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In this paper we investigate the nature of the transition from Abelian to non-Abelian confinement (i.e.

crossover vs phase transition). To this end we consider the basic N ¼ 2 model where non-Abelian flux

tubes (strings) were first found: supersymmetric QCD with the UðNÞ gauge group and Nf ¼ N flavors of

fundamental matter (quarks). The Fayet-Iliopoulos term � triggers the squark condensation and leads to

the formation of non-Abelian strings. There are two adjustable parameters in this model: � and the quark

mass difference �m. We obtain the phase diagram on the ð�;�mÞ plane. At large � and small �m the

world-sheet dynamics of the string orientational moduli is described by the N ¼ 2 two-dimensional

CPðN � 1Þ model. We show that as we reduce � the theory exhibits a crossover to the Abelian (Seiberg-

Witten) regime. Instead of N2 degrees of freedom of non-Abelian theory, now only N degrees of freedom

survive in the low-energy spectrum. Dyons with certain quantum numbers condense, leading to the

formation of the Abelian ZN strings whose fluxes are fixed inside the Cartan subalgebra of the gauge

group. As we increase N this crossover grows exceedingly sharper, becoming a genuine phase transition at

N ¼ 1.
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I. INTRODUCTION

Transition from Abelian to non-Abelian confinement
emerged as a central question in the current explorations
of Yang-Mills theories. By Abelian confinement we mean
that only those gauge bosons that lie in the Cartan sub-
algebra are dynamically important in the infrared, i.e. at
distances of the order of the flux tube (string) size. By non-
Abelian confinement we mean such a dynamical regime in
which at distances of the flux tube formation all gauge
bosons are equally important. In supersymmetric N ¼ 2
Yang-Mills theories slightly deformed by a �Tr�2 term,
linear confinement was discovered [1], explained by the
dual Meissner effect. In the limit of small � amenable to
analytic studies [1], confinement is Abelian. It is believed
that as � gets large, � * �, a smooth transition to non-
Abelian confinement takes place in the Seiberg-Witten
model.

In nonsupersymmetric theories a similar-purpose con-
struction, with an adjustable parameter, was engineered in
[2] (see also [3]), where Yang-Mills theories on R3 � S1
were considered. The radius of the compact dimension
rðS1Þ was treated as a free parameter. At small rðS1Þ, after
a center-symmetric stabilization, linear Abelian confine-
ment sets in by virtue of the Polyakov mechanism [4].
Then it was argued that the transition from the
small-rðS1Þ Abelian confinement regime to the decompac-
tification limit of large r, rðS1Þ � ��1, where confinement
is non-Abelian, is smooth. No obvious order parameter that
could discontinuously change in passing from small to
large rðS1Þ was detected.

This paper presents our new results on this issue. The
nature of the transition from the Abelian to non-Abelian

regime—i.e. phase transition vs crossover—appears to be
nonuniversal. If there is a discrete symmetry on the string
world sheet and the mode of realization of this symmetry
changes in passing from the Abelian to non-Abelian re-
gime, then these two domains are separated by a phase
transition. A particular nonsupersymmetric example [5,6]
of such a situation will be discussed in the bulk of the
paper.
On the other hand, if the mode of realization of the

discrete symmetry does not change, or there is no appro-
priate symmetry whatsoever, then the Abelian confinement
is separated from the non-Abelian one by a crossover
rather than a phase transition. In this paper we focus on
N ¼ 2 Yang-Mills theory with the gauge group UðNÞ and
Nf ¼ N flavors. To simplify our discussion we mostly

consider the N ¼ 2 case of U(2) theory with two flavors.
We will show that this model belongs to the second class,
with smooth transitions of the crossover type. Although
there is no phase transition, we find that both perturbative
and nonperturbative low-energy spectra of the theory are
drastically changed when we pass from the Abelian to the
non-Abelian regime.
The benchmark model we will deal with—the U(2)

theory with Nf ¼ 2 (s)quark multiplets—is described in

detail in the review paper [7]. It is worth recalling that the
model is characterized by two adjustable parameters: the
coefficient of the Fayet-Iliopoulos (FI) term � and the
difference �m of the mass terms of the first and second
flavors. If � � �2, where � is the dynamical scale of the
gauge theory at hand, the theory is at weak coupling and
can be exhaustively analyzed using quasiclassical meth-
ods. The domain of large j�mj is that of the Abelian
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confinement. At small j�mj confinement is non-Abelian. A
discrete Z2 symmetry inherent to the Lagrangian of the
world-sheet theory is spontaneously broken in both limits,
albeit the order parameters are different. Thus we expect
(and, in fact, demonstrate) a crossover in j�mj.

The domain of small � was not considered previously in
the context of the problem we pose. Our task is to take it
into consideration. Various regimes of the theory in the
ð�;�mÞ plane are schematically shown in Fig. 1. We
choose �m real, which is always possible to achieve by
an appropriate U(1) rotation. The vertical axis in this figure
denotes the values of the FI parameter �, while the hori-
zontal axis represents the quark mass difference.

As was mentioned, domain I is that of non-Abelian
confinement. In this domain the perturbative spectrum of
the bulk theory has N2 light states.1 In the limit of degen-
erate quark masses the bulk theory has an unbroken global
SUð2ÞCþF symmetry (the so-called color-flavor locking;
see Sec. II), and the light states come in adjoint and singlet
representations of this group. The nonperturbative spec-
trum contains mesons built from monopole-antimonopole
pairs connected by two strings [7]. These strings are non-
Abelian [8–11] (see also the reviews [7,12–14]). The non-
Abelian SU(2) part of their fluxes is determined by moduli
parameters, whose dynamics is described by N ¼ 2
supersymmetric CPð1Þ on the string world sheet. Because
of large quantum fluctuations in the CPð1Þ model, the
average non-Abelian flux of such a string vanishes.

Domain II is that of Abelian confinement at weak cou-
pling. As we increase �m, the W bosons and their super-
partners become heavy and decouple from the low-energy
spectrum. We are left with two photon states and their
quark N ¼ 2 superpartners. Strings also become
Abelian Z2 strings. The moduli of the CPð1Þ model at
large �m are fixed in two definite directions—the north
and south poles of the S2 sphere [the target space of the
CPð1Þ sigma model is S2]. The non-Abelian parts of their
fluxes no longer vanish.

As we reduce � and j�mj we enter domain III. It is
nothing but the Abelian Seiberg-Witten confinement
[1,15]. The W bosons and their superpartners decay on
the curves of marginal stability (CMS). The set of light
states includes photons and dyons with certain quantum
numbers (the quarks we started with become dyons due to
monodromies as we reduce j�mj). Condensation of dyons
leads to the formation of Abelian Z2 strings. The non-
perturbative spectrum still contains mesons built of
monopole-antimonopole pairs connected by two distinct
Z2 strings. However, now these strings are different from
those in domain I. They have nonvanishing fluxes directed
in the Cartan subalgebra of SU(2).

These three regimes are separated by crossover transi-
tions. Thus, non-Abelian strings can smoothly evolve into
Abelian ones and vice versa. This is our main finding.
If, instead of the benchmark U(2) model we considered

its UðNÞ generalization, we would see that, as we increase
the number of colors N, these crossovers become exceed-
ingly sharper and transform into genuine phase transitions
in the limit N ! 1. The width of the crossover domain
scales as 1=N. At finite N there is no discontinuity in
physical observables (and no change in the breaking pat-
tern of relevant global symmetries) along the dashed lines
in Fig. 1. Still, both the perturbative spectrum and confin-
ing strings are dramatically different in regimes I, II, and
III. In particular, if we keep the quark mass difference
�m ¼ 0 and reduce the FI parameter �, we pass from
the regime with non-Abelian strings and non-Abelian
monopole confinement to the regime with Abelian strings
and Abelian confinement. The low-energy spectrum of the
theory in, say, domain I is not mapped onto that in
domain III.
The paper is organized as follows. In Sec. II we describe

our bulk theory at large �. In Sec. III we make some
preliminary remarks on the behavior of the theory at small
�. In Sec. IV we briefly review non-Abelian strings and
discuss the order parameter which can separate a non-
Abelian string from an Abelian one. In Sec. V we describe
our theory in domain III, while in Sec. VI we consider the
limit N ! 1. Section VII summarizes our findings. In the
Appendix we present in more detail the CPðN � 1Þ model
with twisted masses and Z2N global symmetry.

II. THE BULK THEORY: LARGE VALUES OF THE
FI PARAMETER

In this section, for convenience of the reader, we will
briefly outline some basic features of the N ¼ 2 bulk
theory we will work with. Since these features are general,
we will assume the gauge group to be UðNÞ, and only later
we will set N ¼ 2.
We introduce N flavors (each of which is described by

two N ¼ 1 superfields, Q and ~Q). The field content is as

I

III

II

∆ m

ξ

Λ

2
Λ

FIG. 1. Various regimes in the benchmark N ¼ 2 model are
separated by crossovers.

1By light we mean those states whose masses are less than or
of the order of the inverse size of the string.
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follows. The N ¼ 2 vector multiplet consists of the U(1)
gauge field A� and the SUðNÞ gauge field Aa

�, where a ¼
1; . . . ; N2 � 1, and their Weyl fermion superpartners plus
complex scalar fields a, and aa. The latter are in the adjoint
representation of SUðNÞ.

