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We analyze the thermodynamical properties, at finite density and nonzero temperature, of the (1þ 1)

dimensional chiral Gross-Neveu model (the NJL2 model), using the exact inhomogeneous (crystalline)

condensate solutions to the gap equation. The continuous chiral symmetry of the model plays a crucial

role, and the thermodynamics leads to a broken phase with a periodic spiral condensate, the ‘‘chiral

spiral,’’ as a thermodynamically preferred limit of the more general ‘‘twisted kink crystal’’ solution of the

gap equation. This situation should be contrasted with the Gross-Neveu model, which has a discrete chiral

symmetry, and for which the phase diagram has a crystalline phase with a periodic kink crystal. We use a

combination of analytic, numerical, and Ginzburg-Landau techniques to study various parts of the phase

diagram.
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I. INTRODUCTION

The phase diagram of interacting fermion systems at
finite density and temperature is a general problem with
applications in a wide range of physical contexts. Well-
studied examples include the Peierls-Frohlich model of
conduction [1], the Gorkov-Bogoliubov-de Gennes ap-
proach to superconductivity [2], and the Nambu-Jona-
Lasinio (NJL) model of symmetry breaking in particle
physics [3]. Strongly interacting theories such as quantum
chromodynamics (QCD) exhibit a rich phase diagram
structure [4–6]. It is known that chiral symmetry plays a
key role, and computationally the large Nf and large Nc

limits must be addressed carefully [7,8]. A (1þ 1)-
dimensional version of the NJL model, the NJL2 model
[also known as the chiral Gross-Neveu model, �GN2] is of
interest because it captures some important features of
QCD, such as asymptotic freedom, dynamical mass gen-
eration, a large Nf limit, and the breaking of a continuous

chiral symmetry [9–12]. In this paper, we use the exact
crystalline solutions to the associated gap equation, found
recently in [13,14], to study the temperature-density phase
diagram of this NJL2 system. The result of our thermody-
namical analysis confirms the physical picture proposed in
[15] that there is a phase transition at a critical temperature
Tc from a massless phase to a broken phase with a helical
condensate (the ‘‘chiral spiral’’), of the complex Larkin-
Ovchinikov-Fulde-Ferrell (LOFF) form. The resulting
phase diagram (see below, Fig. 5), is very different from
that of the nonchiral Gross-Neveu (GN2) model, which has
just a discrete, rather than continuous, chiral symmetry. In
the GN2 model there is also a region of the phase diagram
with a crystalline order parameter [16], but the structure of
the phase diagram is very different (see below, Fig. 7). This
crystalline phase of GN2 has been clearly seen in a recent
lattice analysis [17], extending an important earlier lattice
analysis [18]. In this paper, we explain in detail the role of

the chiral symmetry (continuous versus discrete) in deter-
mining the form of the phase diagram. The chiral spiral
phase of the NJL2 model has also been studied in the anti-
de Sitter/QCD framework [19]. These one dimensional
models are of course simplified models of more realistic
(3þ 1)-dimensional systems, but important lessons can
still be learned concerning the appearance of crystalline
structures in the phase diagram [20,21]. Furthermore, their
solubility permits a detailed study of the relation between
real and imaginary chemical potential [22].
Our analysis is ultimately based on solving the gap

equation for inhomogeneous condensates. Initially, the
phase diagram of the NJL2 and GN2 models was studied
assuming homogeneous condensates [23,24], but this as-
sumption does not capture certain aspects of the true
physical phase diagram [16–18]. Of course, finding inho-
mogeneous solutions to the gap equation is a much more
difficult technical problem, but the masslessNJL2 andGN2

models have remarkable symmetry properties that enable
one to find the general periodic condensate solutions
[13,14]. This fact is due to a deep connection between
the Bogoliubov-de Gennes effective Hamiltonian of the
NJL2 system, and certain one dimensional integrable hier-
archies [25–27]. These exact solutions are characterized by
a finite number of parameters, and to describe the phase
diagram one must minimize the thermodynamical grand
potential with respect to these parameters in order to
determine the form of the condensate in a given region of
the ðT;�Þ plane. This thermodynamical analysis is per-
formed in this paper.
In Sec. II, we briefly review the analytical solution of the

inhomogeneous gap equation. In Sec. III, we identify the
special role played by rescaling and phase rotation sym-
metries in the NJL2 model. The thermodynamics of the
NJL2 model is discussed in terms of a spiral condensate in
Sec. IV and in terms of the general twisted kink crystal in
Sec. V. In Sec. VI, we contrast this analysis with the case of
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the GN2 model, which has just a discrete chiral symmetry.
In Sec. VII, we apply a Ginzburg-Landau analysis to study
the region of the phase diagrams of both theGN2 and NJL2

models, in the vicinity of the relevant ‘‘tricritical point.’’
We conclude with a summary of our results and a discus-
sion of the implications for more complicated models.

II. SOLVING THE INHOMOGENEOUS GAP
EQUATION

The NJL2 model is described by the following (1þ 1)-
dimensional Lagrangian with both scalar and pseudoscalar
four-fermion interaction terms:

L NJL ¼ �c i@6 c þ g2

2
½ð �c c Þ2 þ ð �c i�5c Þ2�: (2.1)

This model has a continuous chiral symmetry: c !
ei�

5�c . The GN2 model has just the scalar four-fermion
interaction term:

L GN ¼ �c i@6 c þ g2

2
½ð �c c Þ2�; (2.2)

and has a discrete chiral symmetry: c ! �5c . We study
these models in the large Nf limit where the semiclassical

approximation applies and chiral symmetry breaking can
be studied [28,29].

By a Hubbard-Stratonovich transformation, the four-
fermion interaction terms can be expressed in terms of
scalar and pseudoscalar bosonic condensate fields, � and
� (respectively), which are conveniently expressed in
terms of a complex condensate field: � ¼ �� i�. For
GN2 we only have �, and so the condensate field � is real.
The general NJL2 system can be described equivalently by
the effective Lagrangian:

L ¼ �c

�
i@6 � 1

2
ð1� �5Þ�� 1

2
ð1þ �5Þ��

�
c

� 1

2g2
j�j2; (2.3)

which is now quadratic in the fermion fields. The corre-
sponding single-particle fermionic Hamiltonian is

H ¼ �i�5 d

dx
þ �0

�
1

2
ð1� �5Þ�þ 1

2
ð1þ �5Þ��

�
:

(2.4)

With the choice of the Dirac matrices as �0 ¼ �1, �1 ¼
�i�2, and �5 ¼ �3, the Hamiltonian (2.4) takes the form:

H ¼ �i d
dx �ðxÞ

��ðxÞ i d
dx

 !
: (2.5)

This Hamiltonian is also known as the Bogoliubov-
de Gennes (BdG) (or Andreev) Hamiltonian in the super-
conductivity literature [2,30].

There are two equivalent perspectives on studying the
semiclassical gap equation for static condensates. The first,
a Hartree-Fock approach, is to solve the single-particle
equation (the Bogoliubov-de Gennes equation)

Hc ¼ Ec (2.6)

subject to the consistency condition relating the condensate
field to the expectation values of the scalar and pseudosca-
lar fermionic bilinears:

h �c c i � ih �c i�5c i ¼ ��=g2: (2.7)

This gap equation is obtained by varying the effective
action (per fermion flavor) and is exact at large Nf. In

this second, functional, approach one integrates out the
fermionic field in (2.3) and obtains an effective action
(per fermion flavor) for the condensate field:

Seff½�� ¼ � 1

2g2Nf

Z
d2xj�j2 � i ln det

�
i@6 � 1

2
ð1��5Þ�

� 1

2
ð1þ�5Þ��

�
: (2.8)

The gap equation for the condensate field is obtained by
varying with respect to ��ðxÞ to find the stationary points
of Seff½��:

0 ¼ �Seff
���

¼ � 1

2g2Nf

�ðxÞ � i
�

��ðxÞ� ln det

�
i@6 � 1

2
ð1� �5Þ�ðxÞ

� 1

2
ð1þ �5Þ�ðxÞ�

�
: (2.9)

It is straightforward to solve this gap equation when the
condensate field � is uniform, but it is more technically
challenging to solve it for an inhomogeneous condensate
field �ðxÞ. Nevertheless, in one spatial dimension it is
possible to find the most general bounded quasiperiodic
solution to this gap equation [13,14]. The general solution
has the form of a ‘‘twisted kink crystal,’’ described below.
A useful quantity for solving the inhomogeneous gap

equation (2.9) is the resolvent Rðx;EÞ, the coincident-point
limit of the Gor’kov Green’s function Gðx; y;EÞ corre-
sponding to the Hamiltonian (2.5)

Rðx;EÞ �
�
x

�������� 1

H � E

��������x
�
: (2.10)

For a static condensate the gap eq. (2.9) can be written as

�ðxÞ ¼ �iNfg
2trD;E½�0ð1þ �5ÞRðx;EÞ� (2.11)

The solution of the gap equation relies on the remarkable
fact that in one spatial dimension the resolvent (itself a 2�
2 matrix) must satisfy a simple first order matrix differen-
tial equation

BAŞAR, DUNNE, AND THIES PHYSICAL REVIEW D 79, 105012 (2009)

105012-2



@

@x
Rðx;EÞ�3 ¼ i

�
E ��ðxÞ

��ðxÞ �E

� �
; R�3

�
(2.12)

This equation is known as the Eilenberger equation in the
superconductivity literature [30,31], and as the Dickey
equation in mathematical physics [26,32]. The Dickey-
Eilenberger equation follows immediately from the fact
that the resolvent can be written as a product of two
linearly independent solutions:

Rðx;EÞ ¼ 1

2iW
ðc 1c

T
2 þ c 2c

T
1 Þ�1 (2.13)

where W ¼ iðc T
1�2c 2Þ is the Wronskian of two indepen-

dent solutions c 1;2 of Hc ¼ Ec .

