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We calculate rates of flavor exchange within clouds of neutrinos interacting with each other through the

standard model coupling, assuming a conventional mass matrix. For cases in which there is an angular

dependence in the relation among intensity, flavor, and spectrum, we find instabilities in the evolution

equations and greatly speeded-up flavor exchange. The instabilities are categorized by examining linear

perturbations to simple solutions, and their effects are exhibited in complete numerical solutions to the

system. The application is to the region just under the neutrino surfaces in the supernova core.
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I. INTRODUCTION

There are least two astrophysical contexts in which the
standard model interaction of neutrinos with neutrinos
(mediated by Z exchange) could play an important role:

(1). In the supernova process, either in the region just
under the neutrino surface (i.e. the point of last scattering,
on the average), or in the regions just outside of this region.
The energy distributions of the various species of neutrino
in this region are important to the dynamics of the explo-
sion, to R process nucleosynthesis downstream, and to the
observed neutrino pulse on earth, should it ever be ob-
served again. These energy distributions may be affected
greatly by coherent neutrino-neutrino interactions, even
though the effects of ordinary incoherent �-� scattering
are small. There has been much recent work on the com-
bined effects of �-� interactions and oscillations in the
region outside the neutrino surfaces for neutrinos of differ-
ent flavors [1–7].

(2). In models of the early universe before nucleosyn-
thesis (but after leptogenesis, etc. and well before � decou-
pling) in which there are substantial neutrino chemical
potentials, that is to say, neutrino-antineutrino imbalance
at much greater level than the electron-positron imbalance.
If flavors are out of equilibrium as well, then �-� inter-
actions become important. When sterile neutrinos are
added, these scenarios become arbitrarily complex. They
can easily change the parameters that determine the He
abundance, so that a part of the effort expended on their
behalf has been to avoid upsetting the good fits of the
standard theory. The models can be arranged to produce
models of sterile neutrino dark matter in the mass region at
least several KeV, coupled with a mixing parameter
small enough not to conflict with cosmic x-ray back-
grounds [8–10].

The present work operates in the context of the super-
nova problem, although there could well be applications to
the area (b), above, as well. Here we consider some effects
below the neutrino surface, or, more accurately, in the
transitional region at about the depth of the average last
scattering for �f�;�g and ��f�;�g, and below the depth of the

average last scattering for �e and ��e. This follows up on
previous work [11,12] in the same region, demonstrating
the possibility of flavor instabilities causing rapid mixing
of the angular distributions and energy spectra. In these
instabilities, which depend only on forward � processes,
flavor is traded between momentum states with no change
in the momentum states. The instabilities arise when neu-
trino momentum distributions are anisotropic. The ex-
amples worked out in Refs. [5,6] dealing with a region
outside of the neutrino surfaces have at their core the type
of instability as that described in [11,12], which we char-
acterize as the ‘‘multiangle instability.’’
The present work has three purposes:
(a) To provide a better basis for understanding these

instabilities, described in the above references simply in
terms of the plots produced in simulations. In the present
paper we carry out standard linearized stability analysis of
the underlying nonlinear systems.
(b) To do a more realistic analysis than was done in

Ref. [11] of flavor-scrambling effects in the region just
under the neutrino surfaces. For example, in the current
work we show results for a case with 14 bins of � momen-
tum space, as compared to two bins in Ref. [11].
(c) To point out a second category of possible instability,

potentially more potent than the one underlying the work
mentioned above. A feature of the results is that small
fluctuations of initial distributions away from symmetrical
cases can have a catalyzing effect, inducing complete
flavor transfers between up-moving and down-moving
states.
Our effects evolve over small distances in homogeneous

matter, in contrast to Mikheyev-Smirnov-Wolfenstein
(MSW) resonance flavor trading, which depends on pas-
sage through more extended regions with variable electron
density. They also act to mix up neutrino and antineutrino
flavors simultaneously, in contrast to resonant phenomena,
which act on one or the other.
The medium in the region of the neutrino surfaces has

density of a few times 1011 gc�3 at a temperature T ¼
5–7 MeV. We shall consider neutrino mixing of two spe-
cies, �e and (following the notation of other authors) �x,
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where �x is some mixture of ����. There are a number of

time scales that we can define in this region:
1. A ‘‘very fast’’ time scale ðGFn�Þ�1, where n� is the

neutrino number density ne � T3. In our domain this time
is of order 10�3 cm in units in which c ¼ 1.

2. The vacuum oscillation time, of order 107 cm in our
region, for �m2 ¼ :8� 10�4 ðeVÞ2. All of the rates of
change for interesting quantities that we calculate in the
present paper will be much faster than this rate.

3. A ‘‘fast’’ rate that is the geometric mean of the above
two rates. The fact that properties of � systems can change
at this rate was noted by Kostelecky and Samuel [13,14] in
their work on self-maintained coherent oscillations in
dense isotropic neutrino gases. More recent exploration
of this topic can be found in Refs. [15,16]. This basic
rate recurs in the multiangle flavor instabilities found in
Refs. [5,6,11].

4. The rate for scattering from neutrons and protons in
the medium �G2

FT
3 about 10 times as fast as the vacuum

oscillation rate in the domain of interest.
The equations for flavor density matrices needed to

derive our principal results are standard by now [17]. But
in order to explain some caveats in a later section and to set
the groundwork for future work we shall briefly rederive
the standard equations.