The quark multiplets of the SUðNÞ � Uð1Þ theory con-
sist of the complex scalar fields qkA and ~qAk (squarks) and
their fermion superpartners, all in the fundamental repre-
sentation of the SUðNÞ gauge group. Here k ¼ 1; . . . ; N is
the color index while A is the flavor index, A ¼ 1; . . . ; N.
Note that the scalars qkA and �~qkA form a doublet under the
action of the global SUð2ÞR group.

The bosonic part of the bulk theory has the form [9] (see
also the review paper [7])

S ¼
Z

d4x

�
1

4g22
ðFa

��Þ2 þ 1

4g21
ðF��Þ2 þ 1

g22
jD�a

aj2

þ 1

g21
j@�aj2 þ jr�q

Aj2 þ jr�
�~qAj2

þ VðqA; ~qA; aa; aÞ
�
: (2.1)

Here D� is the covariant derivative in the adjoint repre-

sentation of SUðNÞ, while

r� ¼ @� � i

2
A� � iAa

�T
a: (2.2)

We suppress the color SUðNÞ indices. The normalization of
the SUðNÞ generators Ta is as follows:

Tr ðTaTbÞ ¼ 1
2�

ab:

The coupling constants g1 and g2 correspond to the U(1)
and SUðNÞ sectors, respectively. With our conventions, the
U(1) charges of the fundamental matter fields are �1=2.

The potential VðqA; ~qA; aa; aÞ in the action (2.1) is the
sum of D and F terms,

VðqA; ~qA; aa; aÞ ¼ g22
2

�
1

g22
fabc �abac þ �qAT

aqA � ~qAT
a �~qA

�
2

þ g21
8
ð �qAqA � ~qA �~q

A � N�Þ2

þ 2g2j~qATaqAj2 þ g21
2
j~qAqAj2

þ 1

2

XN
A¼1

fjðaþ ffiffiffi
2

p
mA þ 2TaaaÞqAj2

þ jðaþ ffiffiffi
2

p
mA þ 2TaaaÞ �~qAj2g: (2.3)

Here fabc denote the structure constants of the SUðNÞ
group, mA is the mass term of the Ath flavor, and the sum
over the repeated flavor indices A is implied.

We introduced the FI D term for the U(1) gauge factor
with the FI parameter �.

Now we briefly review the vacuum structure and the
excitation spectrum in the bulk theory. The vacua of the

theory (2.1) are determined by the zeros of the potential
(2.3). The adjoint fields develop the following vacuum
expectation values (VEVs):

��
1

2
aþ Taaa

��
¼ � 1ffiffiffi

2
p

m1 . . . 0
. . . . . . . . .
0 . . . mN

0
@

1
A: (2.4)

For generic values of the quark masses, the SUðNÞ sub-
group of the gauge group is broken down to Uð1ÞN�1.
However, in the special limit

m1 ¼ m2 ¼ . . . ¼ mN; (2.5)

the SUðNÞ � Uð1Þ gauge group remains unbroken by the
adjoint field. In this limit the theory acquires the global
flavor SUðNÞ symmetry.
We can exploit gauge rotations to make all squark VEVs

real. Then, in the case at hand, they take the color-flavor-
locked form

hqkAi ¼ ffiffiffi
�

p 1 . . . 0
. . . . . . . . .
0 . . . 1

0
@

1
A; h �~qkAi ¼ 0;

k ¼ 1; . . . ; N A ¼ 1; . . . ; N;

(2.6)

where we write down the quark fields as an N � N matrix
in the color and flavor indices. This particular form of the
squark condensates is dictated by the first and second lines
in Eq. (2.3). Note that the squark fields stabilize at non-
vanishing values entirely due to the U(1) factor represented
by the second line.
The vacuum field (2.6) results in the spontaneous break-

ing of both gauge and flavor SUðNÞ symmetries. A diago-
nal global SUðNÞCþF survives, however,

U ðNÞgauge � SUðNÞflavor ! SUðNÞCþF: (2.7)

Thus, a color-flavor locking takes place in the vacuum. The
presence of the global SUðNÞCþF group is a key reason for
the formation of non-Abelian strings. For generic quark
masses the global symmetry (2.7) is broken down to

Uð1ÞðN�1Þ.
Let us move on to the issue of the excitation spectrum in

this vacuum [9,16]. The mass matrix for the gauge fields
ðAa

�; A�Þ can be read off from the quark kinetic terms in

(2.1). It shows that all SUðNÞ gauge bosons become mas-
sive, with one and the same mass

mW ¼ g2
ffiffiffi
�

p
: (2.8)

The equality of the masses is no accident. It is a conse-
quence of the unbroken SUðNÞCþF symmetry (2.7). The
mass of the U(1) gauge boson is

m� ¼ g1

ffiffiffiffiffiffiffiffi
N

2
�

s
: (2.9)

Thus, the bulk theory is fully Higgsed. The mass spectrum
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of the adjoint scalar excitations is the same as the one for
the gauge bosons. This is enforced by N ¼ 2.

The mass spectrum of the quark excitations can be read
off from the potential (2.3). We have 4N2 real degrees of
freedom of quark scalars q and ~q. Out of those, N2 are
eaten up by the Higgs mechanism. The remaining 3N2

states split into three plus 3ðN2 � 1Þ states with masses
(2.9) and (2.8), respectively. Combining these states with
the massive gauge bosons and the adjoint scalar states, we
get [9,16] one long N ¼ 2 Bogomol’nyi-Prasad-
Sommerfield (BPS) multiplet (eight real bosonic plus eight
fermionic degrees of freedom) with mass (2.9) and N2 � 1
long N ¼ 2 BPS multiplets with mass (2.8). Note that
these supermultiplets come in representations of the un-
broken SUðNÞCþF group, namely, the singlet and adjoint
representations.

Now let us have a closer look at quantum effects in the
theory (2.1). The SUðNÞ sector is asymptotically free. The
running of the corresponding gauge coupling, if not inter-
rupted, would drag the theory into the strong-coupling
regime. This would invalidate our quasiclassical analysis.
Moreover, strong-coupling effects on the Coulomb branch
would break the SUðNÞ gauge subgroup down to Uð1ÞN�1

by virtue of the Seiberg-Witten mechanism [1]. No non-
Abelian strings would emerge.

The semiclassical analysis above is valid if the FI pa-
rameter � is large,

� � �; (2.10)

where � is the scale of the SUðNÞ gauge theory. This
condition ensures weak coupling in the SUðNÞ sector be-
cause the SUðNÞ gauge coupling does not run below the
scale of the quark VEVs which is determined by �. More
explicitly,

8�2

g22ð�Þ
¼ N ln

ffiffiffi
�

p
�

� 1: (2.11)

III. TOWARDS SMALLER �

Below we will see that if we pass to small � along the
line �m ¼ 0, into the strong-coupling domain, where the
condition (2.10) is not met, the theory undergoes a cross-
over transition into the Seiberg-Witten Abelian confine-
ment regime. In this regime the low-energy perturbative
sector contains no nontrivial representations of the unbro-
ken SUðNÞCþF group. Moreover, no non-Abelian strings
develop.

The main tool which allows us to identify this crossover
transition is the presence of the global unbroken SUðNÞCþF

symmetry in the theory at hand. First, we note that it is not
spontaneously broken in the bulk. If it were broken this
would imply the presence of massless Goldstone states.
However, we showed above that the perturbative sector of
the theory at large � has a large mass gap of the order of
g2

ffiffiffi
�

p
, and masses of no states can be shifted to zero by

small quantum corrections of the order of�. Nor do we see
the adjoint multiplet of massless Goldstones at small �.
The presence of the global unbroken SUðNÞCþF sym-

metry means that all multiplets should come in represen-
tations of this group. We showed above that at large � this
is the case indeed: all light states come in adjoint and
singlet representations [ðN2 � 1Þ þ 1]. We will see later
that at small � (in the Seiberg-Witten regime) the low-
energy spectrum is very different. It contains only N states
which do not fill any nontrivial representations of
SUðNÞCþF. They are all singlets.
To elucidate the point let us note the following. All

ðN2 � 1Þ states of the adjoint gauge-boson multiplet of
SUðNÞCþF have degenerate masses (2.8) at large �. The
presence of the unbroken global SUðNÞCþF ensures that
they are not split. Imagine that these states were split with
small splittings of the order of�. Then in the limit of small
�, � � �, some of these states could, in principle, evolve
into ðN � 1Þ light Abelian states while other members of
the multiplet could acquire large masses, of the order of �
(i.e. the photons could become light, while the W bosons
could become heavy). We stress that this does not happen
in the theory at hand. The adjoint multiplet is not split at
large � and therefore can disappear from the low-energy
spectrum at small � only as a whole. Hence, the light
photons in the Seiberg-Witten regime at small � have
nothing to do with the diagonal (Cartan) entries of the
gauge adjoint SUðNÞCþF multiplet at large �. Similarly,
the light dyons in the Seiberg-Witten regime at small �
have nothing to do with the light quarks qkA, ~qAk of the
non-Abelian confinement regime at large �. The latter fill
the adjoint representation of SUðNÞCþF (see the discussion
above), while the former are singlets.
In order to see what happens with the low-energy spec-

trum of the bulk theory as we reduce �, we use the
following method. First we introduce quark mass differ-
ences ðmA �mBÞ and make them large, jmA �mBj � �.
Then we can reduce the parameter �, keeping the theory at
weak coupling and under control. Next, we reach the
Coulomb branch at zero � and use the exact solution of
the theory [1,15] to go back to the desired limit of degen-
erate quark masses (2.5). Thus, our routing is as follows:
domain I ! domain II ! domain III. In domain II the
global SUðNÞCþF is lost, and a level crossing occurs.
The program outlined above will be carried out in full in

Sec. V.
To conclude this section we briefly review the theory

(2.1) at nonzero quark mass differences ðmA �mBÞ � 0;
see [7,10]. At nonvanishing ðmA �mBÞ the global

SUðNÞCþF is explicitly broken down to Uð1ÞðN�1Þ. The
adjoint multiplet is split. The diagonal entries (photons
and their N ¼ 2 quark superpartners) have masses given
in (2.8), while the off-diagonal states (W bosons and
the off-diagonal entries of the quark matrix qkA) acquire
additional contributions to their masses proportional to
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ðmA �mBÞ. As we make the mass differences larger, theW
bosons become exceedingly heavier, decouple from the
low-energy spectrum, and we are left with N photon states
and N diagonal elements of the quark matrix. The low-
energy spectrum becomes Abelian.