The inhomogeneous gap Equation (2.9) can be solved by
the following simple ansatz [13,14] for the resolvent

Rðx;EÞ ¼ N ðEÞ aðEÞ þ j�j2 bðEÞ�� i�0
bðEÞ�� þ i��0 aðEÞ þ j�j2

� �
(2.14)

whereN ðEÞ, aðEÞ, and bðEÞ are functions of the energy E,
and are to be determined. This particular ansatz is moti-
vated by the gap equation (2.11) that relates the off diago-
nal component of the resolvent with �. The ansatz (2.14)
automatically solves the diagonal part of the Eilenberger
equation (2.12), while the off diagonal part requires that the
condensate field � satisfy the complex nonlinear
Scrödinger equation (NLSE):

�00 � 2j�j2�þ iðbðEÞ� 2EÞ�0 � 2ðaðEÞ�EbðEÞÞ�¼ 0:

(2.15)

The advantage of this ansatz approach is that the NLSE
(2.15) can be solved in closed form, and its general solution
has the form of a twisted kink crystal, described in detail in
[14] and summarized below in the next section. The
associated energy functions N ðEÞ, aðEÞ, and bðEÞ are
simple functions of E. For the NJL2 model, there is a
further consistency condition required to satisfy the gap
equation (2.11): for an inhomogeneous condensate, the part
of the off diagonal resolvent proportional to �0ðxÞ must
vanish. This is explained in detail in Sec. VI.A of [14], in
particular, Eq. (6.2). Here we work at finite temperature
and nonzero density, which simply changes the meaning of
the energy trace, to include a Fermi-Dirac factor, when
computing the effective action. Thus, we obtain a condition
on the energy function N ðEÞ:

0 ¼ trEðN ðEÞÞ �
Z dE

2�

N ðEÞ
1þ e�ðE��Þ : (2.16)

Here � ¼ 1=T is the inverse temperature and � is the
chemical potential. This consistency condition imposes
one relation on the parameters describing the twisted
kink solution. With this consistency condition imposed,
the general inhomogeneous condensate �ðxÞ satisfying
the NLSE (2.15) solves the gap equation (2.9).

Given this exact solution �ðxÞ to the gap equation (2.9),
it is also possible to find the exact single-particle solutions
to the BdG equation (2.6). Furthermore, the diagonal re-
solvent Rðx;EÞ in (2.14) encodes all the relevant spectral
information. For example, the local density of states for
fermions in the presence of the condensate is given by

	ðx;EÞ ¼ 1

�
Im trDðRðx;Eþ i
ÞÞ (2.17)

where the matrix trace of the resolvent follows trivially
from the ansatz (2.14):

tr DðRðx;EÞÞ ¼ 2N ðEÞðaðEÞ þ j�ðxÞj2Þ: (2.18)

Given the density of states 	ðEÞ ¼ R
dx	ðx;EÞ, all rele-

vant thermodynamic quantities, at finite temperature and
chemical potential, can be derived from the grand canoni-
cal potential

�½�ðxÞ;T;�� ¼ � 1

�

Z 1

�1
dE	ðEÞ lnð1þ e��ðE��ÞÞ

þ 1

2Nfg
2

1

L

Z L

0
dxj�ðxÞj2: (2.19)

Since we know 	ðEÞ exactly, we can analyze the thermo-
dynamical properties of this model precisely.

A. Twisted kink crystal condensate

The general solution to the NLSE (2.15) describes a
crystalline condensate [13,14]. It is a periodic array of
kinks that also rotate in the chiral plane, as illustrated in
Fig. 1. The single chirally-twisted kink was originally
found by Shei [11] using inverse scattering techniques,
and subsequently studied in a resolvent approach by
Feinberg and Zee [12]. The periodic array of such twisted
kinks can be expressed in terms of the elliptic functions:

�ðxÞ ¼ ��e2iqxA
�ð�Axþ iK0 � i�=2Þ
�ð�Axþ iK0Þ�ði�=2Þ

� exp½i�Axð�iði�=2Þ þ i nsði�=2ÞÞ
þ i��3=2� (2.20)

where sc ¼ sn=cn, nd ¼ 1=dn are Jacobi elliptic functions,
and the functions � and  are the Weierstrass sigma and
zeta functions [33], chosen to have real and imaginary half
periods: !1 ¼ Kð�Þ, and !3 ¼ iK0 � iKð1� �Þ. Here

Kð�Þ ¼ R�=2
0 dt=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �sin2t

p
is the complete elliptic inte-

gral, and we use the standard notation thatK0ð�Þ � Kð1�

FIG. 1 (color online). The twisted kink crystal condensate of
(2.20), shown as the solid (red) curve. The (blue) skeleton
surface is shown just to illustrate the periodic amplitude modu-
lation and phase winding.
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�Þ. Both periods are therefore controlled by a single (real)
elliptic parameter 0 � � � 1. Note that �3 ¼ ðiK0Þ is
purely imaginary. The parameter � sets the overall scale
of the condensate, and 1=� sets the length scale of the
crystal. Later, we will use units in which the vacuum mass
of the fermion is 1, so that � sets the scale relative to the
vacuum fermion mass. The angular parameter � takes
values in the range � 2 ½0; 4K0ð�Þ�. The (real) constant A
is a function of � and the elliptic parameter �:

A ¼ Að�; �Þ ¼ �2i scði�=4;�Þ ndði�=4;�Þ: (2.21)

For brevity we will usually suppress the explicit depen-
dence of the elliptic functions on the elliptic parameter �.
The final parameter q is a phase parameter that affects the
chiral angle through which the condensate rotates over one
period L ¼ 2K

�A :

�ðxþ LÞ ¼ e2i’�ðxÞ;
’ ¼ K

�
�iði�=2Þ þ i nsð�=2Þ � ��

2K
þ 2q

�A

�

(2.22)

where � � ðKÞ is real. Thus the general solution is
specified by four real parameters: a scale parameter �, a
phase parameter q, an angular parameter �, and the elliptic
parameter �. These parameters also parametrize the energy
spectrum of fermions in such a condensate background,
which has two gaps, with band edges E1 � E2 � E3 � E4

as shown in the first plot of Fig. 2:

E1 ¼ q� � E2 ¼ qþ �ð�1þ 2 nc2ði�=4ÞÞ
E3 ¼ qþ �ð�1þ 2 nd2ði�=4ÞÞ E4 ¼ qþ �:

(2.23)

Thus, in terms of the single-particle fermion spectrum, the
role of the four parameters is as follows: � determines the
overall energy scale; q determines the overall offset; while
� and � determine the location and width of the band that
lies in the gap between the ‘‘outer’’ edges E1 and E4. The
simple linear dependence of the energy spectrum on the
parameters � and q is a direct consequence of the form of

the Hamiltonian (2.5), and reflects the important scale and
shift symmetry described in detail in Sec. III.
For the twisted kink crystal solution (2.20), the coeffi-

cients aðEÞ and bðEÞ in the NLSE (2.15) are simple poly-
nomials of E, with coefficients determined by the band
edges:

aðEÞ ¼ 2E2 �
�X4
j¼1

Ej

�
Eþ 1

8

	�X4
j¼1

Ej

�
2 �X4

i<j

ðEi � EjÞ2



(2.24)

bðEÞ ¼ 2E�
�X4
j¼1

Ej

�
: (2.25)

Furthermore, the energy function N ðEÞ appearing in the
resolvent ansatz (2.14) also has a very simple form in terms
of the band edges:

N ðEÞ ¼ i

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

4
j¼1ðE� EjÞ

q : (2.26)

Thus, we have an explicit exact expression for the density
of states of fermions in the presence of such a twisted kink
condensate field, following from the trace of the resolvent.
Within the bands:

	ðEÞ ¼ 1

2�

aðEÞ þ �2ZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
4
j¼1ðE� EjÞ

q : (2.27)

Here we have defined the function Zð�; �Þ in terms of the
normalized average of j�ðxÞj2 over one period:

Zð�; �Þ � 1

�2
hj�ðxÞj2i ¼ �Að�; �Þ2

�
P ði�=2Þ þ �

K

�
(2.28)

with P being the Weierstrass P function. Thus, the density
of states 	ðEÞ is an explicitly known function of the energy
E, depending parametrically on the four parameters �, q, �,
and � that characterize the solution (2.20) to the gap

FIG. 2 (color online). The form of the single-particle fermion spectra for the general twisted kink crystal (first figure), showing the
central value E ¼ q, and the band edges Ej, for j ¼ 1 . . . 4. The second figure shows the special case of the spiral condensate, for

which the bound band merges with one of the continua. The third figure shows the spectrum for another special case, the real kink
crystal, which has a charge-conjugation symmetry, implying that the offset is q ¼ 0, and the spectrum is symmetric about 0. The
position of the bands within the gap, and their width, are controlled by the parameters � and �.
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equation. This parametric dependence enters through the
band edge energies Ej in (2.23), and through the function Z

defined in (2.28).

B. Spiral condensate

An important special case of the general solution (2.20)
is the degenerate case when the bound band of the fermion
spectrum shrinks and merges with the upper or lower
continuum, so that the spectrum has just a single gap, as
shown in the second plot in Fig. 2. This occurs when the
angular parameter takes values at its extreme limits: � ¼ 0
(which implies that E2 ¼ E3 ¼ E4, so that the bound band
merges with the upper continuum), or � ¼ 4K0 (which
implies that E1 ¼ E2 ¼ E3, so that the bound band merges
with the lower continuum). The general twisted kink crys-
tal condensate (2.20) reduces to a single plane wave

� ¼ �e2iqx (2.29)

which is clearly a solution to the NLSE (2.15). For this
condensate the amplitude is constant, while the phase
rotates at a constant rate, set by q, as shown in Fig. 3.
The fermion energy spectrum has just one gap, of width
2�, centered at q; that is, the band edges lie at E1 ¼ q� �,
and E4 ¼ qþ �. Correspondingly, the resolvent trace has
a simplified form, and the spectral function within the
continuum bands is simply:

	ðEÞ ¼ 1

�

jE� qjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � ðE� qÞ2p (2.30)

which we recognize as the spectral function of a constant
condensate � ¼ �, shifted in energy by q.