We consider a system of neutrinos interacting with each
other through the Z mediated neutral current couplings,
and with electrons and positrons in the medium, through
the W and Z mediated couplings. Interactions of �’s with
nucleons in the medium are irrelevant, as far as the main
developments are concerned, since they are independent of
� flavor. We also include ordinary neutrino oscillations.
The effects of ordinary incoherent scattering by nucleons
and electrons in the medium can be neglected over the time
scales that we consider.

We define aeðpÞ and axðpÞ, as the respective annihilation
operators for a �e and �x of momentum p, with corre-
sponding definitions for the operators that annihilate ��’s.
We introduce the density operators,

�i;jðpÞ ¼ aiðpÞyajðpÞ; ��i;jðpÞ ¼ �ajðpÞy �aiðpÞ; (1)

where i and j take the values e or x. Note the transposition
of indices in the definition of the antiparticle density
operator; this leads to neater formulae below.

The reason that �-� interactions can change flavor-
spectrum correlations over a very short time scale is that
in a pure forward encounter between two neutrinos the
neutrinos can swap flavors, thus engendering coherent
(because of forward) effects that are more than phases in
their wave functions (because of flavor dependence). We
start therefore by isolating from the Z exchange coupling
all of the terms with no momentum exchange, that is, the
terms that connect a pair of �’s with momenta p, q to a pair
with momentum p, q; only the flavors being changed. We
shall refer to this as the ‘‘forward’’ neutrino-neutrino in-

teraction, H�;�,

H��ð�Þ ¼
ffiffiffi
2

p
GF

V

X
p;q

X
fi;jg¼e;x

½1� cosð�p;qÞ�½ð�i;jðpÞ

� ��i;jðpÞÞð�j;iðqÞ � ��j;iðqÞÞ þ ð�i;iðpÞ
� ��i;iðpÞÞð�j;jðqÞ � ��j;jðqÞÞ�; (2)

where V is the volume.
The oscillation (or mass-matrix) term Hosc is taken to be

of the form

Hoscð�Þ ¼
X
p

½j2pj�1�½�e;xðpÞþ�x;eðpÞþ ��e;xðpÞ

þ ��x;eðpÞ�þ j2pj�1�½�e;eðpÞ��x;xðpÞ
þ ��e;eðpÞ� ��x;xðpÞ�
þGFne½�e;eðpÞ��x;xðpÞ� ��e;eðpÞþ ��x;xðpÞ��;

(3)

where the parameters �, � determine the standard vacuum
neutrino mass parameters according to �m2 ¼ ð�2 þ �2Þ,
tanð�Þ ¼ �=�, and the third line in (3) comes from the
standard model neutrino electron interaction.
In the main part of what follows, we discuss the time

evolution of a neutrino system under the influence of the
Hamiltonian H1, where

H1ð�Þ ¼ H��ð�Þ þHoscð�Þ: (4)

Since H1ð�Þ in (4) leaves the momenta of the individual
neutrinos unchanged, the kinetic energy term (in the ab-
sence of neutrino mass) is irrelevent to evolution under the
influence of H1ð�Þ.
The commutation rules of the density operators are

½�i;jðpÞ; �k;lðp0Þ� ¼ ½�i;l�k;jðpÞ � �j;k�i;lðpÞ��p;p0 ;

½ ��i;jðpÞ; ��k;lðp0Þ� ¼ ½��i;l ��k;jðpÞ þ �j;k ��i;lðpÞ��p;p0 :
(5)

With this apparatus the usual equations for the density
functions are of the Heisenberg form,

i
d

dt
�i;jðpÞ ¼ ½�i;jðpÞ; H�: (6)

We obtain

d

dt
�i;jðpÞ ¼ � ffiffiffi

2
p

GF

V

X
q

X
k

½�i;kðpÞ½�k;jðqÞ � ��k;jðqÞ�

� �j;kðpÞ½�i;kðqÞ � ��i;kðqÞ��½1� cosð�p;qÞ�
þ jpj�1½�; �ðpÞ�i;j; (7)

and,
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d

dt
��i;jðpÞ ¼ � ffiffiffi

2
p

GF

V

X
q

X
k

½ ��i;kðpÞ½�k;jðqÞ � ��k;jðqÞ�

� ��j;kðpÞ½�i;kðqÞ � ��i;kðqÞ��½1� cosð�p;qÞ�
þ jpj�1½�; ��ðpÞ�i;j: (8)

For brevity we expressed the part coming from the
commutator with Hosc in (3) terms of a conventional gen-
erator �ð	; �Þ, a 2� 2 matrix in the flavor space.

II. MEAN-FIELD EQUATIONS

In this paper we concentrate on a ‘‘mean-field’’ limit, in
which the operators (in the occupation number space), �i;j,

are replaced by their expectation values in the medium,
h�i;ji, after the commutators (in the occupation number

space) have been performed to give the evolution equa-
tions (7) and (8).

