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We report precise simulations of �4 theory in the Ising limit. A recent technique to stochastically

evaluate the all-order strong coupling expansion is combined with exact identities in the closely related

Aizenman random current representation. In this way estimates of the renormalized coupling close to the

continuum limit become possible with unprecedented precision and yet low CPU cost. As a sample

application we present results for the unbroken phase of the Ising model in dimensions 3, 4 and 5 and

investigate the question of triviality by studying a finite size scaling continuum limit.
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The�4 theory of a real scalar field is the starting point of
many textbooks on quantum field theory. It also plays a
phenomenological rôle as an extremely simplified model
of the Higgs sector of the standard model. In [1], building
on [2], it was discussed that the theory is trivial in dimen-
sion four, meaning that no interaction can exist in the
continuum limit. For applications this means, that the
effective theory with an unremovable cutoff in place has
only a limited energy domain of validity. This important
property is rigorously known to hold above four dimen-
sions [3,4], but in D ¼ 4 we have to rely so far on numeri-
cal checks. In this paper we report on the discovery of a
new numerical strategy and algorithm, which enhances the
precision of such checks by orders of magnitude as the
continuum limit is approached. Also novel is the use of a
finite volume renormalization scheme in this context.
Because of both improvements we can progress much
deeper into the universal scaling region than in previous
computations like [5]. We find a ‘‘borderline’’ agreement
with standard perturbation theory for the cutoff depen-
dence of the interaction strength which calls for more
study.

We here consider the Ising limit of �4 on a
D-dimensional hypercubic lattice of extent L and lattice
spacing a in all directions. We mostly use lattice units a ¼
1 from here on, but occasionally reintroduce a to empha-
size cutoff dependencies. Physical information is extracted
via n-point correlation functions

hsðx1Þsðx2Þ . . . sðxnÞi ¼ Zðx1; x2; . . . ; xnÞ
Zð;Þ ; (1)

with

Zðx1; x2; . . . ; xnÞ ¼ 2�V
X

s

e
�
P

l¼hxyi sðxÞsðyÞsðx1Þsðx2Þ . . . sðxnÞ

(2)

and the volume V ¼ LD. We sum over all Ising configu-
rations sðxÞ ¼ �1 and Zð;Þ is the proper partition function
with no field insertions. On our finite lattice Zð:Þ is analytic
for all values of �. We parametrize the strong coupling

expansion in � by summing in addition to s over an integer
link field kðlÞ ¼ 0; 1; . . . ;1
Zðx1; x2; . . . ; xnÞ ¼ 2�V

X

s;k

w½k� Y
l¼hxyi

½sðxÞsðyÞ�kðlÞsðx1Þ

� sðx2Þ . . . sðxnÞ; (3)

with the multiple Poisson weight

w½k� ¼ Y

l

�kðlÞ

kðlÞ! : (4)

For each k the s sum can now be performed and leaves
behind a constraint for k:

Zðx1; x2; . . . ; xnÞ ¼
X

k

w½k��Q½k�;X: (5)

The Kronecker � enforces the coincidence of two sets. The
source set Q½k� consists of the sites surrounded by an odd
total number of kðlÞ:

Q½k� ¼
�
x j X

l;@l3x

kðlÞ ¼ 1ðmod2Þ
�
: (6)

The insertion set X coincides with ðx1; x2; . . . ; xnÞ if they
are mutually different, but is more generally given by

X ¼
�
x j X

n

i¼1

�x;xi ¼ 1ðmod2Þ
�
: (7)

Aizenman [3,6] has used the above representation of the
Ising model to obtain rigorous correlation inequalities. He
calls fkðlÞg random currents and the sets Q ¼ X defects or
external sources. Among his results the following is of
interest here as it can be turned into an efficient numerical
algorithm. From Proposition 5.1 in [6] the identity

Zcðx1; x2; x3; x4Þ ¼ �2
X

k;k0
w½k�w½k0��Q½k�;X12

�Q½k0�;X34

�Xðx1; x3; kþ k0Þ (8)

with the connected part of Zc of Z

PHYSICAL REVIEW D 79, 105002 (2009)