C. Real kink crystal

Another important special case of the general solution
(2.20) is the case where the condensate is real (relevant for
the GN2 model), which implies that the BdG Hamiltonian
H in (2.5) has a charge-conjugation symmetry, fH;�2g ¼
0, which in turn implies that the fermionic spectrum is
symmetric, as shown in the third plot of Fig. 2. The band
edges reduce to

E1 ¼ �� ¼ �E4 E2 ¼ ��

�
1� ffiffiffi

�
p

1þ ffiffiffi
�

p
�
¼ �E3:

(2.31)

The phase parameter q ¼ 0, and further the angular pa-

rameter � takes its midpoint value � ¼ 2K0ð�Þ. Thus the
real kink crystal is described by just two parameters, the
scale � and the elliptic parameter �:

�ðxÞ ¼ �

�
2
ffiffiffi
�

p
1þ ffiffiffi

�
p

�
sn

�
2�x

1þ ffiffiffi
�

p ;�

�

¼ �~�
snð�x; ~�Þ cnð�x; ~�Þ

dnð�x; ~�Þ ;

~� � 4
ffiffiffi
�

p
ð1þ ffiffiffi

�
p Þ2 : (2.32)

The second form of �ðxÞ in (2.32) is obtained from the first
form by a Landen transformation [33]. Over one period,

L ¼ 2Kð~�Þ
� , the condensate changes sign (that is, it rotates

through an angle 2’ ¼ ��), as shown in Fig. 4. This
change of sign corresponds to the discrete chiral symmetry
of the GN2 model, while the phase rotation (2.22) of the
general kink crystal condensate (2.20) is associated with
the continuous chiral symmetry of the NJL2 model. The
real kink crystal describes the inhomogeneous condensate
of the crystalline phase of the GN2 model [16], and its
thermodynamics will be discussed below in Sec. VI.

III. THE SCALE AND PHASE SYMMETRY IN NJL2

In this section, we describe a simple but impor-
tant symmetry property of the Bogoliubov-de Gennes
equation (2.6), that has important consequences for the
thermodynamical analysis. The Bogoliubov-de Gennes
equation (2.6) admits a family of solutions obtained by
rescaling and phase shifting (i.e., making a linear local
chiral rotation) a given solution:

�ðxÞ ! ��ð�xÞe2iqx c ðxÞ ! eiqx�5�1=2c ð�xÞ (3.1)

which generates all the linear transformations acting on the
energy spectrum:

E ! �Eþ q: (3.2)

In terms of the density of states, the effect of the trans-
formation is

	ðEÞ ! 	

�
E� q

�

�
: (3.3)

The important physical implication of this symmetry is that
when minimizing the grand potential (2.19) with respect to

FIG. 3 (color online). The spiral condensate of (2.29), shown
as the solid (red) curve. The (blue) skeleton surface is shown just
to illustrate the periodic phase winding. In contrast to the twisted
kink crystal in Fig. 1, for the spiral, the amplitude is constant.

FIG. 4 (color online). The real kink crystal condensate of
(2.32), shown as the solid (red) curve. The (blue) skeleton
surface is shown just to illustrate the periodic amplitude modu-
lation and phase winding. For this real kink crystal, the ampli-
tude vanishes each period, and the kink rotates through � (i.e.,
changes sign) each period.
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the four parameters �, q, �, and �, the minimization with
respect to � and q can be done first. If the grand potential
did not require renormalization, then the minimization
with respect to � and q would be trivial. In fact, we will
show in the next section that even taking into account the
renormalization, these symmetries greatly simplify the
minimization with respect to � and q.

It is useful to define the ‘‘unscaled’’ and ‘‘unshifted’’
spectrum to be the one with � ¼ 1 and q ¼ 0, so that E1 ¼
�1, and E4 ¼ 1 (in units where the vacuum fermion mass
is 1). All other spectral functions can be generated from
this basic solution using the simple transformation (3.3).
The corresponding density of states will be written as

	̂ðEÞ ¼ 1

2�

� ð2E2 � ðÊ2 þ Ê3ÞE� ðÊ3 � Ê2Þ2=4� 1þ ZÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 � 1ÞðE� Ê2ÞðE� Ê3Þ

q
(3.4)

where Z ¼ Zð�; �Þ is defined in (2.28), and

Ê 2 ¼ �1þ 2 nc2ði�=4;�Þ
Ê3 ¼ �1þ 2 nd2ði�=4;�Þ:

(3.5)

Importantly, 	̂ðEÞ depends parametrically only on the two
remaining parameters, � and �. This separation of para-
metric dependences has important consequences for the
minimization of the thermodynamic grand potential (2.19)
with respect to the parameters.

A. Transformation properties of thermodynamic
quantities

1. The grand potential �

We begin our discussion with the grand canonical po-

tential �½�̂ðxÞ;T;�� for the unscaled/unshifted conden-

sate �̂ðxÞ, obtained from (2.20) by setting the scale
parameter � ¼ 1, and the phase parameter q ¼ 0. The
grand potential is formally divergent in the UV region
and has to be renormalized, as is well known [9,10,16].
At finite density and nonzero temperature, it is convenient
to separate the single-particle contribution as

� 1

�

Z 1

�1
dE	̂ðEÞ lnð1þ e��ðE��ÞÞ

¼
Z �

Emin

dE	̂ðEÞðE��Þ

� 1

�

Z 1

�1
dE	̂ðEÞ lnð1þ e��jE��jÞ (3.6)

where Emin ¼ ��=2� Z=�þ . . . , in terms of the mo-
mentum cutoff �=2. Only the first term, the zero tempera-
ture expression, in (3.6) is divergent. We isolate the
divergent terms using the large E behavior of the density

of states (3.4):

	̂ðEÞ � 1þ Z

2E2
þ . . . (3.7)

The divergent part is

�div ¼ ��2

8�
���

2�
� Z

2�
ln�: (3.8)

The quadratically and linearly divergent terms are ab-
sorbed by definition of the renormalized energy and baryon
number densities, and the logarithmically divergent term is
canceled by the double counting correction [16]

1

2Nfg
2

1

L

Z L

0
j�̂ðxÞj2dx ¼ Z

2�
ln� (3.9)

where we have used the vacuum gap equation �
Nfg

2 ¼ ln�.

Hence the finite renormalized grand canonical potential is

�ren½�̂ðxÞ;T;�� ¼
Z �

Emin

dE	̂ðEÞðE��Þ

� 1

�

Z 1

�1
dE	̂ðEÞ lnð1þ e��jE��jÞ

þ �2

8�
þ��

2�
þ Z

2�
ln�: (3.10)

Now we can analyze the effect of the transformation (3.3)
on the renormalized grand canonical potential for the
general condensate

�ðxÞ ¼ ��̂ð�xÞe2iqx: (3.11)

The finite temperature (FT) contribution [the 2nd term
on the right-hand side of Eq. (3.10)] has the following
simple scaling behavior,

�ren½��̂ð�xÞe2iqx;T;��jFT ¼ � 1

�

Z 1

�1
dE	̂

�
E� q

�

�

� lnð1þ e��jE��jÞ

¼ ��2

�̂

Z 1

�1
dE	̂ðEÞ

� lnð1þ e��̂jE��̂jÞ
¼ �2�ren½�̂ðxÞ; T̂; �̂�jFT

(3.12)

with the rescaled variables

�̂ ¼ �� q

�
�̂ ¼ 1

T̂
¼ ��: (3.13)

For the zero temperature contribution (ZT.) in (3.10), we
start from the expression,
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�ren½��̂ð�xÞe2iqx;T;��jZT ¼
Z �

E�
min

dE	̂

�
E� q

�

�
ðE��Þ

þ �2

8�
þ��

2�
þ �2Z

2�
ln�

(3.14)

where E�
min ¼ ��=2� �2Z=�. Here, due to the regulari-

zation, the scaling relation analogous to Eq. (3.12) devel-
ops anomalous terms akin to the chiral U(1) and scale
anomalies,

�ren½��̂ð�xÞe2iqx;T;��jZT ¼ �2�ren½�̂ðxÞ; T̂; �̂�jZT
þ Z

2�
�2 ln�þ �2 �̂

2

2�
� �2

2�
:

(3.15)

Being an UV effect, the extra terms are independent of
temperature. Combining Eqs. (3.12) and (3.15), we see that
the renormalized grand potential for the general conden-
sate in (3.11) is

�ren½��̂ð�xÞe2iqx;T;�� ¼ �2

�
�̂ren þ Z

2�
ln�þ �̂2

2�

�

� �2

2�
(3.16)

with the shorthand notation

�̂ ren � �ren½�̂ðxÞ; T̂; �̂�: (3.17)

For the sake of compactness in the notation, we will drop
the subscript ‘‘ren’’ from now on, and work exclusively
with the physical renormalized thermodynamic quantities.

The grand canonical potential is related to the density 	,
[not to be confused with the density of states 	ðEÞ], the
entropy s, and the free energy u:

� ¼ u��	� Ts: (3.18)

Thus we can obtain expressions for the effect of the scaling
and phase shifting transformation on the renormalized 	, s,
and u as follows.

2. Number density

From the basic relation 	 ¼ � @�
@� , we write @

@� ¼ 1
�

@
@�̂ ,

and act on (3.16) to obtain

	 ¼ �2

�
� 1

�

@�̂

@�̂
� 1

�

�̂

�

�
þ�

�
¼ �	̂þ q

�
: (3.19)

3. Entropy

From the basic relation s ¼ � @�
@T , we write @

@T ¼ 1
�

@
@T̂
,

and act on (3.16) to obtain

s ¼ �2

�
� 1

�

@�̂

@T̂

�
¼ �ŝ: (3.20)

4. Free energy

The transformation property of the free energy now
follows directly from the relation (3.18)

u ¼ �þ�	þ Ts ¼ �2

�
ûþ Z

2�
ln�

�
þ �q	̂þ q2

2�
:

(3.21)

B. Implications for minimization of the grand potential
� with respect to the phase parameter q

The minimization of � with respect to q can be trans-
formed into minimization with respect to the chemical
potential, due to the symmetry (3.3). We write @

@q ¼ � 1
� �

@
@�̂ , and differentiate � in (3.16) with respect to �̂:

0 ¼ � @�

@�̂
¼ �2

�
�@�̂

@�̂
� �̂

�

�
¼ �2

�
	̂� �̂

�

�
; (3.22)

so the q minimization implies

�	̂ ¼ �̂: (3.23)

Recalling (3.19) and (3.13), this means that after minimiz-
ing with respect to the phase parameter q, the (period
averaged) number density is simply proportional to the
chemical potential:

	 ¼ �

�
: (3.24)

This remarkable fact is independent of the form of the
(complex) condensate, and simply follows from the trans-
formation property (3.1) of the BdG Hamiltonian and its
effect on the renormalized grand potential, as reflected in
(3.16). Note, of course, that such a relation between 	 and
� does not arise in theGN2 model, where the condensate is
real and there is no phase invariance parameter q.

