUþ 1

r
@rUþU�U2: (A1)

Let us introduce, following a similar procedure for the
one-dimensional problem [15,22], the ansatz

Uðt;s¼ r�vctÞ/ exp½�	cðsþcðtÞÞ�t�G
�
sþcðtÞ

t�

�
; (A2)

where vc (resp., 	c) are the critical wave velocity (resp.,
critical slope) of the traveling wave front. This ansatz is for
describing the universal behavior of the wave in the
leading-edge region forward to the front [16].
Inserting (A2) in the Eq. (A1) and neglecting the small

contribution from the nonlinear term to the leading edge,
we can verify the equation for the dominant terms of the
time expansion. The different terms give

1

U

dU

dt
¼

�
	c � t�� G

0

G

�
vc � 	cc

0ðtÞ þ �

t
þ �t���1

	 ½sþ cðtÞ�G
0

G
þ . . . ;

� 1

U

@sU

r
¼

�
	c � t�� G

0

G

��
1

sþ vct

�

¼
�
	c � t�� G

0

G

��
1

vct

�
þ . . . ;

1

U
@ssU ¼

�
	c � t�� G

0

G

�
2 þ t�2�

�
G00

G
�G002

G2

�
þ . . . ;

(A3)

where the dots ( . . . ) indicate irrelevant subdominant
contributions.
Order by order in the late time expansion we get the

following relations:

	cvc ¼ ð	cÞ2 þ 1 ) ðorder t0Þ;
vc ¼ 2ð	cÞ ) ðorder t��Þ;

0 ¼ �	c
c � �� 	c

vc

þ �z
G0

G
þG00

G
) ðorder t�2�Þ;

(A4)

with z � ðs=t��Þ fixed and finite and cðtÞ � 
c logt.
Hence we get the values of the critical parameters � ¼
1=2; 	c ¼ 1; vc ¼ 2. The last equation of (A4) now reads

0 ¼ ð

 � 1ÞGðzÞ þ z

2
G0ðzÞ þG00ðzÞ: (A5)

The condition GðzÞ ! z when z ! 0, necessary to match
with the scaling region (called the wave interior in [16]),

leads to 
c ¼ 5=2 and GðzÞ / ze�z2=4. One thus finally
gets

Ul:e:ðr� rs; tÞ � exp½�ðr� rsÞ�ðr� rsÞ
	 exp

�
� 1

4

�
r� rs

t1=2

�
2
�
;

rs ¼ 2t� 2 logt; (50)

where l.e. stands for leading edge and rs is the average
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moving position of the wave front (or saturation scale in
the language of QCD [9]). Note that the form of the front is
identical to the one obtained in the one-dimensional prob-
lem [9,15] but the saturation scale is rs ¼ s� cðtÞ þ
1=2 ¼ 2t� 2 logt (instead of rs ¼ s� cðtÞ þ 1=2 ¼ 2t�
3
2 logt,) and thus slower by a logarithmic factor 1

2 logt. This

shift can be interpreted (and checked) [24] as resulting
from the superposition of the ‘‘curvature contribution’’ of
the two-dimensional problem with the dynamical slowing
down of the 1-d FKPP solutions.

APPENDIX B: DERIVATION OF THE RADIAL
WAVE INTERIOR

Let us introduce the formula (16) into the Eq. (10) and
expanding in powers of ��2, one gets

0 ¼
�
vðtÞ
�

þ 1

�
R
t dt0vðt0Þ

�
U0

0 þU0 �U2
0;

0 ¼
�
vðtÞ
�

�
U0

1 þU00
0 þ ð1� 2U0ÞU1;

(B1)

where one has replaced 1
r @rU ! 1R

t
dt0vðt0Þ @rU in (10) since

the difference is Oð1Þ � �t in the wave interior.

In fact, we choose�¼cst such that ½vðtÞ� þ 1

�
R

t
dt0vðt0Þ�¼1,

leading by simple integration to the equation

rs �
Z t

dt0vðt0Þ

� �t� 1

�
logð�rsÞ � �t� 1

�
logð�2t� 1Þ (B2)

at large time. Solving the simple nonlinear equation of the
first line of (B1) one easily gets

U0 ¼ 1

1þ eðr�rsÞ=� � 1

1þ ez
: (B3)

Knowing the solution for U0, it is not too difficult to solve
the linear equation, second line of (B1), obtaining with the
appropriate boundary conditions

U2 ¼ ez

ð1þ ezÞ2 log
ð1þ ezÞ2

4ez
: (B4)

APPENDIX C: RFT PHASE DIAGRAM FOR
� ¼ 2 10�2 AND bs � 5 GeV�1

(i) The zero-noise regime:


 � 1;
v�

vc

� 1; � � 1;

ffiffiffiffiffiffiffiffiffi
��0

q
� :025 GeV�1:

(C1)

(ii) The weak-noise regime:


 � 10�1; :9 � v�

vc

� 1; � � 2�;

ffiffiffiffiffiffiffiffiffi
��0

q
& :025 GeV�1:

(C2)

(iii) The strong-noise regime:


 * 1:4; 
�2 ¼ v�

vc

& :5; � ¼ 200�;

ffiffiffiffiffiffiffiffiffi
��0

q
� 
2

4
�bs � :025
2 * :05 GeV�1: (C3)