1550-7998=2009=79(10)=105002(5) 105002-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.105002


Zcðx1; x2; x3; x4Þ ¼ Zðx1; x2; x3; x4Þ � Zðx1; x2ÞZðx3; x4Þ
� Zðx1; x3ÞZðx2; x4Þ
� Zðx1; x4ÞZðx2; x3Þ (9)

follows. The sets X12 and X34 are formed as in (7) but from
only two points each. The cluster incidence function X 2
f0; 1g is one if x1 and x3 are in the same bond percolation
cluster built by bonds that are active on links where kðlÞ þ
k0ðlÞ> 0 holds in the doubled random current system. Note
that the pairs fx1; x2g and fx3; x4g are connected automati-
cally for k and k0 that contribute.

In the Monte Carlo community it has recently been
found [7–9] that it is both possible and advantageous to
simulate the untruncated strong coupling expansion in-
stead of the original path integral (or sum) over fields. In
a simple variant of the worm algorithm [7] one simulates
the ensemble corresponding to the partition function

Z ¼ X

u;v;k

w½k��Q½k�;Xuv
(10)

with a corresponding definition of expectation values of
observables hhO½u; v; k�ii. In the sum u and v run over all
lattice sites.

To simulate this ensemble our elementary update step is
as follows:

(i) Pick at random one of the 2D links emanating from u
and call it l ¼ hu~ui;

(ii) assign a new value ~kðlÞ to this link with probability

p~k ¼ expð��Þ�~k=~k!;
(iii) if ~k� k is odd, move u ! ~u; otherwise, leave u

unchanged.
If we alternate these steps with similar ones for v, we have
a correct algorithm for (10). Ergodicity may be shown by
steps deforming an arbitrary configuration to the trivial
one. This local heat bath has proved to be slightly superior
to Metropolis proposals with kðlÞ ! kðlÞ � 1. It is not
difficult to show that the Ising two-point function is now
given by the ratio of histograms

hsðxÞsð0Þi ¼ hh�x;u�vii
hh�u;vii ; (11)

where we have used translation invariance. This implies, in
particular, that the susceptibility is given by

�2 ¼
X

x

hsðxÞsð0Þi ¼ ½hh�u;vii��1: (12)

To now make use of (8) for the connected four-point
susceptibility

�4 ¼
X

x;y;z

hsðxÞsðyÞsðzÞsð0Þic (13)

with subtractions as in (9), all we have to do is simulate two
independent replicas of (10) and sum over all xi in (8) to
arrive at

� V�4 ¼ 2
hhXðu; u0; kþ k0Þii

hh�u;v�u0;v0 ii : (14)

In total we thus have derived

� 1

V

�4

ð�2Þ2
¼ 2hhXðu; u0; kþ k0Þii: (15)

The right-hand side is obviously bounded between 0 and 2.
In particular, the lower bound corresponds to the Lebowitz
inequality. Our estimator reflects this property manifestly,
and the subtraction of disconnected parts has been
achieved analytically. We expect this to lead to a superior
precision for �4 compared to conventional Monte Carlo
procedures since they involve substantial numerical can-
cellations here with the correspondingly enhanced relative
errors.
The previous expression is strongly reminiscent of a

standard definition of a dimensionless universal renormal-
ized coupling constant in �4 theory including the Ising
limit with its infinite bare coupling. It is given by

gR ¼ � �4

ð�2Þ2
mD; (16)

where m is a the renormalized mass.
Often, for example, in [1,2], the mass is defined in terms

of the two-point function in an infinite volume at vanishing
momentum.We substitute this by a definition using the two
smallest possible momenta in a periodic volume as in [8].
The two-point function (11) in momentum space may be
measured by

~GðpÞ ¼ hhcosðpðu� vÞÞii
hh�u;vii : (17)