This mean-field assumption can be stated as

h�i;jðpÞ�k;lðp0Þi ¼ h�i;jðpÞih�k;lðp0Þi: (9)

In this case we can suppress the indices h�i;ji and write the
evolution equations (7) and (8) as matrix equations in the
flavor indices, generated in canonical fashion by effective
mode by mode Hamiltonians for the matrices �ðpÞ,

HeffðpÞ ¼
ffiffiffi
2

p
GF

V

X
q

½�ðqÞ � ��ðqÞ�½1� cosð�p;qÞ�

þ jpj�1�: (10)

We emphasize that the formulation based on (10) de-
pends totally on the mean-field assumption. Although it
probably gives the correct answers in the problems that we
address, we shall return to discuss possible corrections to
the mean-field approximation. This discussion must be
based on (2) rather than on (10).

For computational purposes we introduce collective var-
iables for neutrinos by subdividing the momentum space
into some small number NB of regions f
g which we
designate as beams. For convenience we will do the sub-
division so that there are the same number of neutrinosþ
antineutrinos, N�, in each beam 
,

N� ¼ X
i

X
p�f
g

½�i;iðpÞ þ ��i;iðpÞ� ¼ n�V=NB: (11)

Then we define density matrices for the individual beams,

�ð
Þ
i;j ¼ N�1

�

X
p�f
g

�i;jðpÞ (12)

and

�� ð
Þ
i;j ¼ N�1

�

X
p�f
g

��i;jðpÞ; (13)

so that in each beam, 
, we haveX
j

½�ð
Þ
j;j þ ��ð
Þ

j;j � ¼ N�1
B : (14)

For calculations we need only two operators in each
beam for particles and two for antiparticles. We define

r
 ¼ �ð
Þ
e;x ; �r
 ¼ ��ð
Þ

e;x ; z
 ¼ �ð
Þ
e;e � �ð
Þ

x;x ;

�z
 ¼ ��ð
Þ
e;e � ��ð
Þ

x;x :
(15)

In the two flavor case it has become conventional to write
the evolution equations for matrices that are Hermitian 3-
vectors in the internal flavor space. But it is computation-
ally more efficient to use, for each value of 
, non-
Hermitian r
’s, introduced above, rather than the two
Hermitian components.
The effective Hamiltonian is now

H ¼
ffiffiffi
2

p
GFN�n�
NB

X

;�

½2ðr
 � �r
Þyðr� � �r�Þ

þ ðz
 � �z
Þðz� � �z�Þ� � ½1� cos�
;��
þ N�

X



½jp
j�1�ðr
 þ ry
 þ �r
 þ �ry
Þ

þ jp
j�1�ðz
 þ �z
Þ þGFn�ðz
 � �z
Þ�: (16)

We have here dropped in (2) the terms that involve onlyP
i�i;iðpÞ and

P
i ��i;iðpÞ, since these quantities are con-

served under the present dynamics1

From (5) and (15) the commutation rules of our dimen-
sionless variables are

½r
; ry�� ¼ N�1
� z
�
;�; ½r
; z�� ¼ 2N�1

� r
�
;�;

½ �r
; �ry�� ¼ �N�1
� �z
�
;�; ½�r
; �z�� ¼ �2N�1

� r
�
;�:

(17)

The equations for time evolution are given for the flavor
changing operators by

i
d

dt
r
 ¼

ffiffiffi
2

p
GFn�
Nreg

X
�

½z
ðr� � �r�Þ � r
ðz� � �z�Þ�

� ½1� cos�
;�� þ ð�z
 � �r
Þ=jp
j þGFner
;

i
d

dt
�r
 ¼ �

ffiffiffi
2

p
GFn�
Nreg

X
�

½ �z
ð �r� � r�Þ � �r
ð�z� � z�Þ�

� ½1� cos�
;�� � ð��z
 � ��r
Þ=jp
j þGFne �r
;

(18)

and for the flavor conserving operators by

1These terms would enter the dynamics if, for example, we
were including mixing with sterile neutrinos.
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i
d

dt
z
 ¼ �

ffiffiffi
2

p
GFn�
NB

X
�

½r�
ð�r� � r�Þ � r
ð �r�� � r��Þ�

� ½1� cos�
;�� þ 2�ðr
 � r�
Þ=jp
j;

i
d

dt
�z
 ¼

ffiffiffi
2

p
GFn�
NB

X
�

½�r�
ðr� � �r�Þ � �r
ðr�� � �r��Þ�

� ½1� cos�
;�� � 2�ð �r
 � �r�
Þ=jp
j:

(19)

Note that in Eqs. (18) and (19), once we take the mean-field
limit, the Hermitian adjoints in the original operator ex-
pressions turn into simple complex conjugates of the
functions.

We shall use (18) and (19) to determine the evolution of
the system starting from a flavor-diagonal initial state at
t ¼ 0, that is, from r
ð0Þ ¼ 0, �r
ð0Þ ¼ 0. Consider first the
system with the parameter � ¼ 0, and the initial values
r
 ¼ 0, �r
 ¼ 0. Then the solution has values of z
, �z
 that
are constant in time, with vanishing r
, �r
. We examine the
stability by linearizing around this solution. We note that
the linear perturbations of the z’s do not enter (18) at all, so
that we have linear equations for perturbations �r
, ��r
.
Grouping these perturbations into a single column vector
��
;i where i ¼ 1 picks out �r
, and i ¼ 2 picks out ��r
,
we write the equations in matrix form as

i
d

dt
�� ¼ M��; (20)

where M is a 2NB-dimensional square matrix with ele-
ments M
;i;�;j that we read out from (18) as