IV. NON-ABELIAN STRINGS AT LARGE �

Here we will study the passage from domain I !
domain II. At first, we will briefly review non-Abelian
strings [8–11] in the theory (2.1); see [7] for details. The
Abelian ZN-string solutions break the SUðNÞCþF global
group. Therefore strings have orientational zero modes,
associated with rotations of their color flux inside the
non-Abelian SUðNÞ. This makes these strings non-
Abelian. The global group is broken by the ZN string
solution down to SUðN � 1Þ � Uð1Þ. Therefore the moduli
space of the non-Abelian string is described by the coset

SUðNÞ
SUðN � 1Þ � Uð1Þ � CPðN � 1Þ: (4.1)

The CPðN � 1Þ space can be parametrized by a complex
vector nl in the fundamental representation of SUðNÞ sub-
ject to the constraint

n�l n
l ¼ 1; (4.2)

where l ¼ 1; . . . ; N. As we will show below, one U(1)
phase will be gauged away in the effective sigma model.
This gives the correct number of degrees of freedom,
namely, 2ðN � 1Þ.

With this parametrization the elementary string solution
(with the lowest winding number) can be written as [5,10]

q ¼ 1

N
½ðN � 1Þ�2 þ�1� þ ð�1 ��2Þ

�
n 	 n� � 1

N

�
;

ASUðNÞ
i ¼

�
n 	 n� � 1

N

�
"ij

xi
r2

fNAðrÞ;

AUð1Þ
i ¼ 1

N
"ij

xi
r2

fðrÞ; �~qkA ¼ 0; (4.3)

where i ¼ 1, 2 labels coordinates in the plane orthogonal to
the string axis and r and � are the polar coordinates in this
plane. For brevity we suppress all SUðNÞ indices. The
profile functions �1ðrÞ and �2ðrÞ determine the profiles
of the scalar fields, while fNAðrÞ and fðrÞ determine the
SUðNÞ and U(1) gauge fields of the string solution, respec-
tively. These functions satisfy the first-order equations [9]
which can be solved numerically.

The tension of the elementary string is given by

T ¼ 2��: (4.4)

Making the moduli vector nl a slowly varying function
of the string world-sheet coordinates xk (k ¼ 0, 3), we can
derive the effective low-energy theory on the string world
sheet [5,9,10]. From the topological reasoning above [see
(4.1)] it is clear that we will get the two-dimensional

CPðN � 1Þ model. The N ¼ 2 supersymmetric CPðN �
1Þ model can be understood as a strong-coupling limit of a
U(1) gauge theory [17]. Then the bosonic part of the action
takes the form

SCPðN�1Þ ¼
Z

d2x

�
2	jrkn

‘j2 þ 1

4e2
F2
kl þ

1

e2
j@k
j2

þ 4	j
j2jn‘j2 þ 2e2	2ðjn‘j2 � 1Þ2
	
; (4.5)

where rk ¼ @k � iAk while 
 is a complex scalar field.
The condition (4.2) is implemented in the limit e2 ! 1.
Moreover, in this limit the gauge field Ak and its N ¼ 2
bosonic superpartner 
 become auxiliary and can be elim-
inated by virtue of the equations of motion,

Ak ¼ � i

2
n�‘@

$
kn

‘; 
 ¼ 0: (4.6)

The two-dimensional coupling constant 	 here is deter-
mined by the four-dimensional non-Abelian coupling via
the relation

	 ¼ 2�

g22
: (4.7)

The above relation between the four-dimensional and two-
dimensional coupling constants (4.7) is obtained at the
classical level [9,10]. In quantum theory both couplings
run. In particular, the CPðN � 1Þ model is asymptotically
free [18] and develops its own scale �
. The ultraviolet
cutoff of the sigma model on the string world sheet is
determined by g2

ffiffiffi
�

p
. Equation (4.7) relating the two- and

four-dimensional couplings is valid at this scale, implying

�N

 ¼ gN2 �

N=2e�ð8�2=g22Þ ¼ �N: (4.8)

Note that in the bulk theory per se, because of the VEVs
of the squark fields, the coupling constant is frozen at
g2

ffiffiffi
�

p
; there are no logarithms below this scale. The loga-

rithms of the string world-sheet theory take over.
Moreover, the dynamical scales of the bulk and world-
sheet theories turn out to be the same [10].
The CPðN � 1Þ model was solved by Witten in the

large-N limit [19]. We will briefly summarize Witten’s
results and translate them in terms of strings in four di-
mensions [10].
Classically, the field n‘ can have an arbitrary direction;

therefore, one might naively expect a spontaneous break-
ing of SUðNÞ and the occurrence of massless Goldstone
modes on the string world sheet. However, this cannot
happen in two dimensions. Quantum effects restore the
symmetry. Moreover, the condition (4.2) gets, in effect,
relaxed. Because of strong coupling we have more degrees
of freedom than in the original Lagrangian, namely, all N
fields n become dynamical and acquire masses �
.
Deep in the quantum non-Abelian regime the CPðN �

1Þ-model strings carry no average SUðNÞmagnetic flux. To
see that this is indeed the case, note that the SUðNÞ mag-
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netic flux of the non-Abelian string (4.3) is given by

Z
d2xðF�

3ÞSUðNÞ ¼ 2�

�
n 	 n� � 1

N

�
; (4.9)

where

F�
i ¼ 1

2"ijkFjk ði; j; k ¼ 1; 2; 3Þ: (4.10)

As was shown by Witten [19], in the CPðN � 1Þ model
strong quantum fluctuations of n‘ result in

hn‘i ¼ 0; (4.11)

implying, in turn, that the average SUðNÞ magnetic flux of
the non-Abelian string vanishes. We will use this circum-
stance later, to distinguish between large-� non-Abelian
and small-� Abelian ZN strings in the Seiberg-Witten
regime below the crossover. The latter do carry the mag-
netic flux directed inside the Cartan subalgebra of SUðNÞ.
The CPðN � 1Þ model has N vacua [19]. They are inter-
preted in the problem at hand as N different elementary
non-Abelian strings. These N vacua differ from each other
by the expectation value of the chiral bifermion operator;
see e.g. [20]. At strong coupling the chiral condensate is
the order parameter for ZN breaking (instead of the flux;
see the Appendix). The U(1) chiral symmetry of the
CPðN � 1Þ model is explicitly broken to a discrete Z2N

symmetry by the chiral anomaly (for a discussion of the
global symmetry on the string world sheet, see the
Appendix). The bifermion condensate breaks Z2N down
to Z2. That is the origin of the N-fold degeneracy of the
vacuum state.

Now, to make our consideration simpler wewill focus on
the simplest case N ¼ 2. For arbitrary N the emerging
dynamical pattern is similar. The solution for the non-
Abelian string (4.3) in the N ¼ 2 case takes the form

q ¼ 1

2
ð�1 þ�2Þ þ �a

2
Sað�1 ��2Þ; ~q ¼ 0;

Aa
i ðxÞ ¼ Sa"ij

xj

r2
fNAðrÞ; AiðxÞ ¼ "ij

xj

r2
fðrÞ;

(4.12)

where Sa (a ¼ 1, 2, 3) is a real moduli vector subject to the
constraint

ðSaÞ2 ¼ 1: (4.13)

Its relation to the complex vector n‘ is as follows:

Sa ¼ �n�an: (4.14)

We have CPð1Þ as the effective world-sheet theory. It is
equivalent to the O(3) sigma model. In terms of the real
vector Sa the bosonic part of the world-sheet theory has the
form

S ¼ 	
Z

d2x
1

2
ð@kSaÞ2: (4.15)

Now let us introduce quark mass differences ðmA �mBÞ.
In the N ¼ 2 case we have just one (generally speaking

complex) parameter

�m ¼ m1 �m2: (4.16)

The vacuum expectation values of the adjoint field reduce
to

ha3i ¼ ��mffiffiffi
2

p ; hai ¼ � ffiffiffi
2

p m1 þm2

2
; (4.17)

see (2.4). The non-Abelian string (4.12) is no longer a
solution of the first-order equations for arbitrary Sa. The
global SUð2ÞCþF is explicitly broken down to U(1) by
�m � 0. Nevertheless, if we keep �m small, we can
consider Sa as quasimoduli, with a shallow potential on
the CPð1Þ moduli space. The string solution (4.12) in this
case should be supplemented by a nontrivial profile for the
adjoint field [7,10],

aa ¼ ��mffiffiffi
2

p
�
�a3 �1

�2

þ SaS3
�
1��1

�2

��
: (4.18)