Our definition of a renormalized mass m is

m2

m2 þ p̂2�
¼

~Gðp�Þ
~Gð0Þ ¼ hhcosðp�ðu� vÞÞii; (18)

where we use the smallest momentum

p� ¼ ð2�=L; 0; 0; . . . ; 0Þ; ap̂� ¼ 2 sinð�a=LÞ (19)

and average over itsD possible directions. The rationale of
the definition (16) is that it is a dimensionless ratio with the
same number of fields in the numerator and denominator
and hence it is expected to have a universal continuum
limit. As it vanishes for Gaussian theories it is a measure of
the interaction strength. We are thus led to the definition

g ¼ 2hhXðu; u0; kþ k0Þii � zD; z ¼ mL: (20)

Combining triviality with finite size scaling we inves-
tigate the proposition that the continuum limit at fixed z
forces g & 0. As for other questions on nonperturbative
ultraviolet renormalization [10–12] we find it advanta-
geous to employ a finite volume renormalization scheme
also here. We shall perform a sequence of simulations of
growing L � L=a where we tune � such as to maintain a
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fixed value z ¼ 2. The advantage of keeping L finite and
not too large in physical length units m�1 is that for the
manageable values of L=a we expect to be closer to the
universal continuum limit. If the theory is trivial, we should
find g ! 0 as L=a ! 1. This is expected [3,4,6], for D>
4, and likely, although only at a logarithmic rate, for D ¼
4:

To get confidence in our algorithmic implementation we
first reproduced the results of cluster simulations in [5]
within errors. For the 204 lattice our error in g for a
comparable number of flops is about 12 times smaller.

In Table I we compile our data. Each line corresponds to
106 iterations with V link updates in each of the two
replica. The cost is dominated by the runs D ¼ 4, L ¼
32 andD ¼ 5, L ¼ 16 with 240 hours each on a single PC.
We refer to a code running under MATLAB but importing
random numbers from the RANLUX generator [13] in C
[14]. We have insisted on luxury level 2, but this part still
accounts for only 4% of the CPU time. The main code
could clearly be accelerated substantially. Derivatives ofX
and z with respect to ln� can be measured as connected
correlations with

P
lkðlÞ and their quotient yields our esti-

mate for @X=@z. In the end it emerges as a certain non-
linear function of primarily measured observables and it as
well as all other errors is estimated by the tools provided in
[15]. We take its measured value in each data set as a fixed
constant and then form, now with X and z as functions of
primary quantities, the combination

X ðz ¼ 2Þ ¼ X þ ð2� zÞ@X=@z: (21)

A look at Table I shows that this is a tiny but sometimes
significant correction. We can however safely neglect the
error of @X=@z and higher terms of the Taylor expansion.
It came as a pleasant surprise that even where no system-
atic correction is needed the statistical fluctuations in this
combination partially cancel and thus reduce the error.
This saves more than another factor of 2 in run time. The

compensation is actually plausible: When sampled graphs
are ‘‘bigger’’ than average, X goes up but the mass goes
down. In Table I we note that relative errors are practically
independent of L=a, which means complete absence of
critical slowing down. Nevertheless the (short) autocorre-
lations do have to be taken into account when errors are
determined.
In Fig. 1 all coupling data are plotted. Fits (full and

dashed lines) all have acceptable �2. TheD ¼ 3 values are
almost cutoff independent and approach a finite continuum
value. The fit is Aþ Bða=LÞ! with the corrections to
scaling exponent [16] ! ¼ 0:85. Because of the flatness,
! can vary over a wide range including ! ¼ 1. For D ¼ 5
the full line is Aþ Ba=L omitting the L ¼ 8 lattice. The
dashed fit is Aa=Lþ Bða=LÞ2. A 325 simulation would be
of interest to better verify triviality for this case. The D ¼
4 data show more curvature and the dotted lines just

TABLE I. Simulation results for D ¼ 3, 4, and 5.