M
;1;�;1 ¼
ffiffiffi
2

p
GFn�N

�1
B ½z
½1� cos�
;��

� �
;�

X
�

ðz� � �z�Þ½1� cos�
;���

� �jp
j�1�
;�;

M
;1;�;2 ¼ � ffiffiffi
2

p
GFn�N

�1
B z
½1� cos�
;��;

M
;2;�;1 ¼
ffiffiffi
2

p
GFn�N

�1
B �z
½1� cos�
;��;

M
;2;�;2 ¼ � ffiffiffi
2

p
GFn�N

�1
B

�
��z
½1� cos�
;��

� �
;�

X
�

ðz� � �z�Þ½1� cos�
;��
�

þ �jp
j�1�
;�:

(21)

The flavor-diagonal initial conditions determine the 2NB

parameters z
, �z
 in (21). The instabilities that are the
focus of the present paper all arise from a complex eigen-
value, 	i ofM. There are two categories of instabilities that
can arise:

(a) Cases in which there is a complex eigenvalue even
when � ¼ 0. The growth rate of the mode can be some

appreciable fraction of GFne, the ‘‘very fast’’ rate men-
tioned in the introduction. This situation only arises when
the angular distributions in the initial state are somewhat
complex.
(b) Cases in which the eigenvalues are real when � ¼ 0

but for the case of nonvanishing � are complex with an

imaginary part of order ðGF�n�=jpjÞ1=2, for small �. This
is the ‘‘fast rate’’ mentioned in the introduction, still much
faster than the ordinary collision frequency in our region of
interest.

III. SIX BEAM EXAMPLE

We have done a number of simulations with different
distributions in angle and flavor. We have taken two energy
bins, equally occupied, differing by a factor of 2 in energy,
in our basic simulations for both cases (a) and (b). In case
(a), the resulting complex eigenvalue that characterizes the
instability lies between those of the two monochromatic
values. In case (b), with � ¼ 0 when the initial conditions
are chosen such as yield a complex eigenvalue, it is energy
independent; energy only entering through the neutrino
mass terms. Also, in neither case was there a qualitative
difference in the results of the complete simulations. The
curves plotted below are for monochromatic neutrinos.
Simulations including bins of different energies have

been done as well, but it turns out that including an energy
spectrum in the dynamics makes little difference to the
results, although energy enters in the factor jpj�1 in the
oscillation rate. This is basically the synchronization phe-
nomenon discussed in Refs. [13]. Of course, energy enters
in a bookkeeping way, since the main point will be the
equalization of the �x spectrum and the �e spectrum
through flavor trading.
Since a flavor independent distribution �i;j ¼ �i;j is

completely irrelevant in these equations, we can subtract
a flavor independent nFI part, replacing the multiplying n�
in (18) and (19) by neff ¼ ðn� � nFIÞ, and giving a residual
distribution that is all (or nearly all) �x’s going up and �e’s
going down. We begin with one of the simpler cases for
which we have carried out numerical solutions of the
evolution equations.
The physics is that in a critical region the �x, ��x have an

outward bias in their momentum distributions while the �e,
��e are more istropically distributed. Also there is some
excess of �e overall, coming from the tail of the delepto-
nization pulse. This excess dies off rather fast compared to
the time scale of total neutrino energy loss from the star.
The �x, ��x also have a harder energy spectrum; as noted
above, this latter fact is fairly unimportant as far as the
mechanics of flavor exchanges is concerned, but of course
it is central to the conclusions being interesting.
For the simulation, take six beams, Ngrp ¼ 6, oriented in

the �x̂, �ŷ, �ẑ directions in ordinary space, which we
label as the �1, �2, �3 directions.
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We take the following values for the functions in (18)
and (19) at t ¼ 0:

z3ð0Þ ¼ �1; �z3ð0Þ ¼ �1; z�1ð0Þ ¼ g;

�z�1ð0Þ ¼ 0; z�2ð0Þ ¼ g; �z�2ð0Þ ¼ 0;

z�3ð0Þ ¼ 1þ 2g; �z�3ð0Þ ¼ 1:

(22)

Here, the 3̂ direction is up (i.e., outward) and the choice

z3neff ¼ �ð3Þ
e;e � �ð3Þ

x;x ¼ �neff for the density function for
the upward flux indicates an excess of �x ’s over �e’s.
Likewise the part with unity in the down direction reflects
the excess of �e, ��e in the downward direction. A distri-
bution that is independent of particle flavor is sterile and
can be subtracted. We categorize the remainder as:

(1) In the up direction, all �x, ��x’s.
(2) In the transverse directions, equal numbers of �x, ��x,

��e, but with an excess of �e, measured by the parameter g.
(3) In the downward direction, all �e, ��e with a greater

excess of �e.
We introduce a dimensionless parameter R to measure

the ratio of the vacuum oscillation rate to the ‘‘very fast’’
neutral current rate

R ¼ ð�m2ÞðGFnð0ÞjpjÞ�1 � 10�9; (23)

where the estimate is for the conditions that we describe
above, using the solar neutrino value �m2 � 10�4. In our
numerical studies, we have looked at the region 10�8 <
R< 10�2, with fixed, physical sin2ð2�vacÞ ¼ :86.