Plugging this modified string solution in the action of the
theory gives [7,10] the effective string world-sheet theory:
an N ¼ 2 CPð1Þ model with twisted mass [21]. The
bosonic part of the action is

SCPð1Þ ¼ 	
Z

d2x

�
1

2
ð@kSaÞ2 þ j�mj2

2
ð1� S23Þ

	
: (4.19)

This is the only functional form that allows N ¼ 2 com-
pletion. The mass-splitting parameter �m of the bulk
theory exactly coincides with the twisted mass of the
world-sheet model.
The CPð1Þ model (4.19) has two vacua located at Sa ¼

ð0; 0;�1Þ. Clearly, these two vacua correspond to two
elementary Z2 strings.
With nonvanishing �m we can introduce a gauge-

invariant quantity which measures the SU(2) non-Abelian
flux of the string. We define2

� ¼
Z

d2xaaF�a
3 : (4.20)

This order parameter will be used below to distinguish
between different regimes of the theory.
Substituting (4.18) and (4.19) into (4.20) we get

� ¼ �2�
�mffiffiffi
2

p S3: (4.21)

At small �m, �m � �
, the fields Sa strongly fluctuate
and hS3i ¼ 0 [see (4.11)]. Therefore,

h�iI ! 0 at �m � �
; (4.22)

where the subscript I refers to the non-Abelian domain at
large � and small �m, as it is indicated in Fig. 1.

2The subscript 3 indicates the direction along the string axis;
cf. Eq. (4.9).
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Instead, at large �m (�m � �
) the O(3) sigma model
(4.19) is at weak coupling. Fluctuations are small, and the
Sa acquires vacuum values at the north and south poles of
the S2 sphere, hSai ¼ ð0; 0;�1Þ. As a result

h�iII ! 
2�
�mffiffiffi
2

p ; (4.23)

where the subscript II marks domain II in Fig. 1.
We see that the behavior of the string flux � drastically

changes as we pass from the non-Abelian domain I of large
� and small �m to the Abelian domain II of large �m; see
Fig. 2. At large �m this theory is in the weak-coupling
regime and fluctuations are small, hS3i � �1, and the flux
� is given by (4.23). At small�m the world-sheet theory is
in the strong coupled quantum regime, fluctuations are
large, and the vector Sa is smeared over the whole sphere.
Therefore, hS3i � 0 and h�i � 0. The crossover between
these two regimes is at �m��
. Note that the drastic
change of behavior in the world-sheet CPð1Þ model is
correlated with the dynamics of the bulk theory.

In Sec. II we saw that the perturbative spectrum of the
bulk theory is different in these two domains: it is essen-
tially non-Abelian in domain I, while in domain II the W
bosons become exceedingly heavier and decouple from the
low-energy spectrum; we are left with N photons and their
superpartners, the diagonal elements of the quark matrix.
The pattern repeats itself at the nonperturbative level: the
non-Abelian strings evolve into the Abelian strings as we
increase j�mj.

Later we will see that the crossover becomes exceed-
ingly more pronounced as we increase the number of
colors N. In the limit N ! 1 the crossover evolves into
a genuine phase transition. Note also that in nonsupersym-
metric theories we do have a phase transition between the
phase with non-Abelian strings at small jmA �mBj and the
phase with Abelian strings at large jmA �mBj [6]. It is
related to the restoration of the broken discrete ZN sym-
metry at small jmA �mBj.3 In the supersymmetric theory

at hand the discrete ZN symmetry is always broken (by
VEVs of n‘ at large jmA �mBj or by the two-dimensional
bifermion condensates at small jmA �mBj; see the
Appendix). Therefore, in the supersymmetric case we
have a crossover rather than a phase transition.
To conclude this section, we briefly review the world-

sheet theory on the non-Abelian string for generic N. It is
described by the twisted-mass-deformed CPðN � 1Þ
model. It can be nicely written [22] as a strong-coupling
limit of a U(1) gauge theory. With twisted masses of the n‘

fields taken into account, the bosonic part of the action
(4.5) takes the form

S ¼
Z

d2x

�
2	jrkn

‘j2 þ 1

4e2
F2
kl þ

1

e2
j@k
j2

þ 4	










� ~m‘ffiffiffi
2

p










2jn‘j2 þ 2e2	2ðjn‘j2 � 1Þ2
	
; (4.24)

where

~m‘ ¼ m‘ �m; m � 1

N

X
‘

m‘; (4.25)

and the sum over ‘ in (4.24) is implied.

V. THE THEORY IN DOMAIN III

Now, we will consider the passage from domain II to
domain III. In order to study the theory in regime III (see
Fig. 1) we first assume the quark mass differences to be
large. Then the theory stays at weak coupling and we can
safely decrease the value of the FI parameter �. Next, we
use the exact Seiberg-Witten solution of the theory on the
Coulomb branch (at � ¼ 0) to pass from regime II to
regime III. To simplify our discussion, we will consider
here only the case N ¼ 2.

A. The r ¼ 2 quark vacuum

Our first task is to identify the r ¼ 2 quark vacuum
(which we described semiclassically above) using the ex-
act Seiberg-Witten solution [1,15].4 The Seiberg-Witten
curve for the U(2) gauge theory with Nf ¼ 2 flavors has

the form

y2 ¼ ðx��1Þ2ðx��2Þ2 � 4�2

�
xþ m1ffiffiffi

2
p

��
xþ m2ffiffiffi

2
p

�
;

(5.1)

where �1 and �2 are gauge-invariant parameters on the
Coulomb branch.

Λ

Φ

∆ m

I

II

FIG. 2. Flux (4.20) as a function of �m in domains I and II.

3At N > 2 the above discrete symmetry of the Lagrangian
takes place under a special choice of the mass parameters; see
the Appendix.

4This solution was obtained by Seiberg and Witten in the SU
(2) gauge theories. Generalizations to SUðNÞ were obtained in
[23–26].
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Semiclassically,

�1 � a1 � 1
2ðaþ a3Þ; �2 � a2 � 1

2ða� a3Þ: (5.2)

Let us make a shift in the variable x introducing a new
variable z,

x ¼ � mffiffiffi
2

p þ z; m ¼ 1

2
ðm1 þm2Þ: (5.3)

With �m � � we identify the r ¼ 2 singularity, the
point where both quarks q11 and q22 become massless.
Upon switching on � � 0, this r ¼ 2 singularity turns
into the r ¼ 2 vacuum we considered in the semiclassical
approximation in the previous sections.

It turns out that in the r ¼ 2 vacuum

�1 þ�2 ¼ �2
mffiffiffi
2

p : (5.4)

We parametrize the deviations of �1 and �2 from their
mean value � mffiffi

2
p by a new parameter �,

�1 ¼ � mffiffiffi
2

p þ�; �2 ¼ � mffiffiffi
2

p ��: (5.5)

With this parametrization the curve (5.1) reduces to5

y2 ¼ ðz��Þ2ðzþ�Þ2 � 4�2

�
zþ �m

2
ffiffiffi
2

p
��
z� �m

2
ffiffiffi
2

p
�

¼ ðz2 ��2Þ2 � 4�2

�
z2 ��m2

8

�
: (5.6)

Next, we look for the values of the parameter � which
ensure that this curve has two double roots associated with
two quarks being massless. This curve is a perfect square,

y2 ¼
�
z2 � 1

4

�
�m2

2
þ 4�2

��
2
; (5.7)

(see [22]) at

� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

2
� 4�2

s
: (5.8)

In fact, there are two solutions with plus and minus signs in
front of the square root above. They correspond to �1 and
�2, namely,

�1 ¼ � mffiffiffi
2

p � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

2
� 4�2

s
;

�2 ¼ � mffiffiffi
2

p þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

2
� 4�2

s
:

(5.9)

In the semiclassical limit �m � � these solutions reduce
to

�1 � �m1ffiffiffi
2

p ; �2 � �m2ffiffiffi
2

p ; (5.10)

which coincides with Eq. (2.4). This means that we cor-
rectly identified the r ¼ 2 quark vacuum where two
quarks, q11 and q22, are massless; see Sec. II.
Two double roots of the curve in the quark vacuum are

e1 ¼ e2 ¼ � mffiffiffi
2

p � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

2
þ 4�2

s
;

e3 ¼ e4 ¼ � mffiffiffi
2

p þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

2
þ 4�2

s
:

(5.11)

The Seiberg-Witten exact solution of the theory relates
VEVs of the fields a, a3 and aD, a

3
D (which, in turn,

determine the spectrum of the BPS states on the
Coulomb branch) to certain integrals along � and 	 con-
tours in the x plane [1,15]. That is, the derivatives of the
VEVs of a1 and a2 are given by the following integrals
along the � contours:

@a1
@�1

¼ 1

2�i

Z
�1

dx
x��2

y
;

@a1
@�2

¼ 1

2�i

Z
�1

dx
x��1

y
;

@a2
@�1

¼ 1

2�i

Z
�2

dx
x��2

y
;

@a2
@�2

¼ 1

2�i

Z
�2

dx
x��1

y
;

(5.12)

while the derivatives of the aD’s are given by similar
integrals along the 	 contours.
The presence of two massless quarks q11 and q22 in the

r ¼ 2 vacuum at �m � � implies

a1 þ m1ffiffiffi
2

p ¼ 0; a2 þ m2ffiffiffi
2

p ¼ 0: (5.13)

Thus, the fields a1, a2 are regular at the singularity while
the fields aD have logarithmic divergences related to the 	
functions of the low-energy Uð1Þ � Uð1Þ theory. This en-
sures that the �1 contour should go around the roots e1, e2,
while the �2 contour should go around the roots e3, e4. In
the r ¼ 2 vacuum (5.11) both contours shrink and produce
regular a’s. The basis of the � and 	 contours is shown in
Fig. 3. Here we consider our U(2) theory as a two-flavor
SU(3) gauge theory broken down to U(2) at a very high
scale. In terms of the Seiberg-Witten curve this corre-
sponds to two extra roots of the SU(3) curve being far
away from four roots of the U(2) curve (5.1).
As a double-check of our identification of the quark

vacuum, let us calculate the derivatives (5.12) in the semi-
classical approximation �m � �. Substituting (5.7) into
(5.12) we get, at �m � �,5�m2 is shorthand for ð�mÞ2.
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@a1
@�1

� 1;
@a1
@�2

� 0;
@a2
@�1

� 0;
@a2
@�2

� 1:

(5.14)

This is in accordance with (5.2) and confirms our choice of
the � contours in Fig. 3.