C. Implications for minimization of the grand potential
� with respect to the scale parameter �

From (3.16), it follows that � depends on the scale �
explicitly, and also implicitly though the dependence of

�̂ � �½�̂; T̂; �̂� on T̂ ¼ T=�, and on �̂ ¼ ð�� qÞ=�.
Thus we can write

@�

@�
¼ 2�

�
�̂þ Z

2�
ln�

�
þ Z�

2�
þ �2

�
� T̂

�

�
@�̂

@T̂

þ �2

�
� �̂

�

�
@�̂

@�̂

¼ 2�

�
�̂þ Z

2�
ln�þ Z

4�
þ 1

2
T̂ ŝþ 1

2
�̂ 	̂

�
: (3.25)
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Since �̂ ¼ û� T̂ ŝ��̂ 	̂ , we can express the minimiza-

tion condition @�
@� ¼ 0 in terms of the free energy as

û ¼ � Z

4�
� Z

2�
ln�þ 1

2
�̂ 	̂þ 1

2
T̂ ŝ : (3.26)

If we impose also the condition (3.23) arising from the
minimization with respect to the phase parameter q, we
obtain the condition

û ¼ � Z

4�
� Z

2�
ln�þ �̂2

2�
þ 1

2
T̂ ŝ : (3.27)

Alternatively, we can express these conditions in terms of
the thermodynamic quantities for the general condensate
�ðxÞ in (3.11). Without using the condition (3.24) arising
from the q minimization, the � minimization condition
(3.26) can be written as

u ¼ �Z�2

4�
þ 1

2
�	þ 1

2
Tsþ q

2

�
	��

�

�
: (3.28)

After imposing the condition (3.24) arising from the q
minimization, the last term vanishes and we obtain

u ¼ �Z�2

4�
þ �2

2�
þ 1

2
Ts: (3.29)

These conditions must hold for any form of the condensate
�ðxÞ, and will prove very useful in studying the phase
diagram of both the NJL2 and GN2 models.

D. Transformation property of the consistency
condition

The final technical ingredient before studying the ther-
modynamics is the effect of the transformation (3.1) on the
consistency condition (2.16). Note that the consistency
condition (2.16) must be satisfied also at finite T and �,
for the gap equation to hold. Thus, the energy trace in-
volves the thermodynamical Fermi factor, as in (2.16). As
with the grand potential, density, entropy, and free energy,
it is useful to express the consistency condition in terms of

the condensate �̂ðxÞ obtained by setting the scale � ¼ 1,
and phase q ¼ 0. All we need to know is the effect of the
transformation (3.2) onN ðEÞ. From the form of (2.26) it is
clear that

N ðEÞ ¼ 1

�2
N̂

�
E� q

�

�
(3.30)

where

N̂ ðEÞ � i

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 � 1ÞðE� Ê2ÞðE� Ê3Þ

q : (3.31)

Hence we can write the consistency condition as

Z dE

2�

N̂ ðEÞ
1þ e�̂ðE��̂Þ ¼ 0: (3.32)

Note that this integral is finite, even at T ¼ 0, and no
renormalization is required. The effect of this condition
is to express one of the four parameters �, q, �, and �, in
terms of the others, in a manner depending on T and �.

IV. THERMODYNAMICS OF THE SPIRAL
CONDENSATE

Before studying the general twisted kink crystal conden-
sate, we investigate the thermodynamics of the special case
of the spiral condensate:

�ðxÞ ¼ �e2iqx: (4.1)

For this condensate, �̂ðxÞ ¼ 1 (i.e., the vacuum fermion
mass in our units) and so the thermodynamics is simply
that of a constant condensate of unit magnitude. The
fermion spectrum is now symmetric about 0, and so we
can immediately write an expression for the corresponding

grand potential �̂:

�̂ ¼ � 1

4�
� T̂

�

Z 1

1
dE

Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p

� lnðð1þ e��̂ðE��̂ÞÞð1þ e��̂ðEþ�̂ÞÞÞ: (4.2)

The full grand potential� for the spiral condensate (4.1) is
then obtained using (3.16). Next we minimize the full
grand potential � with respect to q and �.

A. Minimization with respect to the phase parameter q

At T ¼ 0, we see from (4.2) that �̂ ¼ � 1
4� , indepen-

dent of �̂, so that 	̂ ¼ 0. Therefore, the condition (3.23),
arising from the minimization with respect to q, implies
that �̂ ¼ 0 at T ¼ 0. In other words, q ¼ �, so that the
chemical potential lies at the center of the gap in the single-
particle fermionic spectrum. With q ¼ �, the spiral con-
densate (4.1) is the ‘‘chiral spiral’’ solution proposed in
[15]. At nonzero temperature, the q minimization condi-
tion (3.23) can be written explicitly as

�̂ ¼ �	̂ ¼ �
@�̂

@�̂

¼ 2 sinhð�̂ �̂Þ
Z 1

1
dE

Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p

� e�̂E

ð1þ e�̂ðE��̂ÞÞð1þ e�̂ðEþ�̂ÞÞ : (4.3)

At low temperatures, T � 1, the main contribution to the
energy integrals in (4.3) comes from near the upper band
edge E ¼ 1. So we approximate the density of states as

	̂ðEÞ � 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
E� 1

p (4.4)

and (4.3) becomes
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�̂ � ffiffiffi
2

p
sinhð�̂ �̂Þ

Z 1

1
dE

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
E� 1

p e�̂Ee��̂ðE��̂Þe��̂ðEþ�̂Þ

¼
ffiffiffiffiffiffiffiffiffiffi
2�T

�

s
e��̂ sinhð�̂ �̂Þ: (4.5)

This also requires �̂ ¼ 0, leading again to the chiral spiral
solution with q ¼ �. Indeed, it is easy to verify numeri-
cally that the finite temperature equation (4.3) has a solu-
tion only at �̂ ¼ 0, for all temperature T. Another
argument in favor of � ¼ q at all temperatures is that
instead of minimizing with respect to q, we can minimize

with respect to �̂. Since �̂ is symmetric under �̂ ! ��̂,
there must be a stationary point at �̂ ¼ 0, i.e.,� ¼ q. That
it is a minimum can easily be seen by looking at the sign of
the 2nd derivative (Taylor expansion of the integrand).
Other minima (which could only come in pairs) are ruled
out numerically.

Thus, we conclude that the minimization of the grand
potential with respect to the phase parameter q leads to
q ¼ � for all temperature T, so � always lies at the center
of the gap. As should be clear from this discussion, this fact
can be traced directly to the phase transformation symme-
try in (3.1).

Another immediate consequence of q ¼ � is that the
grand potential for the chiral spiral has a simple � depen-
dence. This follows because (3.23) with �̂ ¼ 0 implies that

�̂ is independent of the chemical potential �. Indeed,
when �̂ ¼ 0, the grand potential (4.2) can then be written
as

�̂ ¼ � 1

4�
� 2T̂

�

Z 1

1
dE

Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p lnð1þ e��̂EÞ: (4.6)

Then the general relation (3.16) implies that for the chiral
spiral condensate the full grand potential is

� ¼ �2

4�
ðln�2 � 1Þ � 2�T

�

Z 1

1
dE

Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p

� lnð1þ e��̂EÞ � �2

2�
: (4.7)

Thus, the grand potential for the chiral spiral has a simple
� dependence, and it is clear that 	 ¼ �@�=@� ¼ �=�.

B. Minimization with respect to the scale parameter �

From (4.7) it also follows that the scale parameter � is
determined only by T, independent of the chemical poten-
tial �. Indeed, minimizing (4.7) with respect to �, we
obtain the equation for the thermal mass scale �ðTÞ:

0 ¼ �
ln�

�
� 2T

�

Z 1

1
dE

Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p lnð1þ e��̂EÞ

þ �
2

�

Z 1

1
dE

E2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p 1

1þ e�̂E
: (4.8)

It is a simple exercise to show that this is equivalent to the

general � minimization condition (3.29), expressed in
terms of the entropy and the free energy. Note that this
equation does not involve the chemical potential �, so the
thermal mass scale �ðTÞ must be independent of �.
At T ¼ 0, (4.8) reduces to � ln� ¼ 0, which implies that

�ðT ¼ 0Þ ¼ 1, and the grand potential is simply

�T¼0
min ¼ � 1

4�
� �2

2�
: (4.9)

For small but nonzero temperature, the scale parameter �
receives an exponentially small finite T correction, found
by approximating the energy integrals in (4.8)

�ðTÞ 	 1� ffiffiffiffiffiffiffiffiffiffi
2�T

p
e�1=T; T � 1: (4.10)

Applying the same approximation to the minimized grand
potential in (4.7) we find the leading small T correction to
the grand potential:

�T�1
min 	 �2

4�
ðln�2 � 1Þ �

ffiffiffiffiffiffiffiffi
2T3

�

s
e�1=T � �2

2�

	� 1

4�
� �2

2�
�

ffiffiffiffiffiffiffiffi
2T3

�

s
e�1=T: (4.11)

For general T, the temperature dependent mass scale �ðTÞ
can be obtained numerically from (4.8). The scale �ðTÞ
decreases monotonically from the value � ¼ 1 at T ¼ 0,
and vanishes at a critical temperature

Tc ¼ e�

�
� 0:566 933: (4.12)