In our first example we choose � to be positive, which
corresponds to the ‘‘inverted hierarchy.’’ We look at the
eigenvalues of the matrix M of (21) in the case g ¼ :2,
which corresponds to a �e surplus of roughly ð�e � ��eÞ= ��e

of 10%, obtaining, among the 12 eigenvalues, 	i one
complex conjugate pair with imaginary part,

Im ½	� ¼ :66½GFR�1=2; (24)

where the exponent 1=2 is essentially exact over a region in
which R changes by over six orders of magnitude.

Next we calculate the evolution of the system by solving
the 12 Eqs. (18) and (19) with the initial conditions given
by (22), for a range of parameters g (representing �e

excess), �, with 	 determined by keeping the value
sin2ð2�Þ ¼ fixed.

In the example shown, we took an electron density
corresponding to matter with a density of 5� 1011 gc�3,
and electron fraction Ye ¼ :4. We take a neutrino density
n� for each species given by a thermal density at a tem-
perature of 7 MeV; and for definiteness neff ¼ :2n�, and
g ¼ :2 as above.

Again we have calculated the development as a function
ofR over the range 10�1 >R> 10�7. Results are shown in
Fig. 1 for the case R ¼ 10�5. For our range of R we find

that the first peak corresponding to total flavor takeover
comes at a mixing time tmix,

t�1
mix ¼ GFneff½R�:56; (25)

where the fit is (within our precision) exact over six dec-
ades as we change R. We have no insight into this law,
except insofar as we anticipated something close to R:5

dependence, based on the eigenvalue dependence noted
above. Of course we would not have anticipated an exact
R:5 law, since the system is completely into a nonlinear
domain by the time of maximal mixing.
Now extrapolating to the value R ¼ 10�9 appropriate to

neutrinos with average number density corresponding to
temperature T ¼ 7 MeV and energies of order 20 MeV we
find that the first turnover of flavor occurs in a distance
�30 cm.
Keeping the beam configuration and the initial assign-

ments fixed as above we have varied the parameters in the
solutions to see if there are qualitative sensitivities:
a. Changing the all-over neutrino density, n�, (i.e. the

temperature) or the ratio, neff=n�, (i.e. the scale of the
initial asymmetry) is unimportant. It is true that with a
smaller asymmetry the flavor exchange will be slower, but
for the case of our parameter region the exchange will still
be fast measured in terms of other time scales in the
problem. In particular the turnover region is small com-
pared to the (rather idealized) distance between a �e sur-
face and a �x surface (of last scatterings).
b. Changing the electron density is also not at all inter-

esting; a change by a factor of 2 typically makes a change
of no more than 10% in the position of the tipping point.
c. For the case of the ‘‘normal’’ hierarchy we get insta-

bility only for very small �e excess. This observation

FIG. 1. Plot of the changing �e, �x asymmetry in the upward
hemisphere, �1 � �2, for the case R ¼ 10�4 and inverted hier-
archy, where h�f1;2gi are the respective densities of the two

flavors as measured in the units neff . The initial value, �1 �
�2 ¼ �1 indicates total occupancy of our subset of states with
�x’s. The unit of time is the inverse of the fast rate GFneff .
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agrees completely with the findings of Ref. [6]. We would
map out the region of instability in more detail, except that
the results of the next section, where the initial angular
distributions are taken to be more complex, provide a much
likelier mechanism for rapid mixing in the case of the
normal hierarchy.

d. Ordinary scattering is very unlikely in the turnover
times that correspond to Fig. 1. But we could think of
including it to see where the effect of damping by scatter-
ing leaves the distributions after many, many oscillations of
the type shown in Fig. 1. Note that in the data shown the
time-averaged occupancies retain most of the initial asym-
metry, in spite of the spikes to reversed occupancy. Taking
damping from scattering, following the prescriptions of
McKellar and Thomson [18] (where, in the monoenergetic
idealization the effects are just a damping term in equations
for the off-diagonal parts of the density matrix), we indeed
find near zero asymmetry and little residual oscillation
after only one or two scattering times. We could not do
these calculations using the physical values of the parame-
ters, however, because this would have required hundreds
of the oscillations of which two are shown in Fig. 1.
However, in the next section we find that with more chaotic
initial conditions we get complete mixing in the time
average at shorter times and without scattering.

IV. MORE COMPLEXITY

Wemove to better coverage, with 14 rays replacing the 6
in the simulations of the preceding section. To the earlier
configuration of rays we add the eight beams that make an
angle of=4with the z axis and are positioned in the x, z or
y, z planes. For the four of these beams in the upward
hemisphere, we assign common initial values zu, �zu that
interpolate between the upward and horizontal beams of
(22),

zuð0Þ ¼ �:5þ �=2; �zuð0Þ ¼ �1: (26)

Similarly for the four new beams in the downward hemi-
sphere, with common initial values zd, �zd, where we inter-
polate between the completely inward ray in (22) and the
horizontal rays to get the common values

zdð0Þ ¼ :5þ 3�=2; �zdð0Þ ¼ �:5: (27)

We easily confirm the qualitative conclusions of the last
system, in this somewhat finer-grained simulation of the
same physics. That is to say, we again find an instability
with growth rate proportional to the geometric mean be-
tween the very fast rate GFn� and the ordinary vacuum
oscillation parameter, with nearly the same coefficient and
limitations of parameter domains, and a detailed plot re-
capitulating Fig. 1.