D L=a � z X @X=@z Xðz ¼ 2Þ
4 8 0.148 320 1.9981(27) 0.392 35(96) �0:3200ð14Þ 0.391 75(63)

4 10 0.148 748 1.9949(26) 0.372 56(92) �0:3193ð14Þ 0.370 93(62)

4 12 0.148 996 1.9992(26) 0.354 93(91) �0:3165ð15Þ 0.354 69(60)

4 16 0.149 270 1.9988(25) 0.331 61(91) �0:3129ð16Þ 0.331 25(58)

4 22 0.149 449 2.0085(24) 0.308 31(86) �0:3030ð16Þ 0.310 88(57)

4 32 0.149 571 1.9956(24) 0.290 28(83) �0:2993ð20Þ 0.288 96(55)

3 8 0.217 350 1.9946(36) 0.593 87(100) �0:2929ð13Þ 0.592 28(76)

3 10 0.218 560 1.9942(37) 0.586 34(102) �0:2950ð13Þ 0.584 63(76)

3 16 0.220 153 2.0047(37) 0.572 40(109) �0:3023ð14Þ 0.573 82(77)

3 32 0.221 143 2.0032(39) 0.563 38(118) �0:3076ð17Þ 0.564 35(76)

5 8 0.113 052 2.0041(18) 0.191 26(59) �0:2390ð13Þ 0.192 23(45)

5 10 0.113 336 1.9993(16) 0.160 37(53) �0:2170ð13Þ 0.160 22(41)

5 12 0.113 503 1.9937(15) 0.138 84(47) �0:1957ð12Þ 0.137 60(38)

5 16 0.113 674 1.9918(13) 0.109 44(39) �0:1656ð12Þ 0.108 09(33)

0 0.05 0.1
0

2

4

6

8

10

12

FIG. 1 (color online). All measured couplings with fits (full
and dashed lines) discussed in the text. Error bars are barely
visible within the symbols.
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connect the data points. A naive ‘‘eyeball’’ extrapolation in
this plot against a=L would probably arrive at a nonzero
value while on theoretical grounds we shall argue now for
the dashed-dotted line extrapolating to the origin at a
vertical slope.

To confront the 4D data with the theory [1,2] we plot
against ½lnðL=aÞ��1 in Fig. 2. We solve the Callan
Symanzik equation for the cutoff dependence of the cou-
pling starting from L ¼ 32. For this plot we have changed
to the coupling

~g ¼ g½1þ ðza=LÞ2=8��2 ¼ gþ Oða2Þ (22)

differing by small cutoff effects only. For it in contrast to g
there are no tree level artifacts in the � function and also
the cutoff corrections of the one- and two-loop terms are
more uniform. We have worked out the lattice perturbation
theory for our scheme up to two loops and could therefore,
by relating to [1], also obtain the three-loop term (without
cutoff effects). Details will be reported elsewhere [17]. We
here draw the following conclusions: The one-loop result is
accurate to a few percent for the scale changes considered.
For instance, it accounts for 97% of the change L=a ¼
32 ! 16. The two-loop term has a reasonable relative size
but the wrong sign. The three-loop term is the first one that
is scheme dependent and hence depends on z. It is very
large for z ¼ 2 which suggests that renormalized perturba-
tion theory as an asymptotic expansion here fails to im-

prove the leading order. It rather is at its limit with only the
one-loop approximation being numerically accurate at the
percent level. Nonetheless it seems convincing to now trust
the one-loop approximation for a < L=32 (for z ¼ 2)
which implies a vanishing g in the continuum limit. On
the way to it, also the higher-loop terms should eventually
cooperate to improve the approximation. The dashed-
dotted curve in Fig. 1 shows the one-loop evolution con-
tinued. We plan a more detailed discussion of the pertur-
bative series and data for other z values in [17].
We end on a more technical theme concerning the strong

coupling simulation. The order of the diagrams that the
algorithm has picked to be important for our physics is
shown in Fig. 3. The peak is at the order of the correlation
volume V� ¼ ðamÞ�4 and the width seems to be controlled

by ðL=aÞ2.
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