To conclude this subsection we note that the monopole
singularity [the point on the Coulomb branch where the SU
(2) monopole becomes massless, a3D ¼ 0] corresponds to
the shrinking of the ð	1 � 	2Þ contour, i.e., to e1 ¼ e3.

B. Monodromies

Let us study how the quantum numbers of massless
quarks q11 and q22 change as we reduce j�mj and go
from domain II into domain III where the theory is at
strong coupling. The quantum numbers change due to
monodromies with respect to �m. The complex plane of
�m has cuts, and when we cross these cuts, the a and aD
fields acquire monodromies and the quantum numbers of
states change accordingly. Monodromies with respect to
quark masses were studied in [27] in the theory with the
SU(2) gauge group using a monodromy matrix approach.

Here we will investigate the monodromies in the U(2)
theory with two quark flavors using a slightly different
approach, similar to that of Ref. [28]. If two roots of the
Seiberg-Witten curve coincide, the contour which goes
around these roots shrinks and produces a regular potential.
That is, as was discussed above, at �m � � we have two
double roots e1 ¼ e2 and e3 ¼ e4 in the r ¼ 2 vacuum.
Thus, two contours �1 and �2 shrink (see Fig. 3), and
potentials a1 and a2 are regular. This is associated with the
masslessness of the two quarks; see (5.13).

Instead, in the monopole singularity e1 ¼ e3; thus the
ð	1 � 	2Þ contour shrinks producing a regular a3D. This is

associated with the masslessness of the SU(2) monopole,
a3D ¼ 0 [1].
If we decrease j�mj and cross the cuts in the �m plane,

the root pairing in the given vacuum may change. This
would mean that a different combination of a and aD
becomes regular, implying a change of the quantum num-
bers of the massless states in the given vacuum. To see how
it works for our r ¼ 2 vacuum, we go to the Argyres-
Douglas (AD) point [29,30]. The AD point is a particular
value of the quark mass parameters where more mutually
nonlocal states become massless. In fact, we will study the
collision of the r ¼ 2 quark vacuum with the monopole
singularity. We approach the AD point from domain II at
large �m. We will show below that as we pass through the
AD point the root pairings change in the r ¼ 2 vacuum,
implying a change of the quantum numbers of the massless
states. Two massless quarks transform into two massless
dyons.
To be more precise, we collide the r ¼ 2 vacuum with

two massless quarks with the quantum numbers

ðne; nm;n3e; n3mÞ ¼ ð1=2; 0; 1=2; 0Þ;
ðne; nm; n3e; n3mÞ ¼ ð1=2; 0;�1=2; 0Þ (5.15)

with the monopole singularity

ðne; nm;n3e; n3mÞ ¼ ð0; 0; 0; 1Þ (5.16)

where the monopole becomes massless. Here ne and nm
denote electric and magnetic charges of a state with respect
to the U(1) gauge group, while n3e and n

3
m stand for electric

and magnetic charges with respect to the Cartan generator
of the SU(2) gauge group [broken down to U(1) by �m].
As was already mentioned, the ð0; 0; 0; 1Þ monopole is

massless if e1 ¼ e3. Equation (5.11) shows that this can
happen in the r ¼ 2 vacuum only if all four roots of the
U(2) curve coincide at

�m2 ¼ �8�2; e1 ¼ e2 ¼ e3 ¼ e4 ¼ � mffiffiffi
2

p : (5.17)

This is the position of the AD point where both the quarks
and the SU(2) monopole become simultaneously massless.
In order to see how the root pairings in the r ¼ 2 vacuum

change as we decrease j�mj and pass from domain II into
domain III through the AD point (5.17), we have to slightly
split the roots by shifting � from its r ¼ 2 solution (5.8).
Let us take

�2 ¼ 1

4

�
�m2

2
� 4�2

�
þ 1

4�2
�2; (5.18)

where � is a small deviation. Then the curve (5.1) can be
approximately (at small �) written as

y2 �
�
z2 � 1

4

�
�m2

2
þ 4�2

��
2 � �2: (5.19)

Now all four roots split as follows:

e e

e

α
α

β β

1
2

2
1

3

4

1
β − β

2

1

e
2

FIG. 3. Basis of the � and 	 contours of our U(2) gauge theory
viewed as an SU(3) theory broken down to U(2). Two extra roots
of the SU(3) theory are far away in the x plane.

CROSSOVER BETWEEN ABELIAN AND NON-ABELIAN . . . PHYSICAL REVIEW D 79, 105006 (2009)

105006-9



e1 ¼ � mffiffiffi
2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �

q
; e2 ¼ � mffiffiffi

2
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �

q
;

e3 ¼ � mffiffiffi
2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �

q
; e4 ¼ � mffiffiffi

2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �

q
;

(5.20)

where we introduced the shorthand notation

� � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

2
þ 4�2

s
: (5.21)

This parameter vanishes at the AD point.
In order to pass through the AD point from domain II

into domain III, we decrease j�mj, keeping �m pure
imaginary,

�m ¼ j�mjeið�=2Þ: (5.22)

Then � goes along the imaginary axis towards the origin
(which is the AD point), and below the AD point it in-
creases along the positive axis. We also fix the parameter �

to be imaginary too, � ¼ j�jeið�=2Þ. This is convenient as
all four roots stay split at any j�mj.

As we decrease j�mj the roots (5.20) move as shown in
Fig. 4. We see that the root pairings in the r ¼ 2 vacuum
change. Namely, at large j�mj we have (at � ¼ 0)

e1 ¼ e2; e3 ¼ e4; (5.23)

which, as was explained above, corresponds to the shrink-
ing of the �1 and �2 contours and the masslessness of two
quarks (5.15). Below the AD point at small j�mj, we have

e2 ¼ e3; e1 ¼ e4; (5.24)

which corresponds to the shrinking of the contours

	1 � 	2 þ �1 ! 0; �	1 þ 	2 þ �2 ! 0: (5.25)

This means that massless quarks in the r ¼ 2 vacuum
transform into massless dyonsD1 andD2 with the quantum
numbers

D1: ð1=2; 0; 1=2; 1Þ; D2: ð1=2; 0;�1=2;�1Þ: (5.26)

We see that the quantum numbers of the massless quarks
in the r ¼ 2 vacuum after the collision with the monopole
singularity get shifted, the shift being equal to � (mono-
pole magnetic charge).
The monodromy discussed above implies

a1 ! a1 þ a3D; a2 ! a2 � a3D; a3 ! a3 þ 2a3D:

(5.27)

Therefore, the conditions (5.13) for the masslessness of the
q11 and q22 quarks are replaced in domain III by the
conditions of the masslessness of the dyons D1 and D2,
namely,

a1 þ a3D þ m1ffiffiffi
2

p ¼ 0; a2 � a3D þ m2ffiffiffi
2

p ¼ 0: (5.28)

C. The low-energy theory

In this subsection we present the low-energy theory in
the r ¼ 2 vacuum in domain III at small � and small j�mj
(below the AD point). It should be stressed that none of the
fields in this low-energy theory belong to nontrivial repre-
sentations of SUð2ÞCþF.
As we already know, the massless quarks q11 and q22

transform into the massless dyons D1 and D2. The latter
interact with two photons. According to the dyon quantum
numbers (5.26), one of these photons is

A�; (5.29)

while the other photon is the following linear combination:

B� ¼ 1ffiffiffi
5

p ðA3
� þ 2A3D

� Þ: (5.30)

In fact, these are the only light states to be included in
the low-energy effective theory in domain III. All other
states are either heavy (with masses of the order of �) or
decay on curves of marginal stability. In the case at hand,
the CMS is located around the origin in the �m complex
plane and goes through the AD point [31]. In fact, the W
bosons of the underlying non-Abelian gauge theory, as
well as the off-diagonal states of the quark matrix qkA,
decay on the CMS. Let us illustrate this statement, say, for
the W bosons. To this end we can go to the AD point. At
this point we have for the W-boson mass

mW ¼ ffiffiffi
2

p ja3j ¼ ffiffiffi
2

p jða3 þ a3DÞ � a3Dj
¼ ffiffiffi

2
p ðja3 þ a3Dj þ ja3DjÞ ¼ mM þmD; (5.31)

where mM and mD are the masses of the SU(2) monopole
and SU(2) dyon with charges ð0; 0; 0; 1Þ and ð0; 0; 1; 1Þ,
respectively. This relation is valid at the AD point just

e e

e e

e

e

e

e

2

2 1

1

4

43

3

FIG. 4. As we decrease j�mj (keeping �m imaginary) and
pass through the AD point, the roots e1;2;3;4 move in the x plane.
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because the monopole becomes massless at this point,
a3D ¼ 0. This means that the W boson decays into the
SU(2) monopole and dyon at this point and is not present
in domain III, in full accordance with the analysis of the
SU(2) theory in [27].