Next we put independent random variations in the 28
initial values. Unfortunately, a whole landscape of new
possibilities arise. To quantify this in an example we return

to the linearized instability condition based on the eigen-
values of M of (21) in our bigger space, but now adding
independent variations �zið0Þ, ��zið0Þ, distributed ran-
domly on the interval f�:05; :05g. We begin by turning
off the neutrino mass, �m2 ¼ 0. For the case of the elec-
tron excess parameter, � ¼ :1, we find that somewhat over
50% of the time there is at least one complex eigenvalue of
M. Note that the hierarchy is not an issue at this point since
�m2 ¼ 0. The �e excess still can matter; when we increase
the excess �e parameter to � ¼ :2 the probability of a
complex eigenvalue decreases to around 25%.
When we proceed to calculate the evolution from the full

Eqs. (18) and (19), we find that in almost every case with a
complex eigenvalue there is rapid mixing of flavors among
the rays that go upwards and the rays that go downwards,
but it is more irregular than the behavior shown in Fig. 1.
We show a typical example in Fig. 2 for the case R ¼ 10�4,
where results for both signs of �m2 are plotted.
We note that the differences between the normal and

inverted sign are minor. In Fig. 3, we show a calculation
with the same initial conditions but for the valueR ¼ 10�5.
For even smaller values of R all visible differences

between normal and inverted hierarchies disappear. For
the range of values 10�6 <R< 10�2 we find that (25)
can be replaced by

t�1
mix ¼ GFneff½R�:18; (28)

although the fit is no longer perfect. In any case the flavor
mixing is even faster than that estimated in the last section,
and it is much more thorough.

FIG. 2. For a 14 beam case with the initial conditions as
specified in (22), (26), and (27), with small (10%) initial irreg-
ularities introduced so that there is a growing mode in the
linearized equations even in the absence of neutrino mass terms.
Plot of the changing �e, �x asymmetry in the upward hemi-
sphere, �1 � �2 where h�f1;2gi are the respective densities of the
two flavors as measured in the units neff . The initial value �1
indicates total occupancy of our subset of states with �x’s. The
unit of time is the inverse of the fast rate GFneff . The solid curve
is for the case of inverted hierarchy; the dashed curve is for the
case of normal hierarchy.
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As an example we take initial conditions defined by
beginning with neutrino number densities characteristic
of equilibrium at T ¼ 7 MeV, then shift 20% of the
down-moving �x, ��x to up-moving states, and do the
reverse for the �e, ��e distributions. In this case we find
total mixing in the time corresponding to 0.2 cm. of neu-
trino path. In general it is clearly not the detailed calcu-
lation of evolution, as shown in Fig. 2, that is important, but
rather the simple linearized analysis that detects a growing
mode.

The latter depends on the scale of the anisotropies only
through the fact that the parameter g of (22) measures the
amount of �e relative to the up-down asymmetric part of
the main �, �� distributions. Thus scaled-down anisotropies
in the presence of a big �e excess lead to a smaller chance
of instability, according to our earlier analysis.2 We con-
clude, however, that if the angular distributions are any-
where nearly as irregular as the usual quantities displayed
in the results of simulations of the core physics (e.g. Ye),
then there should be many opportunities for instability.

V. EXAMINATION OF THE MEAN-FIELD
APPROXIMATION

Although we do not find it obvious from the literature,
we believe that getting from the underlying field theory to
the evolution equations for the density matrices involves
two separate steps that need to be examined separately.

(1) Replacing the Hamiltonian by the forward
Hamiltonian of (2).

(2) Making the ‘‘mean-field’’ assumption (9).
The first question is: why do we believe that it is legiti-

mate to ignore almost all of the terms in the neutrino-
neutrino interaction that correspond (in Born approx.) to
scattering at a finite angle? Clearly it is because we are

looking for an index of refraction effects, in a sense of
orderGF, rather than scattering, where cross sections are of
order G2

F.
This oversimplifies; the domains do overlap. For ex-

ample, in considering neutrinos passing through an inho-
mogenious sea of electrons, density fluctuations on a scale
much greater than the � wavelength, it is correct to scatter
from a space varying index of refraction (coming from the
forward interaction Hamiltonian) in place of explicitly
adding up waves coming from the small angle scattering
on each electron. But are we sure that when neutrinos are
the target and are themselves subject to flavor manipulation
from the beam, the index of refraction matrix from forward
processes embodies all of the physics? Or could small
angle (rather than forward) terms enter the analysis in
some nastier way?
That said, and accepting the applicability of the forward

Hamiltonian, over time periods for which scattering is
small, we can ask about the validity of the mean-field
approximation. The essence of the question is captured
using a truncated form of the neutral current interaction.
We return to the effective Hamiltonian (16) and discard the
oscillation terms and all antiparticle operators, and also
insert a parameter � multiplying the term in which the
operators do not change the flavor,

H ¼ G
X

;�

½2ry
r� þ �z
z��½1� cos�
;��: (29)

We take only an up beam A and a down beam B, and
change to the notation appropriate to a system of N spin
1=2 particles in group A and N in group B,

z1 ¼
X
i�A

�i
3; z2 ¼

X
i�B

�i
3;

r1 ¼
X
i�A

�i
ðþÞ; r2 ¼

X
i�B

�i
ðþÞ:

(30)