At this temperature, T ¼ Tc, the system undergoes a phase
transition to a massless phase. Interestingly, this phase
transition is independent of the chemical potential �, as
follows from the fact that �ðTÞ is independent of�. We can
trace this fact directly to the simple form (4.7) of the grand
potential for the chiral spiral condensate, after minimiza-
tion with respect to the scale parameter q.
Just below Tc the dependence of � on T is nonanalytic,

as can be seen from the following argument. After inte-
grating by parts the second integral in (4.8), and expanding
the Fermi factor we obtain

0 ¼ ln�þ 2
X1
n¼1

ð�1Þnþ1
Z 1

1
dE

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p e�n�̂E

¼ ln�þ 2
X1
n¼1

ð�1Þnþ1K0ðn�̂Þ (4.13)

where K0ðxÞ is the modified Bessel function. To obtain the
critical exponents near the phase transition, we analyze this

equation near small values of �. Since �̂ ¼ �=T we expand
the Bessel functions around zero:

INHOMOGENEOUS CONDENSATES IN THE CHIRAL . . . PHYSICAL REVIEW D 79, 105012 (2009)

105012-9



0 ¼ ln�þ 2
X1
n¼1

ð�1Þnþ1

�
� ln

�
n�

2T

�
� �

� n2�2

4T2

�
ln

�
n�

2T

�
þ �� 1

��
: (4.14)

Here � is Euler’s constant. The n sums can be evaluated in
terms of the Riemann zeta function, leading to

0 ¼ lnðT�Þ � �� 14 0ð�2Þ�2

4T2
: (4.15)

In particular, at the phase transition where � ¼ 0, the
critical temperature is found to be Tc ¼ e�=�, and to the
leading order in (Tc � T), for T < Tc:

�ðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Tc

�7 0ð�2Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc � T

p þ . . .

� 3:06
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TcðTc � TÞ

q
þ . . . (4.16)

Thus, for the spiral condensate (4.1), the thermodynamic
phase diagram is given in Fig. 5, showing the phase tran-
sition at T ¼ Tc, independent of �. After minimizing the
grand potential we learn that in the region T < Tc, the pitch
angle q of the spiral condensate is directly proportional to
the chemical potential, q ¼ �, independent of T, while the
amplitude �ðTÞ is just a function of temperature (vanishing
at Tc), independent of �.

V. THERMODYNAMICS OF THE TWISTED
CRYSTAL CONDENSATE

In this section we develop results for the thermodynam-
ics of the NJL2 model with the twisted kink crystal con-
densate, that is the general solution of the inhomogeneous
gap equation. Recall that the twisted kink crystal conden-
sate (2.20) is characterized by 4 parameters: the scale
parameter �, the phase parameter q, an angular parameter
�, and the elliptic parameter �. We first consider the
situation analytically at T ¼ 0, then at nonzero T.

A. Twisted kink crystal at T ¼ 0

At T ¼ 0 there are some significant simplifications. First
of all, the Fermi factor becomes a step function that acts as
a cutoff of the energy integrals. Thus, in the consistency
condition (3.32), we use

1

1þ e�̂ðE��̂Þ ! �ð�̂� EÞ: (5.1)

If we assume that �̂ is in the upper gap, then both the lower
continuum and the bound band are completely filled. Thus
the consistency condition (3.32) reads (for details, see [14])

0 ¼
Z �1

�1
dEN ðEÞ þ

Z E3

E2

dEN ðEÞ ¼ 1

2A

�
�

4
�K0

�
:

(5.2)

Therefore, the consistency condition forces � ¼ 4K0,
which is precisely the spiral condensate case. In this limit,
the band shrinks and joins the negative energy continuum,
leaving just the single-gap spectrum of the spiral conden-
sate. Then the q minimization leads to q ¼ � as described
in the previous section, and we find the preferred conden-
sate to be the chiral spiral. Similarly, if we assume that �̂ is
in the lower gap, then we get � ¼ 0, that is also the spiral
condensate limit; in this limit the bound band joins to the
positive energy continuum. Once again, minimization with
respect to the phase parameter q leads to q ¼ �, so the
condensate is the chiral spiral.
The only other possibility is �̂ lying inside the bound

band. In this case the consistency condition (2.16) leads to
an expression for the Fermi energy:

Ê F ¼ ÊFð�; �Þ ¼ ncði�=2;�Þ: (5.3)

On the other hand, at T ¼ 0, this Fermi energy is simply
the chemical potential. Minimization with respect to the
phase parameter q leads to the relation �̂ ¼ �	̂. We can
evaluate the density obtained by filling up to the Fermi

energy ÊFð�;�Þ:
	̂ ¼ 	̂ð�; �Þ

¼ 1

�

1

cnði�=2;�Þ
�
cnði�=2;�Þ � dnði�=2;�Þ
cnði�=2;�Þ þ dnði�=2;�Þ

�
: (5.4)

The simultaneous solution of these two conditions, namely

FIG. 5 (color online). The phase diagram of the NJL2 model.
The tricritical point is marked at �tc ¼ 0 and Ttc ¼ e�=� �
0:5669. Below Tc the condensate has the form of the spiral
condensate (4.1), with q ¼ �.
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ÊF ¼ �	̂, has the unique solution � ¼ 2K0, for all �, as
can be seen from Fig. 6. Evaluating the free energy for this
solution we obtain the following function of the remaining
parameters � and �:

E ¼ Eð�; �Þ

¼ 2�2

�ð1þ ffiffiffi
�

p Þ2
�
�

2
þ
�
1� Eð�Þ

Kð�Þ
��

ln

�
2�

1þ ffiffiffi
�

p
�
� 1

��

þ �2

2�
: (5.5)

Minimizing Eð�; �Þ with respect to �, we find that we are
forced to � ¼ 1, which means

E ð�; � ¼ 1Þ ¼ �2

4�
ðln�2 � 1Þ þ �2

2�
(5.6)

from which we recognize the T ¼ 0 grand potential (4.7)
of the chiral spiral solution. Thus, once again, the minimi-
zation forces us to the chiral spiral condensate solution, at
T ¼ 0.

B. Twisted kink crystal at 0 < T � 1

The minimization of the grand potential at T ¼ 0 shows
that the preferred twisted kink crystal configuration is the
chiral spiral, with the chemical potential sitting in the
middle of the gap (i.e., �̂ ¼ ð�� qÞ=� ¼ 0). For this
solution, the angular parameter � takes the values 0 or
4K0. We will consider the latter case (a similar argument
applies for the other choice). Now consider the stability of
this chiral spiral for T nonzero but small. If we change T
slightly away from 0, then the consistency condition that
sets the angular parameter � ¼ 4K0, will also change
slightly, and the preferred value of � will shift away from

4K0. We write � ¼ 4K0 � 4
, where 
 � T̂ � 1. This
changes the single-particle spectrum by producing a very

narrow band very close to the lower band edge Ê1 ¼ �1.

With � ¼ 4K0 � 4
, the band edges (3.5) and the averaged
amplitude (2.28) take the form

Ê 2ð�; �Þ � �1þ 2�
2 þ . . .

Ê3ð�; �Þ � �1þ 2
2 þ . . .

Zð�; �Þ � 1� hð�Þ
2 þ . . .

(5.7)

where hð�Þ ¼ 2�� 2þ 4Eð�Þ=Kð�Þ. We now calculate

the small T correction to the grand potential �̂ for this
configuration. As usual, we split the grand potential into
zero temperature and finite temperature parts. For small T,

we use the fact that lnð1þ e�j�̂ðE��̂ÞjÞ � e�j�̂ðE��̂Þj �
e��̂jEj (recall that �̂ ¼ 0 for T ¼ 0)

�̂�
Z �1

�1
dE	̂ðEÞðE� �̂Þþ

Z E3

E2

dE	̂ðEÞðE� �̂Þ

�T

�Z �1

�1
dE	̂ðEÞe�̂Eþ

Z 1

1
dE	̂ðEÞe��̂E

þ
Z E3

E2

dE �	ðEÞe�̂E
�

¼ h�̂iT¼0�Te��̂

�Z 1

0
dx	̂ð�x� 1Þe��̂x

þ
Z 1

0
dx	̂ðxþ 1Þe��̂xþ

Z 2
2

2�
2
dx	̂ðx� 1Þe�̂x

�
: (5.8)

In the small T limit, the continuum integrals are dominated
by the region x � 0 (i.e., near the band edges). The spectral
function around the band edges has the behavior

Z 1

0
dx	̂ð�x� 1Þe��̂x ¼

ffiffiffiffiffiffiffi
T

2�

s
� 


1

Kð ffiffiffi
�

p Þ (5.9)

Z 1

0
dx	̂ðxþ 1Þe��̂x �

ffiffiffiffiffiffiffi
T

2�

s
þOð
2Þ: (5.10)

Note that the lower continuum leads to an Oð
Þ correction,
while the upper continuum leads to an Oð
2Þ correction.
The band integral also leads to anOð
Þ correction. This can
be seen by changing the integration variable x ! 
2x:

Z 2
2

2�
2
dE	̂ðx�1Þe�̂x¼


Z 2

2�
dxe�̂x


2�x�ð1þ�Þ�hð�Þ=2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx�2�Þð2�xÞp

�

Z 2

2�
dx

2�x�2Eð�Þ=Kð�Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx�2�Þð2�xÞp

�
Lð�Þ: (5.11)

An important observation is that this function Lð�Þ< 0 for
all � 2 ½0; 1�.
Finally, we use the general transformation of the grand

potential (3.16) to deduce the grand potential for the

twisted kink crystal. Since after minimization, ĉ T¼0 ¼
�1=ð4�Þ, the small T correction to � does not contribute
to the full grand potential � [as in (4.11)], and the full

FIG. 6 (color online). Plot of �	̂ð�; �Þ (light blue surface) and
ÊFð�; �Þ (darker blue surface), as functions of � and �, where
� � 4K0�. The surfaces intersect at � ¼ 1=2, which means � ¼
2K0.
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grand potential is found to be

� �
�
� 1

4�
� �2

2�
�

ffiffiffiffiffiffiffiffi
2T3

�

s
e�1=T

�
þ 


�
1

Kð ffiffiffi
�

p Þ
� Lð�Þ

�
Te�1=T þ . . . (5.12)

The first term in parentheses is just the low T grand
potential for the chiral spiral, as in (4.11). Since Lð�Þ is
always negative, andKð ffiffiffi

�
p Þ is always positive, we see that

the system is unstable with respect to the opening of a gap
near the lower continuum edge. In other words, at small T
the minimization of the grand potential reduces the general
twisted kink crystal condensate to the chiral spiral conden-
sate, just as at T ¼ 0.