Taking this into account we write the effective low-
energy action of the theory in domain III as follows:

SIII ¼
Z

d4x

�
1

4~g22
ðFB

��Þ2 þ 1

4g21
ðF��Þ2 þ 1

~g22
j@�bj2

þ 1

g21
j@�aj2 þ jr1

�D1j2 þ jr1
�
~D1j2 þ jr2

�D2j2

þ jr2
�
~D2j2 þ VðD; ~D; b; aÞ

�
; (5.32)

where

b ¼ 1ffiffiffi
5

p ða3 þ 2a3DÞ (5.33)

is the scalar N ¼ 2 superpartner of the photon (5.30)
while FB

�� is the field strength of the U(1) gauge field

B�. Covariant derivatives are defined in accordance with

the charges of the dyons D1 and D2. Namely,

r1
� ¼ @� � i

�
1

2
A� þ 1

2
A3
� þ A3D

�

�

¼ @� � i

2
ðA� þ ffiffiffi

5
p

B�Þ;

r2
� ¼ @� � i

�
1

2
A� � 1

2
A3
� � A3D

�

�

¼ @� � i

2
ðA� � ffiffiffi

5
p

B�Þ:

(5.34)

The coupling constants g1 and ~g2 correspond to two U(1)
gauge groups. The potential VðD; ~D; b; aÞ in the action
(5.32) is

VðD; ~D;b;aÞ¼ 5~g22
8

ðjD1j2�j ~D1j2�jD2j2þj ~D2j2Þ2

þg21
8
ðjD1j2�j ~D1j2þjD2j2�j ~D2j2�2�Þ2

þ5~g22
2

j ~D1D1� ~D2D2j2þg21
2
j ~D1D1

þ ~D2D2j2þ1

2

�
jaþ ffiffiffi

5
p

bþ ffiffiffi
2

p
m1j2

�ðjD1j2þj ~D1j2Þþ ja� ffiffiffi
5

p
bþ ffiffiffi

2
p

m2j2

�ðjD2j2þj ~D2j2Þ
	
: (5.35)

Now we are ready to move to the desired limit of equal
quark masses, �m ¼ 0. In this limit the global SUð2ÞCþF

symmetry is restored in the underlying theory. The vacuum
of the theory (5.32) is located at the following values of
scalars a and b:

a ¼ � ffiffiffi
2

p
m;

ffiffiffi
5

p
b ¼ ��mffiffiffi

2
p ; (5.36)

while the VEVs of the dyons are determined by the FI
parameter �,

D1 ¼
ffiffiffi
�

p
; D2 ¼

ffiffiffi
�

p
; ~D1 ¼ ~D2 ¼ 0: (5.37)

Thus, the Uð1Þ � Uð1Þ gauge group is broken by dyon
condensation. Both photons and dyons become massive,
with masses proportional to

ffiffiffi
�

p
. In particular, at �m ¼ 0

the vacuum value of b vanishes.
Note also that the theory (5.32) is the Abelian Uð1Þ �

Uð1Þ gauge theory and hence is not asymptotically free. It
stays at weak coupling at small �.
The low-energy theory (5.32) does not seem to have any

global SU(2) symmetry. However, the underlying theory
does have a global SU(2) symmetry in the limit �m ¼ 0.
As was explained in Sec. II, this global SU(2) is not broken
in domain I at large �. This symmetry is realized in a color-
flavor-locked form in this domain [see Eq. (2.7)], and no
Goldstone bosons are present. We showed that no massless
states are present in domain III at nonzero � (and no light
states are present other than two dyons and two photons
discussed above); therefore, the global SU(2) cannot be
spontaneously broken in this domain either. The only way
out of this puzzle is to conclude that the SU(2) global
symmetry is realized trivially in the low-energy description
(5.32), i.e. that all states in (5.32) are singlets of the
unbroken flavor SU(2).
This means, as was already mentioned in Sec. III, that

the photon B� which appears in domain III has nothing to

do with the third component of the SU(2) gauge field Aa
� of

domain I. At �m ¼ 0 the former is a singlet of the global
SU(2), while the latter is a component of a triplet.6

Moreover, dyons D1 and D2 present in domain III have
nothing to do with diagonal entries of the quark matrix qkA

of domain I. Dyons are singlets while the quarks qkA form
the singlet and triplet states.
Since we have a crossover between domains I and III

rather than a phase transition, this means that in the full
theory triplets become heavy and decouple as we pass from
domain I into domain III along the line�m ¼ 0. Moreover,
some composite singlets which are heavy and invisible in
domain I become light in domain III and form dyons D1;2

and photon B� (level crossing). Although this crossover is

smooth in the full theory, from the standpoint of the low-
energy description the passage from domain I into
domain III means a dramatic change: the low-energy theo-
ries in these domains are completely different; in particu-
lar, the degrees of freedom in these theories are different
(non-Abelian in domain I vs Abelian in domain III).

6We reveal the physical nature of these triplets in [32]. They
are formed by monopole-antimonopole pairs connected by two
confining strings.
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D. Strings in domain III

It is obvious that the low-energy theory (5.32) has Z2

string solutions in the vacuum (5.36) and (5.37). That is, the
D1 dyon can have a winding at infinity. In this case the
string solution has the following behavior at r ! 1:

D1 � ei�
ffiffiffi
�

p
; D2 �

ffiffiffi
�

p
; Ai � @i�;

ffiffiffi
5

p
Bi � @i�;

(5.38)

where the indices i ¼ 1, 2 denote the plane orthogonal to
the string axis and r and � are polar coordinates in this
plane. Another elementary string can be obtained from the
one in (5.38) by the replacement D1 ! D2, D2 ! D1, and
Bi ! �Bi.

These Z2 elementary strings are BPS saturated. Their
tensions are given by the formula (4.4) in the same way as
the tensions of elementary strings in domains I and II.

The Z2 strings are Abelian (of the Abrikosov-Nielsen-
Olesen type [33]) in domain III. They do not have any
orientational moduli, in contrast with non-Abelian strings
in domain I.

Let us calculate the gauge-invariant non-Abelian flux
(4.20) for these strings. In the Abelian domain II at large
j�mj,

aaF�a
3 ! a3F�3

3 : (5.39)

With j�mj decreasing, as we pass through monodromies,
we get

a3 ! a3 þ 2a3D ¼ ffiffiffi
5

p
b; (5.40)

A3
� ! ffiffiffi

5
p

B�: (5.41)

Equation (5.41) follows from Eq. (5.40) by N ¼ 2 super-
symmetry. Therefore

�III ¼
Z

d2xð ffiffiffi
5

p
bÞð ffiffiffi

5
p

F�B
3 Þ: (5.42)

Equation (5.36) givesffiffiffi
5

p
b ¼ ��m=

ffiffiffi
2

p

in the r ¼ 2 vacuum, while the flux of the fieldB� of the Z2

strings can be read off from Eq. (5.38). In this way we
arrive at

h�iIII ! 
2�
�mffiffiffi
2

p : (5.43)

We see that the string flux in domain III is given by the
same formula as in domain II. This is a flux of the Abelian
string. The non-Abelian part of the flux is directed in the
Cartan subalgebra of the gauge group. No orientational
moduli appear. In contrast, in domain I the flux of the
non-Abelian string is proportional to the orientational vec-
tor Sa. At small j�mj the expectation value hSai ! 0, and
the string flux is averaged to zero; see (4.22). Domains I
and III are separated by a crossover at ���2.

Let us also mention one more dramatic distinction of
nonperturbative spectra in domains I and III at �m ¼ 0.
The confined SU(2) monopoles [with quantum numbers
(5.16)] are the junctions of two different elementary strings
in both domains. In the non-Abelian domain I the confined
monopoles are seen as kinks of the world-sheet CPðN � 1Þ
model [10,11,34]. As was shown by Witten [19], deep in
the quantum regime at ðmA �mBÞ ¼ 0 the kink of the
CPðN � 1Þmodel is described by the field nl and therefore
acquires a global flavor quantum number with respect to
the unbroken SUðNÞCþF. In fact, the kink/monopole is in
the fundamental representation of this group (a doublet in
the case N ¼ 2) [19,35]. Therefore, a meson formed by a
monopole connected to an antimonopole by two strings
(see the review paper [7] for details) belongs to the singlet
or adjoint representations of the global SUðNÞ [singlet or
triplet of SU(2) for N ¼ 2].
Clearly, in domain III the monopole confined by strings

does not acquire global quantum numbers. It is in the
singlet representation of SU(2). Hence, a meson formed
by a monopole connected to an antimonopole by two
strings is a singlet too. Thus, in the nonperturbative spectra
of the theory we observe the same phenomenon which was
seen in the perturbative spectra: triplets of global SU(2)
present at low energies in domain I are lifted and do not
appear in the low-energy description in domain III. Both
perturbative and nonperturbative states in domain III are
singlets of the unbroken global SU(2).