The (mean-field) evolution equations are

i
d

dt
r1 ¼ Gðz1r2 � �r1z2Þ;

i
d

dt
r2 ¼ Gðz2r1 � �r2z1Þ;

(31)

and

i
d

dt
z1 ¼ Gðr1r�2 � r�1r2Þ; i

d

dt
z2 ¼ Gðr2r�1 � r�2r1Þ:

(32)

We take initial z1ð0Þ ¼ N, r1ð0Þ ¼ 0 (spins up); z2ð0Þ ¼
�N; r2ð0Þ ¼ 0 (spins down). The eigenvalues that deter-
mine stability in the linearized system are easily read off

from (31), 	 ¼ �GN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
. First we consider the case

� ¼ 0 where the eigenvalue shows instability. We have
two groups of spins with no intragroup interactions but for

FIG. 3. The same conditions as shown in Fig. 2 but with a
neutrino mass parameter R ¼ 10�5, instead of 10�4, showing
almost the same behavior for the normal and inverted hierarchy
cases.

2Of course, the �e excess is very time dependent, decreasing
rapidly during the duration of the neutrino burst.

MULTIANGLE INSTABILITY IN DENSE NEUTRINO SYSTEMS PHYSICAL REVIEW D 79, 105003 (2009)

105003-7



each pair, one from one group and one from the other, an
interaction of the ‘‘x� y’’ model form [19]. Now we take
the initial values of the spins in group #1 all to point in a
direction a very small angle
 from the ẑ axis, and the spins
from group #2 to point exactly down. The question is: what
is the time scale for spin mixing from the above mean-field
equations? Since the growth of the off-diagonal operator is
as

r1 � eGNt
: (33)

The answer is tmix � ðGNÞ�1ðlog
Þ�1.
Next we ask what happens when 
 ¼ 0, where the

mean-field equations say there is no evolution at all. In
Ref. [19] we reported complete calculations based on (29)
for cases of N ¼ 512 (and fewer) spins in each group. We
found excellent fits to the form

tev ¼ evol: time to 50% mixed ¼ ðGNÞ�1 logN; (34)

a result that is backed up by unrigorous analytical work
[20].

Thus although it is technically correct to say that this
correction to the mean-field approximation vanishes in the
limit of a large number of particles, it is only by a loga-
rithm, and logarithms are never huge. That said, the com-
parison of the mean field with an initial tilt 
 with the full

 ¼ 0 solution shows that the initial-tilt produces more
rapid transformations as long as 
>N�1.

This is effectively the case in our present application.3

Therefore in our present application we assume that the
mean-field assumptions are justified. We offer a caveat
here, however; we have not carried out the real 2N spin
solution when oscillations are present, where, for all we
know, the outcome could be different than the mean-field
case. It is not guaranteed that the solution will interpolate
in a simple way between the two limiting cases that we
have analyzed.

We leave this problem for the future, but we can sharpen
it a little here. Addressing the model of (29) in Ref. [19],
we also reported results for the case � ¼ 1, where the
eigenvalues 	 are real. Here we found was no speed-up

of the form (34). Instead we found, tev �G�1N�1=2,

slower by a factor of
ffiffiffiffi
N

p
= logN. This can be characterized

as the perturbative time, since for small times, the transi-
tion probability for a particular spin is

prob �G2Nt2: (35)

Thus our conjecture is that when the linear response cal-
culation gives an exponentially growing mode, then the
real solution gives speed-up as defined in (34). In contrast,

when the eigenvalues, 	, are real, we get the perturbative
rate.
More evidence for the latter is found in Friedland and

Lunardini’s analytic solution [21] of a model of the latter
category (real eigenvalues for the perturbations in the
mean-field equations). Their model was basically that of
(29) with � ¼ 1 together with the assumption of isotropy,
½1� cos�
;�� ! 1.4

VI. DISCUSSION

We have made a case for rapid spectrum-angle mixing
for systems that have two kinds of neutrinos and antineu-
trinos and complex angular distributions. We fully expect
the case with all three flavors, and more mixing parame-
ters, to mix rapidly in every direction; a primitive example
was worked out in Ref. [11].
To compare with other authors’ results in related calcu-

lations, first we note that many published examples of
models with flavor mixing in the supernova region depend
on MSW transitions over a distance in which the electron
density is changing significantly. By contrast, our instabil-
ities and rapid flavor exchange do not depend on changing
the electron density and, in any event, can occur in regions
with parameters that are far from resonance parameters, as
in the region just under the neutrino surface that we fo-
cused on here. The transition distances that we find in our
calculations, of order 1 cm, are also much shorter than the
resonance regions that appear at smaller electron densities.
There is a close relation of results of this paper to the

recent work cited in Refs. [5,6]. As we noted earlier, our
underlying equations are the same as those of [5,6] (except
for the extensions discussed in Sec. V). There are technical
differences: the authors of these references have assumed
axially symmetric distributions and have discretized with a
multipole expansion; we have discretized with angular bins
and have gone beyond axial symmetry.
Indeed, the most interesting result of our paper, the

possibility of ‘‘very fast’’ instabilities, with mixing rate
of order GFneff demanded (at least in the examples that we
found) some azimuthal dependence in the original angular
distributions. Given the chaotic environment in the region
just under the neutrino surface we are fairly confident that a
typical neutrino passing through the region will at some
point find itself in a region with such a complex angular
distribution.
In these examples standard stability analysis, starting

from the solution of the nonlinear equations with flavor
oscillation turned off and then analyzing the linear pertur-
bations provides both the ‘‘explanation’’ for the fast insta-

3We assume that the effective value of N would be the number
of neutrinos in a volume of dimension of some neutrino coher-
ence length, not that we know exactly how the latter should be
defined.