C. Numerical results for the thermodynamics of the
twisted kink crystal condensate

The previous two sections have shown that at T ¼ 0 and
for small T, the chiral spiral condensate is the thermody-
namically preferred form of the more general twisted kink
crystal condensate. We have also checked this conclusion
numerically at various locations on the phase diagram, and
we find that throughout the phase diagram the chiral spiral
is the thermodynamically preferred limit of the general
twisted kink crystal solution of the inhomogeneous gap
equation.

VI. THERMODYNAMICS OF THE REAL KINK
CRYSTAL AND THE GN2 MODEL

The phase diagram of the GN2 model, which has just a
discrete chiral symmetry instead of the continuous chiral
symmetry of the NJL2 model, is by now well understood
[16,34]. But we revisit it here briefly, with a new perspec-
tive. The analysis of this paper shows that the key to
understanding the phase diagram of the NJL2 model is
the behavior (3.16) of the renormalized grand potential
under the rescaling and shifting transformation (3.1). But
in the GN2 model there is no pseudoscalar interaction, so
the condensate is real. Thus, there is no symmetry corre-
sponding to a phase rotation of the condensate. In other
words, q � 0. The angular parameter � in the solution
(2.20) of the inhomogeneous gap equation is also zero, as
the condensate cannot wind by an arbitrary phase as it goes
through one period. Furthermore, there is no need to im-
pose any consistency condition on the solution of the gap
equation: since the pseudoscalar condensate � is identi-
cally zero, there is no condition arising from its variation,
which means that the off diagonal terms in (2.11) play no
role. Thus, the general solution (2.20) of the inhomoge-
neous gap equation simplifies to the real kink crystal
solution in (2.32), which depends on just two parameters,
the scale � and the elliptic parameter �. Concerning the
grand potential, the key formula is now (3.16), with q set to
0:

�ren½��̂ð�xÞ;T;�� ¼ �2

�
�̂ren½�̂ðxÞ;T=�;�=��

þ Z

2�
ln�

�
: (6.1)

The last term reflects the anomalous behavior of the grand
potential under the rescaling of the condensate by �.

A. Real kink crystal at T ¼ 0

From previous work [16], we know explicit expressions
for the thermodynamical quantities at T ¼ 0 as functions
of the elliptic parameter �. For � ¼ 1, the density is

	̂ ¼ 1

2Kð~�Þ ; ~� � 4
ffiffiffi
�

p
ð1þ ffiffiffi

�
p Þ2 : (6.2)

The free energy is

Ê ¼ Zð~�Þ
4�

ðln~�� 1Þ þ 1

2�

Eð~�Þ
Kð~�Þ (6.3)

where

Zð~�Þ ¼ 2

�
1� ~�

2
� Eð~�Þ

Kð~�Þ
�

(6.4)

which is just Zð�; �Þ in (2.28), evaluated at � ¼ 2K0ð�Þ.

FIG. 7 (color online). Phase diagram of the GN2 model. The
tricritical point is at �tc ¼ 0:608 and Ttc ¼ 0:318. In the region
of �> 2=�, the massless and massive phases are separated by a
crystalline phase.
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The function Eð~�Þ is the complete elliptic integral of the
second kind [33]. Thus we can write the T ¼ 0 grand
potential as

� ¼ E ��	 ¼ �2ðf1ð~�Þ þ f2ð~�Þ ln�Þ ���f3ð~�Þ
(6.5)

where

f1ð~�Þ � Zð~�Þ
4�

ðln~�� 1Þ þ 1

2�

Eð~�Þ
Kð~�Þ (6.6)

f2ð~�Þ � Zð~�Þ
2�

(6.7)

f3ð~�Þ � 1

2Kð~�Þ : (6.8)

Minimizing � with respect to � and ~� leads to two
equations:

@�

@�
¼ 2�

�
f1 þ 1

2
f2 þ f2 ln�

�
��f3 ¼ 0

@�

@~�
¼ �f�ðf01 þ f02 ln�Þ ��f03g ¼ 0:

(6.9)

Simultaneous solution of these conditions leads to a
complicated-looking expression for ln�, that actually sim-
plifies dramatically:

ln� ¼ f3f
0
1 � 2f03ðf1 þ f2=2Þ
2f2f

0
3 � f3f

0
2

¼ � 1

2
ln~�: (6.10)

In showing this remarkable reduction we use the property

@Z

@~�
¼ ðZ� ~�Þ2

4~�ð1� ~�Þ : (6.11)

Inserting this result for � back into the minimization con-
ditions (6.9) we find the minimized values at T ¼ 0:

�ð~�Þ ¼ 2Eð~�Þ
�

ffiffiffi
~�

p (6.12)

�ð~�Þ ¼ 1ffiffiffi
~�

p : (6.13)

The critical value of chemical potential, �c ¼ 2
� , corre-

sponding to the baryon mass [9,10,18], is obtained at ~� ¼
1, in agreement with known results [16].

B. Real kink crystal at T � 1

At nonzero temperature, the minimization with respect
to � and ~� leads to T dependent expressions for the
chemical potential and the scale factor �, as functions of
the elliptic parameter ~�, generalizing the T ¼ 0 expres-
sions (6.12) and (6.13). This can be done numerically, as in
[16], but here we find analytic expressions valid in the
small T limit. First, we note that the T ¼ 0 chemical
potential in (6.12) lies in the upper gap (see Fig. 8):

E3ð~�Þ ¼ �ð~�Þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� ~�

p � �ð~�Þ � E4ð~�Þ ¼ �ð~�Þ: (6.14)

Since � is in the gap, at small T there is an exponentially
small factor in the corrections to thermodynamic quantities
going like

exp½�j�� nearest band edgej=T�: (6.15)

Furthermore, for all ~�, � is closer to E4 than to E3. Thus,
we can write as a leading approximation

� ¼ �T
Z

dE	ðEÞ lnð1þ e��ðE��ÞÞ (6.16)

¼ �T¼0 � T
Z

dE	ðEÞ lnð1þ e��jE��jÞ (6.17)

	�T¼0 � Te��ðE4��Þ Z 1

E4

dE	ðEÞe��ðE�E4Þ: (6.18)

We expand the spectral function in the vicinity of the
nearer band edge, E4:

	ðEÞ ¼ 2E2 � ðE2
3 þ E2

4Þ þ �2Z

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 � E2

3ÞðE2 � E2
4Þ

q (6.19)

	 1

2�

E2
4 � E2

3 þ �2Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E4ðE2

4 � E2
3Þ

q 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� E4

p þOð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� E4

p Þ: (6.20)

Thus,

�	�T¼0 � T3=2

ffiffiffiffiffiffiffi
�

2�

s
f4ð~�Þe��ðE4��Þ (6.21)

where

f4ð~�Þ ¼ 1ffiffiffi
~�

p
�
1� Eð~�Þ

Kð~�Þ
�
: (6.22)

We now minimize � with respect to � and ~�, keeping the
leading small T corrections to the T ¼ 0 results of the

FIG. 8 (color online). Plot of the chemical potential (center
line), and the band edge energies, as a function of the elliptic
parameter ~�. Note that �ð~�Þ lies in the gap for all ~�, and
moreover, it is slightly closer to the upper band edge, E4, than
to the lower band edge, E3.
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previous section. We find, after some straightforward alge-
bra,

�ð~�; TÞ 	 2Eð~�Þ
�

ffiffiffi
~�

p �
ffiffiffiffiffiffi
2T

�

s
ð1� ~�ÞKð~�Þ

~�3=4

� exp

�
��

�
1ffiffiffi
~�

p
�
1� 2Eð~�Þ

�

���
(6.23)

�ð~�; TÞ 	 1ffiffiffi
~�

p �
ffiffiffiffiffiffiffi
�T

2

s
1

~�3=4
exp

�
��

�
1ffiffiffi
~�

p
�
1� 2Eð~�Þ

�

���
:

(6.24)

These small T corrections are plotted in Fig. 9, and are in
very good agreement with the numerical results found in
[16], and plotted in Fig. 7. Already these corrections in-
dicate the existence of a crystalline phase in which the
condensate scale � and the period (set by the elliptic
parameter �) are dependent on both T and �. This is in
contrast to the phase diagram of the NJL2 model, shown in
Fig. 5, where the phase transition line is only a function of
T, and the scale parameter � is independent of the chemical
potential �. With this perspective we can trace this funda-
mental difference in the phase diagrams directly to the
fundamental difference between the discrete and continu-
ous chiral symmetry of the two models.