(iv) The middle-noise regime:

:1� 
 � 1:5; :2� v�

vc

� :9; 2�� �� 200�;

:025 GeV�1 �
ffiffiffiffiffiffiffiffiffi
��0

q
� :05 GeV�1: (C4)

APPENDIX D: PHENOMENOLOGICAL REMARKS

1. Scaling in impact parameter

The main property of the traveling wave solution is its
scaling structure in impact parameter. On a phenomeno-
logical ground, assuming for simplicity a purely imaginary
elastic amplitude, one obtains a scaling property of the
elastic amplitude considered as a function of impact pa-
rameter and energy. One may write ImTelðY; bÞ � Tðb�
bsÞ, where bs describes an expanding scattering diskA ¼
�b2s possessing universal slowing corrections. Note that it
is the soft interaction version, in the variables ðY; bÞ, of a
the similar geometric scaling [35] of the hard interaction
encountered in deep-inelastic scattering15 and involving
instead the ðY; logQ2Þ variables.
As discussed in the paper, we expect scaling to stay

approximately valid at weak noise, at least before a fully
realized stochastic regime takes place where

ImTelðY; bÞ � Tfb�bs
D

ffiffiffi
Y

p g. However, in this case, some non-

negligible corrections are expected to appear also in the
disk radius, see (38).

2. Total cross sections

The existence of an expanding disk in impact parameter
given by Eqs. (38) may have a direct consequence on
forward scattering amplitudes, and through unitarity, on
the total cross section at high energy. Indeed, taking as an
example the ideal geometric relation �tot / A one finds
for the zero-noise case in appropriate units and for the

15The term ‘‘geometric scaling’’ has been used long ago [36]
for soft reactions at lower energies, but with a radically different
formulation, namely Tðb; YÞ � Tðb=RðYÞÞ.
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dominant terms at asymptotic Y

� !
�
Y2 � 2Y logY

�
þ � � �

�
: (D1)

Equation (D1) saturates the Y2 behavior given by the
Froissart bound, and thus restores unitarity. However, our
prediction is the existence of a universal Y logY correction
term with strength governed by the bare Pomeron intercept
�. It is directly related to the correction term of the
traveling wave speed (13).

Note that the result for the stochastic regime may be
significantly different, namely

�ðYÞ ! Y2

�
1� 2�2

log2ð8�Y� Þ þ � � �
�

for weak noise;

�ðYÞ ! exp
8�Y

�
for strong noise: (D2)

The results (D2) call for comments. In the weak-noise
regime, it is clear that the stochastic corrections depending
on the parameter � are of order 1=log2Y and thus signifi-
cantly more important than the deterministic ones of order
logY=Y, see formula (D1). Hence the Pomeron loop effects
are expected, if their coupling � in the supercritical
Pomeron scenario is effective, to have an observable effect.

At strong noise, the behavior of the cross section is
entirely governed by the noise, with its characteristic pa-
rameter �. It is interesting to note that, if the phenomeno-
logical soft Pomeron of Ref. [10] with intercept 1.08 is
attributed to a strong noise scenario, it would correspond to
�� 100�, which is discussed in the previous Sec. III. Note

that anyway, the noise strength decreases like 1=
ffiffiffiffi
Y

p
and

the strong-noise regime will transform into the middle if
not the weak-noise one after some rapidity evolution.
Hence the apparent violation of the Froissart bound will
not be maintained at high enough energy.

3. Modification of the large b behavior

It is interesting to study how the traveling wave behavior
modifies the transfer momentum dependence of the elastic
cross section and thus the diffraction peak. Indeed, as we

have seen previously, starting with an initial condition
which is Gaussian in impact parameter, the asymptotic
traveling wave solution drives the solution of the evolution
equation to a different, universal form (e.g. independent
from the initial condition and the precise form of the non-
linear damping terms in the equation). By Fourier trans-
form, this evolution should change the structure of the
amplitude in momentum transfer and thus modify the
diffraction peak.
For an example we will start with the expression of the

wave front in the leading-edge domain at zero noise,
formula (13). With some rearrangement of terms one can
write

TðY; bÞ / ðb� bsÞ exp�ðY � Y0Þ

	 exp�
½bþ 2

ffiffiffiffi
�0
�

q
logð�ðY � Y0ÞÞ�2

4�0ðY � Y0Þ : (D3)

In formula (D3), we note that, apart from the linear pre-
factor, the exponential behavior dominant at large Y boils
down to the following modification:

exp

�
�ðY � Y0Þ � b2

4�0ðY � Y0Þ
�

! exp

�
�ðY � Y0Þ �

�b2

4�0ðY � Y0Þ
�
; (D4)

where

�b ¼ bþ 2

ffiffiffiffiffiffi
�

�0

s
logð�ðY � Y0ÞÞ:

One recognizes in the left-hand side of (D4) the solution of
Eq. (5) reduced to the linear terms. Then (D4) expresses the
universal modification of the large b behavior of the am-
plitude due to the universal leading-edge structure
A similar study can be made for the stochastic case, e.g.

from (23) and (29). A detailed phenomenological study of
all these aspects is deserved, based on the results of the
present theoretical paper.
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