4The same solution technique can be used to solve the case of
� ¼ 1 with two opposed beams that we discussed above, and
also the complementary case of � ¼ 0 and isotropy, in which
case the mean-field eigenvalues are 	 ¼ f0; z1ð0Þ þ z2ð0Þg, real
for any initial configuration. The present remarks apply to the
solutions of similar models in Refs. [22] as well.
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bilities and an efficient way of searching for unstable
regions in the initial angular and flavor distribution space.

Turning to the case of our merely fast instabilities, where
the evolution rate is of order the geometric mean of the
rate, GFneff , and the vacuum oscillation rate, it is clear that
the phenomena discussed in the present paper are essen-
tially the same as those in Refs. [5,6] (and, for that matter
in the earlier Ref. [11]). The rates are of the same order in
the essential parameters. In addition we confirm the con-
clusion of Ref. [6] that in case of the normal mass hier-
archy, there will be no significant rapid mixing unless the
neutrino excess (over antineutrinos) is so small as to pre-
clude application to the supernova scenario, except possi-
bly at quite late times (the deleptonization time scale being
less than the cooling time scale.)

Notwithstanding the clear general agreement between
our results and those of Refs. [5] and subsequent works by
the same group, with respect to our case of fast evolution,
the respective explanations given for the behavior are
completely complementary. Reference [5] presents an in-
troduction in terms of behaviors of models with isotropy
but with the flavor oscillations included. This discussion is
particularly illuminating with respect to showing the great
difference between the cases of normal and inverted hier-
archy. By contrast, our reference system is one with no
flavor oscillations but with initial flavor-angle correlations.
The explanation then takes the form of looking for a certain
kind of zero modes in the linearized perturbation equa-
tions. We believe that these conditions can serve to map out
regions of instability without doing simulations of the time
dependent behavior for the whole system.

But we reiterate that we find no trace in other published
work of the very fast evolution, which for us is character-
ized by a growing mode, rather than a zero mode, in the
perturbation equations, and which appears to be nearly as
potent in the case of normal hierarchy as in the case of
inverted hierarchy.

Furthermore, our work is directed toward the physics in
the region just under the neutrino surface in the supernova
while all of the work in Refs. [1–7] has focussed on the
region downstream from the neutrino surface. In this latter
region, authors have been able to begin with a simplifying
assumption that is not available to us; namely, the bound-
ary condition of spherically symmetrical flow with all
neutrinos directed outwards on this initial surface.
Leaving aside the question of the realism of this boundary
condition, there are major complications specific to this
outer region:

(1) There are big variations within the transition region
in the dynamical ingredients for the phenomena, since the
angular spread of the beam is getting smaller and smaller
as one goes downstream. The couplings are proportional to
ð1� cos�Þ, with theta the angle between two bins, and
these geometrical factors change appreciably over the
characteristic instability distance (which is much longer

than ours, even for the merely fast case since the densities
are smaller and the effective neutral current couplings less
because of the small angles �). Clearly one needs much
finer-grained binning in this case.
(2) The background electron density also changes over

the typical length scale for many examples of mixing in
this region; with the changing oscillation parameters
MSW-like mixing effects are entangled with the effects
of �-� interaction.
Discussion of these complications is outside of the scope

of our methods, which are better suited to the interior
problem in which, over the distances that we consider,
the environment does not greatly change.
As a practical matter, of course, the motivation for

understanding the models of mixing downstream from
the neutrino surfaces would be much less if our scenario
of near flavor equilibration in the region under the neutrino
surfaces were to be sustained. Once the flavors are mixed,
they do not become unmixed.
We could ask how much it matters whether or not the

emerging energy spectra are partially or fully homogen-
ized. There is strong evidence in the literature [23–25] that
it would matter significantly for the R process nucleosyn-
thesis yields, though we believe that there is no single
graph showing the effects with precision, as there is other
complex physics involved. An interesting question is that
of whether or not it matters to the actual explosion dynam-
ics. The neutrino heating in the region above the neutrino
surfaces is augmented appreciably in a scenario in which
�e’s get boosted in average energy by trading spectra with
�x’s.
Of course, feeding our detailed considerations into a big

code for the supernova is out of the question. The hydro-
dynamics plus neutrino transport problem has not been
formulated in a way that admits collective effects of the
kind we have discussed here, so far as we know; and there
seems little possibility that it could be in a way that allowed
whole-star computations in any reasonable amount of
computer time.
But it would be easy for the numerical simulators to

incorporate the limiting case of our suggestion, total in-
stantaneous flavor homogenization everywhere within the
outer neutrino surface, putting it by hand into the codes.
The third consequence, and most obvious observable

consequence of our considerations, is the effect on the
neutrino pulse signals from a nearby supernova. Much
has been written on this subject, but the chance of obser-
vational data within the near future is very small, and loose
ends can be cleared up after the fact, since the design of
observing apparatus appears not to depend on the details of
the predictions.
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