VII. GINZBURG-LANDAU ANALYSIS

We complete our analysis of the phase diagram of the
NJL2 and GN2 models by analyzing another region of the
phase diagram, using the Ginzburg-Landau expansion of
the grand potential�. In the previous sections we obtained
analytic results at and near T ¼ 0, but the Ginzburg-
Landau approach permits a certain degree of analytic
information about another region of the phase diagram,

in the vicinity of the tricritical point. Expanding in powers
of the condensate and its derivatives, the renormalized
grand potential density may be expressed as

�GL ¼ �0 þ �2j�j2 þ �3 Imð��0�Þ þ �4ðj�j4 þ j�0j2Þ
þ �5 Imðð�00 � 3j�j2�Þ�0�Þ þ �6ð2j�j6
þ 8j�j2j�0j2 þ 2Re�02��2 þ j�00j2Þ þ . . . (7.1)

The coefficients �nðT;�Þ are the following functions of T
and � [16]:

�0 ¼ ��T2

6
� �2

2�

�2 ¼ 1

2�

�
lnð4�TÞ þ Rec

�
1

2
þ i

��

2�

��

�3 ¼ � 1

23�2T
Imc ð1Þ

�
1

2
þ i

��

2�

�

�4 ¼ � 1

26�3T2
Rec ð2Þ

�
1

2
þ i

��

2�

�

�5 ¼ � 1

28�43T3
Imc ð3Þ

�
1

2
þ i

��

2�

�

�6 ¼ 1

212�53T4
Rec ð4Þ

�
1

2
þ i

��

2�

�
:

(7.2)

Here c ðnÞðxÞ is the nth derivative of the digamma function
c ðxÞ � �0ðxÞ=�ðxÞ.
Keeping terms up to a certain order in this expansion,

and inserting into the gap equation (2.9), we obtain an
equation (the Ginzburg-Landau equation) for the conden-
sate �. Remarkably, for the NJL2 and GN2 models, this
hierarchy of equations can be solved to all orders
[14,26,27]. If we expand up to �2, then the Ginzburg-
Landau (GL) equation is simply � ¼ 0, so we learn noth-
ing about the phase diagram. To this order the system
appears to be just a free massless Fermi gas. If we expand
� up to �3, then the GL equation reads

�0 � i
�2

�3

� ¼ 0 ) � ¼ � exp

�
i
�2

�3

x

�
: (7.3)

This has the form of the spiral condensate studied in
Sec. II B. This spiral condensate has constant magnitude,
j�j2 ¼ �2, and also 1

2i ð���0 ����0Þ ¼ � �2

�3
�2, so that

when we evaluate the grand potential on this solution, we
find

�GL ¼ �0: (7.4)

So the grand potential is independent of �, and this is again
no different from a free massless phase. If we expand up to
�4, then the GL equation is the NLSE equation:

ð�00 � 2j�j2�Þ � i
�3

�4

�0 � �2

�4

� ¼ 0: (7.5)

The general bounded solution of this equation is the
twisted kink crystal described in Sec. II A.

FIG. 9 (color online). Plots of the chemical potential, as a
function of T, for various values of the elliptic parameter ~�,
keeping just the leading small T behavior, as in (6.24). This plot
is in remarkable agreement with the numerical results shown in
Fig. 7.
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The general pattern is the following: to order �k, the GL
equation is a differential equation of order (k� 2), and the
general solution corresponds to a finite-gap Dirac problem
with (k� 2) gaps, or (k� 1) bands (including the positive
and negative continuum bands). For example, the �2 equa-
tion led to � ¼ 0, which is the free system with no gaps.
The �3 equation leads to � ¼ � exp½i �2

�3
x�, which has

precisely one gap. The �4 equation, the NLSE (2.15), has
as its general solution a system with two gaps, as shown in
the first plot of Fig. 2. In general the solution with (k� 2)
gaps requires 2ðk� 2Þ parameters for the solution, and
these parameters can be thought of as labelling the band
edges. Let us write

�GL ¼ �0ðT;�Þ þX1
l¼2

�lðT;�ÞJl½�;�0;�00; . . .� (7.6)

where Jl½�;�0;�00; . . .� represents the nonlinear combina-
tions of the condensate �ðxÞ and its derivative appearing in
the expansion (7.1). Then the GL equation to order k is

Xk
l¼2

�lðT;�Þ�Jl½�;�
0;�00; . . .�

���ðxÞ ¼ 0: (7.7)

These equations define the Ablowitz-Kaup-Newell-Segur
(AKNS) hierarchy, and (7.7) is also known as the Novikov
equation. Formal expressions exist for their solution in
terms of multidimensional theta functions [26,27],
although these are cumbersome to work with beyond the
twisted kink crystal solution. The remarkable integrability
properties of the AKNS hierarchy implies that the solution
to the NLSE satisfies the Novikov equations to all orders,
with suitable choices of parameters, as shown also in [14].

A. Ginzburg-Landau expansion for the GN2 model

It is instructive to see how successive orders of the
Ginzburg-Landau expansion reveal more and more about
the exact phase diagram. In the GN2 system, the conden-
sate is real, and we write it as � ¼ �, and all odd-index
terms of the Ginzburg-Landau expansion vanish. The Dirac
spectrum is now symmetric about 0, and so the band edges
of the finite-gap solutions come in 
 pairs, as in the 2-gap
case depicted in the third plot of Fig. 2. Therefore, we only
need half as many parameters at a given order to describe
the solution. The grand potential density simplifies to

�GL ¼ �0 þ �2�
2 þ �4ð�4 þ�02 � 1

3ð�2Þ00Þ
þ �6ð2�6 þ 10�2�02 þ�002 � ð�4 þ ð�0Þ2
� 1

5ð�2Þ00Þ00Þ þ . . . (7.8)

The tricritical point is defined as the point where the first
two nontrivial coefficients, �2ðT;�Þ and �4ðT;�Þ vanish:
�2ðT;�Þ ¼ �4ðT;�Þ ¼ 0 ) Ttc ¼ 0:318 329;

�tc ¼ 0:608 221 (7.9)

1. Ginzburg-Landau expansion to Oð�4Þ for the GN2

model

As mentioned above, the expansion to Oð�2Þ yields no
information. The next nontrivial order, to Oð�4Þ, leads to
the following GL equation, which is a special case of the
NLSE (7.5)

�00 � 2�3 � �2

�4

� ¼ 0: (7.10)

The general solution can be written as

� ¼ �
ffiffiffi
�

p
snð�x;�Þ , �00 � 2�3 þ ð1þ �Þ�2� ¼ 0

(7.11)

with the identification of the scale parameter � as

�2 ¼
�
��2

�4

��
1

1þ �

�
: (7.12)

Notice that in the GL approach, we get explicit expressions
for the dependence of the solution’s parameters in terms of
T and�. An important comment is that since 1

1þ� � 0, this

expression tells us that this inhomogeneous solution only
makes sense in regions of the ðT;�Þ plane where ð� �2

�4
Þ �

0. Using the following identities satisfied by the solution in
(7.11)

ð�0Þ2 ¼ �4 � ð1þ �Þ�2�2 þ ��4 (7.13)

ð�2Þ00 ¼ 6�4 � 4ð1þ �Þ�2�2 þ 2��4 (7.14)

we can write the grand potential density to this order as

�GL ¼ �0 þ �2�
2 þ �4

�
1

3
ð1þ �Þ�2�2 þ 1

3
��4

�

¼ �0 þ 2

3
�2�

2 þ �

3ð1þ �Þ2
�2
2

�4

: (7.15)

Here we have used the above expression (7.12) for �2.
Averaging over one period, we use h�2i ¼ �2ð1�
Eð�Þ=Kð�ÞÞ, and again using (7.12) we find

h�icrystalGL ¼ �0 þ
�
� �2

2

4�4

��
4

1þ �

�
2þ �

3ð1þ �Þ �
2

3

Eð�Þ
Kð�Þ

��

� �0 þ
�
� �2

2

4�4

�
Fð�Þ: (7.16)

Note that the function Fð�Þ is a smooth function interpo-
lating monotonically between Fð0Þ ¼ 0 and Fð1Þ ¼ 1. We

have written h�icrystalGL like this in order to compare with the

homogeneous ansatz: � ¼ �. Then

h�ihomogeneous
GL ¼ �0 þ �2�

2 þ �4�
4: (7.17)

Minimizing with respect to �2, we obtain the condition
�2 ¼ ��2=ð2�4Þ, and at this minimum

h�ihomogeneous
GL ¼ �0 þ

�
� �2

2

4�4

�
: (7.18)
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Therefore, we can write

h�ihomogeneous
GL � h�icrystalGL ¼

�
� �2

2

4�4

�
½1� Fð�Þ�: (7.19)

An important observation is that at the values of � ¼ 1 and
� ¼ 0, the minimized grand potential reduces to that of the
homogeneous and the massless condensates [recall
E=Kð� ¼ 1Þ ¼ 0, E=Kð� ¼ 0Þ ¼ 1]:

h�icrystalGL ð� ¼ 1Þ ¼ �0 þ
�
� �2

2

4�4

�
¼ h�ihomogenous

GL

h�icrystalGL ð� ¼ 0Þ ¼ �0 ¼ h�imassless
GL : (7.20)

This behavior is depicted in Fig. 10, where the grand
potential of the crystal condensate lies between that of
the massless and massive homogeneous phases, interpolat-
ing between them as a function of �. Minimizing with
respect to � pushes us to the massive homogeneous phase
in the blue region, but to the massless homogeneous phase
in the white region. Thus, at this order of the GL expansion,
even though the solution to the GL equation has the form of
a crystalline condensate, the thermodynamic minimum is a
constant condensate, either zero or nonzero, but always
constant. We show in the next section that this picture
changes significantly at the next order.

2. Ginzburg-Landau expansion to Oð�6Þ for the GN2

model

Going to the next nontrivial order beyond the level
defining the tricritical point, we expand the grand potential
density in powers of the real condensate field � and its
derivatives (we drop the total derivative terms as these are
not important for this argument ):

�GL ¼ �0 þ �2�
2 þ �4ð�4 þ�02Þ

þ �6ð2�6 þ 10�2�02 þ�002Þ: (7.21)

The GL equation is now a fourth-order equation:

ð�0000 � 10�2�00 � 10�ð�0Þ2 þ 6�5Þ
þ �4

�6

ð��00 þ 2�3Þ þ �2

�6

� ¼ 0: (7.22)

The simplest solution is a homogeneous condensate, � ¼
�, with massless and massive solutions:

� ¼ 0 ðmassless homogeneous phaseÞ

�4 þ �4

3�6

�2 þ �2

6�6

¼ 0 ) �2
 ¼ � �4

6�6

�
1


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 6�2�6

�2
4

s �
ðmassive homogeneous phaseÞ: (7.23)

The general solution to (7.22) is very complicated, but we
can use the inhomogeneous solution to the NLSE

� ¼ �
ffiffiffi
�

p
snð�x; �Þ: (7.24)

A similar idea was used in an analogous condensed matter
model in [35]. This solution satisfies the nonlinear equa-
tions:

��00 þ 2�3 ¼ ð1þ �Þ�2�

ð�0000 � 10�2�00 � 10�ð�0Þ2 þ 6�5Þ ¼ ð�2 þ 4�þ 1Þ�4�:

(7.25)

Thus, comparing with the GL equation (7.22), we see that
� satisfies the GL equation (7.22) provided we identify