VI. THE PHASE TRANSITION AT N ! 1
In this section we will consider the N dependence of the

crossover transitions (see Fig. 1) in parameters � and
ðmA �mBÞ. We will show that in the large-N limit the
crossovers become exceedingly sharper, and at N ¼ 1
they transform into a genuine phase transition. We will
start from the crossover in ðmA �mBÞ at large � (i.e. the
passage from domain I to domain II).
This crossover in the nonperturbative sector of the the-

ory can be seen as a crossover in the effective CPðN � 1Þ
model (4.24) on the world sheet of the non-Abelian string;
see Sec. IV. As was already explained, at large quark mass
differences the CPðN � 1Þ model is at weak coupling. The
VEVof the vector nl does not vanish. If we make a special
choice for the mass parameters,

mk ¼ m0e
ð2�k=NÞi; k ¼ 1; . . . ; N; (6.1)

where m0 is a single common parameter (which we will
take to be real), our theory has a discrete Z2N symmetry;
see the Appendix for further details. In fact, hnli is an order
parameter for the spontaneous breaking of this Z2N sym-
metry down to Z2.
At weak coupling, at large m0, dynamics can be de-

scribed as follows. The action (4.24) contains a term
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� mlffiffiffi
2

p










2jnlj2: (6.2)

At weak coupling the field n can develop a VEV if 

reduces to a particular mass parameter,


 ¼ mkffiffiffi
2

p ; nl ¼ ffiffiffiffiffiffiffi
2	

p
�lk; (6.3)

where k ¼ 1; . . . ; N labels N different vacua (i.e. the ele-
mentary ZN strings of the bulk theory) and we rescaled the
field nl in (4.24) to make its kinetic term canonic, namely,
nl ! nl=

ffiffiffiffiffiffiffi
2	

p
.

As we reduce the value of m0 the vacuum expectation
value of the nl field becomes smaller and tends to zero at
the left boundary of domain II. Simultaneously, the VEVof

 is no longer given by the mass, as in Eq. (6.3). In fact, 

determines the bifermion condensate; j
j becomes of the
order of �
 at m0 ! 0. In both limits the ZN symmetry is
broken. This is the reason why two domains, I and II, are
separated by a crossover rather than a phase transition.7

In order to study the crossover at any N (rather than at
N ¼ 1) we can use the description of the supersymmetric
CPðN � 1Þ model in terms of an exact superpotential
[17,22]. Upon integrating out nl fields the model can be
described by an exact twisted superpotential of the
Veneziano-Yankielowicz type [36],

W eff ¼ 	�þ 1

4�

XN
l¼1

�
�� mlffiffiffi

2
p

�
ln

�
�� mlffiffiffi

2
p

�
; (6.4)

where � is a twisted superfield [17] (with 
 being its
lowest scalar component) and we ignore here the � depen-
dence (� stands for the vacuum angle). Minimizing this
superpotential with respect to 
, we find

YN
l¼1

ð ffiffiffi
2

p

�mlÞ ¼ �N


; (6.5)

where �
 is the scale parameter of the CPðN � 1Þ sigma
model under consideration.

Let us examine this equation, determining the VEV of
the field 
 at finite rather than infinite N. If N is fixed, it is
readily seen that at large jmlj (i.e. m0 � �
) the solution
for 
 coincides with one of the masses, in accordance with
our semiclassical analysis; see Eq. (6.3). In the opposite
limit of zero masses (m0 ¼ 0),


 ¼ 1ffiffiffi
2

p �
e
2�ik=N; (6.6)

where k ¼ 1; . . . ; N marks N distinct vacua. As was men-
tioned above, the ZN symmetry is spontaneously broken at
any m0.

As we increase the value of m0, the vacuum expectation
value of 
 smoothly interpolates between the regime (6.6),
where the order parameter which distinguishes different
vacua of the CPðN � 1Þ model (i.e. different elementary
strings of the bulk theory) is a bifermion condensate �
,
and the regime (6.3), where 
 is determined by one of the
masses ml, while nl develops a VEV. For finite N the
solution for 
 is a smooth function of m0. Thus, this is a
crossover that takes place between domains I and II.
If we increase N, this crossover becomes more pro-

nounced. Let us study Eq. (6.5) at large N. To simplify
our analysis let us consider N ¼ 2p, where p is an integer.
Then Eq. (6.5) can be rewritten as

ð ffiffiffi
2

p

ÞN �mN

0 ¼ �N

: (6.7)

This equation has the following perfectly smooth solution:


 ¼ 1ffiffiffi
2

p eð2�k=NÞiðmN
0 þ�N


Þ1=N: (6.8)

However, at N ! 1 the above function takes the form


 ¼ 1ffiffiffi
2

p eð2�k=NÞi �
�
m0 m0 >�


�
 m0 <�
:
(6.9)

Corrections to this expression are exponential in ð�NÞ.
We see that the solution for
 develops a discontinuity in

the first derivative with respect to m0. The crossover be-
comes a phase transition in the limitN ¼ 1. We stress that
this phase transition is an artifact of the large-N approxi-
mation and is not related to a change in the pattern of
realization of any symmetry.
The solution (6.9) for 
 ensures the following behavior

of the vector nl in the N ! 1 limit:

hnli ¼
� ffiffiffiffiffiffiffiffiffiffiffi

2	ren

p
�kl m0 >�


0 m0 <�
;
(6.10)

where k ¼ 1; . . . ; N. The renormalized coupling 	ren tends
to zero at m0 ¼ �
 [6]; thus, the VEV of nl develops a
discontinuity in the first derivative with respect to m0.
This solution implies that the gauge-invariant non-

Abelian flux of the non-Abelian string strictly vanishes in
domain I,

h�iI ¼ 0 (6.11)

at N ¼ 1, while in domains II and III it is given by a UðNÞ
generalization of Eq. (5.43). Namely,

h�iII ¼ h�iIII ¼ �2�
ffiffiffi
2

p
mk (6.12)

for the kth elementary ZN string, k ¼ 1; . . . ; N; see
Eqs. (2.4) and (4.9).
The result (6.11) is exact at N ¼ 1. Thus, at N ¼ 1 the

string flux (4.20) develops a discontinuity as we pass from

7In the nonsupersymmetric case the VEV of 
 vanishes in
domain I, and the ZN symmetry is restored [5,6]. In this case we
do have a phase transition between domains I and II.
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domain I to domain II or III. This implies that both cross-
overs in � and m0 transform into phase transitions.

VII. DISCUSSION

In this paper we considered the r ¼ N vacuum in N ¼
2 supersymmetric QCD (SQCD) with the UðNÞ gauge
group and Nf ¼ N flavors. We demonstrated that this

theory exhibits a crossover transition in �; see Fig. 1.
Namely, at large � in domain I the theory is in the non-
Abelian confinement regime; it has N2 degrees of freedom
(gauge bosons and quarks) at low energies and supports
non-Abelian strings. In contrast, at small � the theory
passes into the Abelian Seiberg-Witten regime III. The
low-energy effective description includes N degrees of
freedom (dyons and dual photons) and supports Abelian
strings. We have shown that non-Abelian gauge bosons and
quarks in domain I have nothing to do with Abelian dyons
and photons of domain III. These states belong to a differ-
ent representation of the unbroken global flavor group
SUðNÞ.

Although in this paper we considered a particular vac-
uum in a specially chosen version ofN ¼2 SQCD [where
the global SUðNÞ symmetry remains unbroken due to the
color-flavor locking], we believe that our results are quite
general. It seems plausible that many Abelian vacua of the
Seiberg-Witten type in N ¼ 2 SQCD exhibit crossover
transitions into non-Abelian regimes as we increase the FI
parameter �. Usually we do not have appropriate extra
parameters (such as the quark mass differences in our
example) which would allow us to study these crossovers.

The lesson is that, generally speaking, non-Abelian
strings can smoothly evolve into Abelian strings and vice
versa. At the same time, the corresponding dynamical
patterns are drastically different.

What conclusions apply to theories with less supersym-
metry? In the simplest version of the Seiberg-Witten solu-
tion [1],N ¼ 2 supersymmetric QCD can be deformed by
adding a mass term � for the adjoint field. In the limit of
large � the theory flows toN ¼ 1 SQCD. At small � the
mass term for the adjoint field induces a Fayet-Iliopoulos F
term in N ¼ 2 theory [16,37], with � proportional to �
times some mass scale, such as � or the quark mass. Thus,
the deformation parameter � translates, roughly speaking,
into the FI parameter �.

It is commonly believed that the behavior of supersym-
metric QCD is smooth in �: the Abelian degrees of free-
dom of N ¼ 2 theory smoothly evolve into non-Abelian
degrees of freedom of N ¼ 1 theory as we increase j�j.
While on the conceptual side our results provide unambig-
uous evidence in favor of the smooth transition, dynamics-
wise the emerging pictures on the opposite sides of domain
lines separating domains I, II, and III hardly look alike. In
particular, light degrees of freedom are completely
different.