�4 þ �þ 1

ð�2 þ 4�þ 1Þ
�4

�6

�2 þ 1

ð�2 þ 4�þ 1Þ
�2

�6

¼ 0:

(7.26)

FIG. 10 (color online). The phase diagram of the GN2 model,
based on a Ginzburg-Landau expansion to the lowest nontrivial
order: Oð�4Þ. The blue region is the region in which the massive
homogeneous condensate � ¼ � has a lower grand potential.
The white region is the region in which the homogeneous
massless condensate � ¼ 0 has a lower grand potential, or
where only the massless condensate exists, because �2 in
(7.12) is negative. These regions meet at the tricritical point:
Ttc ¼ 0:318, �tc ¼ 0:608.
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This condition leads to two solutions

�2
 ¼ � �þ 1

2ð�2 þ 4�þ 1Þ
�4

�6

�
�
1


�
1� 4ð�2 þ 4�þ 1Þ

ð�þ 1Þ2
�2�6

�2
4

�
1=2
�
: (7.27)

Evaluated on the crystalline solution, the grand potential is

h�iGL ¼ �0 þ �2�2

�
1� E

K

�

þ �4�4

3

�
1þ 2�� ð1þ �Þ E

K

�

þ �6�6

5

�
3�2 þ 6�þ 1� ð�2 þ 4�þ 1Þ E

K

�
:

(7.28)

This is just a function of T and � (through the �’s) and the
elliptic parameter �, because � is given by the solutions in
(7.27). We can therefore evaluate the grand potential
throughout the ðT;�Þ plane and ask where it is lower
than the grand potential of the homogeneous phase. The
result is shown in Fig. 11, which shows the existence of a
crystalline phase in a small region in the vicinity of the

tricritical point. This is a region in which the grand poten-
tial of the crystalline condensate is lower than that of the
massless or massive homogeneous condensate. On the
upper edge, � ¼ 0 and the scale of the crystalline conden-
sate vanishes as it reduces to a massless phase; on the lower
edge, � ¼ 1, and the period of the crystalline condensate
diverges as it reduces to a homogeneous massive phase.
The form of this region matches very well with the full
crystalline region, near the tricritical point, as shown by the
close-up view in Fig. 12. Going to higher orders of the GL
expansion, this crystalline region grows, and eventually
covers the entire region given by the exact numerics [16].

B. Ginzburg-Landau expansion for the NJL2 model

In contrast to the GN2 model, the �3 term in (7.1) is
present in the GL expansion of the NJL2 model, as the
condensate� is complex. The ‘‘tricritical’’ point is defined
as the point where the two lowest nontrivial coefficients,
�2ðT;�Þ and �3ðT;�Þ, vanish:

�2ðT;�Þ ¼ �3ðT;�Þ ¼ 0 ) Ttc ¼ 0:566; �tc ¼ 0:

(7.29)

1. Ginzburg-Landau expansion to Oð�3Þ for the NJL2

model

The first nontrivial order, to Oð�3Þ, leads to the GL
equation

FIG. 11 (color online). The phase diagram of the GN2 model,
based on a Ginzburg-Landau expansion to the lowest nontrivial
order: Oð�6Þ. The light (blue) shaded region in which the
homogeneous condensate � ¼ � has the lowest grand potential.
The dark (red) shaded region is the region in which the crystal-
line condensate (7.24) has the lowest grand potential. In the
remaining (white) region, the homogeneous massless condensate
� ¼ 0 has the lowest grand potential. Note that the crystal phase
region begins at the tricritical point: Ttc ¼ 0:318,�tc ¼ 0:608. A
close-up of this region is shown in Fig. 12.

FIG. 12 (color online). A close-up view of the crystalline
region in the phase diagram of the GN2 model, near the tricritical
point, based on a Ginzburg-Landau expansion to the lowest
nontrivial order: Oð�6Þ. The red shaded region is the crystalline
region seen at this order of the GL expansion, while the solid
black lines mark the edges of the true crystalline region found
numerically from the exact grand potential [16]. The agreement
is excellent near the tricritical point and near the LOFF boundary
with the massless phase.
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�0 � i
�2

�3

� ¼ 0 ) � ¼ � exp

�
i
�2

�3

x

�
: (7.30)

But for this solution, even though this condensate is crys-
talline, the grand potential is h�iGL ¼ �0. Thus, the phase
diagram is simply that of a massless phase. The only thing
we learn at this level of the GL expansion is the existence
of the tricritical point at T ¼ 0:5669 and � ¼ 0. This is
analogous to the situation of the GL expansion of the GN2

model to its first nontrivial order,Oð�4Þ, where the solution
of the GL equation has a crystalline form, but this crystal-
line condensate does not appear in the phase diagram at
that order, as discussed in Sec VIIA 1.

2. Ginzburg-Landau expansion to Oð�4Þ for the NJL2

model

Going to the next nontrivial order beyond the level
defining the tricritical point, namely, to Oð�4Þ, we obtain
the GL equation of NLSE form in (7.5). Adapting the
solution in Sec. II A, we can write the general solution as

� ¼ ��
�ð�xþ iK0 � i�=2Þ
�ð�xþ iK0Þ�ði�=2Þ exp½i�xð�iði�=2Þ þ qÞ

þ i��3=2� (7.31)

which satisfies

� �00 þ 2�j�j2 ¼ �2iq��0 þ �2ð�3P ði�=2Þ � q2Þ�:
(7.32)

Identifying the terms with the NLSE equation we deduce
q ¼ �3

2��4
, and � must satisfy

�2 ¼
�
� �2

2�4

�
1� �2

3

4�2�4

���
2

�3P ði�=2Þ
�
: (7.33)

Note that ð�P ði�=2ÞÞ � 0. Thus, this inhomogeneous
crystal condensate only makes sense in regions of the

ðT;�Þ plane where ð� �2

�4
½1� �2

3

4�2�4
�Þ � 0.

Now evaluating the averaged potential on this solution,
we find

h�icrystalGL ¼ �0 þ
�
� �2

2

4�4

�
1� �2

3

4�2�4

�
2
�

�
�
4

9

�
1þ �2 � �þ 1

9P ði�=2Þ2 þ 2

P ði�=2Þ
�

K

��

� �0 þ
�
� �2

2

4�4

�
1� �2

3

4�2�4

�
2
�
Fð�; �Þ (7.34)

which should be compared with the corresponding GN2

expression (7.16). (Indeed, setting � ¼ 2K0, and �3 ¼ 0,
we recover theGN2 formulas). We note that 0 � Fð�; �Þ �
1. We now compare the averaged potential for the crystal
with that obtained from a spiral ansatz:

�spiral ¼ �e2iqx: (7.35)

With this spiral ansatz we find

h�ispiralGL ¼ �0 þ �2�2 � 2q�2�3 þ ð�4 þ 4q2�2Þ�4:

(7.36)

Minimizing with respect to q we find q ¼ �3=�4, and
further minimizing with respect to �2 we find

�2 ¼
�
� �2

2�4

�
1� �2

3

4�2�4

��
(7.37)

which should be compared with (7.33). Furthermore, eval-
uating the averaged potential on this spiral condensate we
find

h�ispiralGL ¼ �0 þ
�
� �2

2

4�4

�
1� �2

3

4�2�4

�
2
�

(7.38)

which should be compared with (7.34).
Now we combine this expression with the positivity

condition on �2 in (7.12) to obtain the phase diagram in
Fig. 13. Just as in the GN2 case, here in the NJL2 model, by
going one step beyond the first nontrivial order of the GL
expansion (i.e., one step beyond the order that defines the
tricritical point) we see the appearance of a crystalline
phase in the phase diagram, in the region near the tricritical
point. For the NJL2 model, the condensate of this crystal-
line phase, derived from this GL approach to this order, has
the form of the chiral spiral after minimization of the grand
potential. This Ginzburg-Landau analysis confirms once
again that the chiral spiral is the thermodynamically pre-

FIG. 13 (color online). The phase diagram of the NJL2 model,
based on a Ginzburg-Landau expansion to Oð�4Þ. The (red)
shaded region is the region in which the spiral condensate
(4.1) has a lower grand potential. In the remaining regions the
massless condensate � ¼ 0 is preferred.
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ferred form of the inhomogeneous condensate, in the ap-
plicable part of the phase diagram. The pattern is fairly
clear: going to higher orders of the GL expansion, the
crystalline region grows, and eventually covers the entire
region given by the exact numerics, as shown in Fig. 5.

VII. CONCLUSIONS

We have used the exact crystalline solutions to the
inhomogeneous gap equation of the NJL2 model, found
in [13,14], to probe the thermodynamic phase diagram of
the NJL2 and GN2 models at finite density and tempera-
ture. Using a combination of exact, numerical and
Ginzburg-Landau approaches, we have shown that for the
NJL2 model the thermodynamically preferred condensate
in the region T < Tc is the helical chiral spiral of [15]. The
same methods have been applied to the GN2 model, con-
firming previous numerical results [16]. A key new idea in
our analysis is the exploitation of the behavior of the grand
potential under the rescaling and phase rotation transfor-
mations (3.1), which affect the renormalized grand poten-
tial as in (3.16). This observation greatly facilitates the
minimization of the renormalized grand potential with
respect to the parameters � and q. We are also able to trace
in a very explicit manner the consequences for the phase
diagram of the fact that theGN2 model has a discrete chiral

symmetry, while the NJL2 model has a continuous chiral
symmetry. These one dimensional models are somewhat
special, due to the rich integrability structure underlying
their gap equation. So, we studied these models also using
the Ginzburg-Landau approach, which does not neces-
sarily rely on this integrability structure. We found that
in both the NJL2 and GN2 models the crystalline region
appears at the order of the Ginzburg-Landau expansion one
step beyond the first nontrivial order, which is used to
identify the relevant tricritical point. It would be interesting
to study this point systematically in higher dimensional
models, where the search for crystalline phases is consid-
erably more difficult [21,35–37]. It would also be interest-
ing to study theNJL2 system on the lattice, complementing
the GN2 work of [17,18], and the recent Monte Carlo
formulations in [38–40]. Other interesting effects include
the study of an isospin chemical potential [41], and going
beyond the leading large N approximation [42].
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