In addition, we should note that there is at least one
example of a nonsupersymmetric model where the evolu-
tion is proven to be discontinuous,8 with a phase transition
[5,6]. And even in our basic N ¼ 2 model the crossover
becomes a full-blown phase transition at N ¼ 1.
To conclude, we would like to comment on the recent

paper [39]. In this paper it is argued that non-Abelian vacua
with r > Nf=2 which support non-Abelian strings ‘‘dy-

namically Abelianize’’ in quantum theory. We disagree
with this statement. As we demonstrated above, both the
Abelian and non-Abelian regimes can be present in N ¼
2 QCD in quantum theory. They just occur in different
domains of the parameter space and are separated by
crossovers.
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APPENDIX: GLOBAL SYMMETRIES OF THE
CPðN� 1Þ MODELWITH Z2N-SYMMETRIC

TWISTED MASSES

First, let us outline the N ¼ 2 CPðN � 1Þ model with
twisted masses [21] in one of a few possible formulations,
the so-called gauge formulation [40]. This formulation is
built on an N-plet of complex scalar fields ni where i ¼
1; 2; . . . ; N. We impose the constraint

nyi ni ¼ 1: (A1)

This leaves us with 2N � 1 real bosonic degrees of free-
dom. To eliminate one extra degree of freedom, we impose

a local U(1) invariance niðxÞ ! ei�ðxÞniðxÞ. To this end we
introduce a gauge field A� which converts the partial

derivative into the covariant one,

@� ! r� � @� � iA�: (A2)

The field A� is auxiliary; it enters in the Lagrangian

without derivatives. The kinetic term of the n fields is

L ¼ 2

g20
jr�n

ij2: (A3)

The superpartner to the field ni is an N-plet of complex
two-component spinor fields �i,

�i ¼ ð�i
R; �

i
LÞ: (A4)

8On the other hand, analyses [2,3] carried out in a nonsuper-
symmetric setting different from that treated here and in [5,6]
show no sign of the phase transition, while [38] exhibits a chiral
phase transition on the way from Abelian to non-Abelian
confinement.
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The auxiliary field A� has a complex scalar superpartner


 and a two-component complex spinor superpartner ;
both enter without derivatives. The fullN ¼ 2 symmetric
Lagrangian is

L ¼ 2

g20

�
jr�n

ij2 þ �y
i i�

�r��
i þ 2

X
i










� miffiffiffi
2

p










2jnij2

þ
�
i

ffiffiffi
2

p X
i

�

� miffiffiffi

2
p

�
�y
iR�

i
L

þ i
ffiffiffi
2

p
nyi ðR�

i
L � L�

i
RÞ þ H:c:

�	
; (A5)

where mi are twisted mass parameters. Equation (A5) is
valid in a special case when

XN
i¼1

mi ¼ 0: (A6)

We will make a specific choice of the parameters mi,
namely,

mi ¼ mfe2�i=N; e4�i=N; . . . ; e2ðN�1Þ�i=N; 1g; (A7)

where m is a single common parameter. Then the con-
straint (A6) is automatically satisfied. Without loss of
generality m can be assumed to be real and positive. The
U(1) gauge symmetry is built in. This symmetry eliminates
one bosonic degree of freedom, leaving us with 2N � 2
dynamical bosonic degrees of freedom inherent to the
CPðN � 1Þ model.

Now let us discuss global symmetries of this model. In
the absence of the twisted masses the model was SUðNÞ
symmetric. The twisted masses (A7) explicitly break this
symmetry down to Uð1ÞN�1,

n‘ ! ei�‘n‘; �‘
R ! ei�‘�‘

R �‘
L ! ei�‘�‘

L;

‘ ¼ 1; 2; . . . ; N; 
 ! 
; R;L ! R;L;
(A8)

where �‘ are N constant phases that are different for
different ‘.

Next, there is a global vectorial U(1) symmetry which
rotates all fermions �‘ in one and the sameway, leaving the
boson fields intact,

�‘
R ! ei	�‘

R; �‘
L ! ei	�‘

L; ‘¼ 1;2; . . . ;N;

R ! e�i	R; L ! e�i	L; n‘ ! n‘; 
! 
:

(A9)

Finally, there is a discrete Z2N symmetry which is of the
most importance for our purposes. Indeed, let us start from
the axialUð1ÞR transformation which would be a symmetry
of the classical action at m ¼ 0 (it is anomalous, though,
under quantum corrections),

�‘
R ! ei��‘

R; �‘
L ! e�i��‘

L; ‘¼ 1;2; . . . ;N;

R ! ei�R; L ! e�i�L; 
! e2i�
; n‘ ! n‘:

(A10)

With m switched on and the chiral anomaly included, this
transformation is no longer the symmetry of the model.
However, a discrete Z2N subgroup survives both the inclu-
sion of the anomaly andm � 0. This subgroup corresponds
to

�k ¼ 2�ik

2N
; k ¼ 1; 2; . . . ; N; (A11)

with the simultaneous shift

‘ ! ‘� k: (A12)

In other words,

�‘
R ! ei�k�‘�k

R ; �‘
L ! e�i�k�‘�k

L ; R ! ei�kR;

L ! e�i�kL; 
 ! e2i�k
; n‘ ! n‘�k: (A13)

This Z2N symmetry relies on the particular choice of
masses given in (A7).
The order parameters for the ZN symmetry are as fol-

lows: (i) the set of the vacuum expectation values
fhn1i; hn2i; . . . hnNig and (i) the bifermion condensate

h�y
R;‘�

‘
Li. That is, a nonvanishing value of hn1i or

h�y
R;‘�

‘
Li implies that the Z2N symmetry of the action is

broken down to Z2. The first set of order parameters is
more convenient for detection at largem, while the second-
order parameter is more easily detected at small m.
It is instructive to illustrate the above conclusions in a

different formulation of the sigma model, namely, in the
geometrical formulation [for simplicity, we will consider
CPð1Þ; generalization to CPðN � 1Þ is straightforward]. In
components, the Lagrangian of the model is

L CPð1Þ ¼ G

�
@��

y@��� jmj2�y�þ i

2
ðc y

L@
$
Rc L

þ c y
R@
$
Lc RÞ � i

1��y�
�

ðmc y
Lc R

þ �mc y
Rc LÞ � i

�
½c y

Lc Lð�y@
$
R�Þ

þ c y
Rc Rð�y@

$
L�Þ� � 2

�2
c y

Lc Lc
y
Rc R

	
;

(A14)

where

� ¼ 1þ�y�; G ¼ 2

g20�
2

(A15)

and

@L ¼ @

@t
þ @

@z
; @R ¼ @

@t
� @

@z
: (A16)
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The Z2 transformation corresponding to (A13) is

� ! � 1

�y ; c y
Rc L ! �c y

Rc L: (A17)

The order parameter which can detect breaking/nonbreak-
ing of the above symmetry is

m

g20

�
1� g20

2�

�
�y�� 1

�y�þ 1
� iRc y

Rc L: (A18)

Under the transformation (A17) this order parameter

changes sign. In fact, this is the central charge of theN ¼
2 sigma model, including the anomaly [31].
Now, what changes if instead of the N ¼ 2 model we

consider a nonsupersymmetric CPðN � 1Þ model with
twisted masses? Then the part of the Lagrangian (A5)
containing fermions must be dropped. The same must be
done in the Z2-order parameter. As was shown in [5,6],
now at m>� the Z2 symmetry is broken, while at m<�
it is unbroken. A phase transition takes place.
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B248, 157 (1984).

[22] N. Dorey, J. High Energy Phys. 11 (1998) 005.
[23] P. C. Argyres and A. E. Faraggi, Phys. Rev. Lett. 74, 3931

(1995).
[24] A. Klemm, W. Lerche, S. Yankielowicz, and S. Theisen,

Phys. Lett. B 344, 169 (1995).
[25] P. C. Argyres, M. R. Plesser, and A. Shapere, Phys. Rev.

Lett. 75, 1699 (1995).
[26] A. Hanany and Y. Oz, Nucl. Phys. B452, 283 (1995).
[27] A. Bilal and F. Ferrari, Nucl. Phys. B516, 175 (1998).
[28] G. Carlino, K. Konishi, and H. Murayama, Nucl. Phys.

B590, 37 (2000).
[29] P. C. Argyres and M. R. Douglas, Nucl. Phys. B448, 93

(1995).
[30] P. C. Argyres, M. R. Plesser, N. Seiberg, and E. Witten,

Nucl. Phys. B461, 71 (1996).
[31] A. Losev and M. Shifman, Phys. Rev. D 68, 045006

(2003); M. Shifman, A. Vainshtein, and R. Zwicky, J.
Phys. A 39, 13005 (2006).

[32] M. Shifman and A. Yung, arXiv:0904.1035.
[33] A. Abrikosov, Sov. Phys. JETP 32, 1442 (1957); reprinted

in Solitons and Particles, edited by C. Rebbi and G.
Soliani (World Scientific, Singapore, 1984), p. 356; H.
Nielsen and P. Olesen, Nucl. Phys. B61, 45 (1973);
reprinted in Solitons and Particles, edited by C. Rebbi
and G. Soliani (World Scientific, Singapore, 1984), p. 365.

[34] D. Tong, Phys. Rev. D 69, 065003 (2004).
[35] K. Hori and C. Vafa, arXiv:hep-th/0002222.
[36] G. Veneziano and S. Yankielowicz, Phys. Lett. 113B, 231

(1982).
[37] A. Hanany, M. J. Strassler, and A. Zaffaroni, Nucl. Phys.

B513, 87 (1998).
[38] M. Shifman and M. Ünsal, arXiv:0901.3743.
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