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Examples of test electromagnetic waves on a Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) back-

ground are constructed from explicit perturbations of the FLRW space-times describing gravitational

waves propagating in the isotropic universes. A possible physical mechanism for the production of the test

electromagnetic waves is shown to be the coupling of the gravitational waves with a test magnetic field,

confirming the observation of Marklund, Dunsby and Brodin [Phys. Rev. D 62, 101501(R) (2000)].
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I. INTRODUCTION

Marklund, Dunsby, and Brodin [1] have made the im-
portant observation that gravitational wave perturbations
of Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) cos-
mological models coupled to weak magnetic test fields
can generate electromagnetic waves. The magnitude of
this effect has been estimated in [1]. They have demon-
strated this phenomenon using the gauge-invariant and
covariant perturbation theory of Ellis and Bruni [2]. This
theory has also been used to construct explicit solutions of
the Ellis-Bruni perturbation equations describing gravita-
tional waves propagating in FLRW universes [3] (see also
[4]) from a point of view which differs significantly from
that of [1]. The histories of the wave fronts of the latter
waves are particularly simple families of null hypersurfa-
ces which arise naturally in the FLRW space-times. In this
paper we demonstrate how test electromagnetic waves can
be constructed from these explicit gravitational waves and
how these electromagnetic waves can be viewed as arising
from the interaction of the gravitational waves with a test
magnetic field, thereby supporting the observation of
Marklund, Dunsby, and Brodin.

We utilize a test magnetic field which, by its nature, does
not perturb the isotropic cosmology but is nevertheless a
violation of isotropy. The gravitational waves we use do
perturb the isotropic cosmology and this perturbation also
breaks the isotropic symmetry since the gravitational
waves are unidirectional and thus at each point of the
isotropic cosmological model their histories have a unique
null propagation direction. The behavior of magnetic fields
in cosmological models has been extensively and carefully
studied from diverse physical viewpoints in [5–10].

The gravitational waves which we utilize in this paper
correspond to the simplest (from a geometrical point of
view) type of gravitational radiation which can propagate
in isotropic cosmologies. The histories of their wave fronts
are naturally occurring null hypersurfaces in the isotropic
cosmological models and their propagation direction in
these space-times is null, geodesic and shear-free. It is

thus of some interest to examine the Marklund, Dunsby,
and Brodin observation in terms of them. As a measure of
the strength of the gravitational waves used in this paper,
and of the electromagnetic waves which result from their
interaction with a test magnetic field, we find that the
gravitational field of the gravitational waves (the perturbed
Weyl tensor) is proportional to R�2 (see Eq. (2.34)) where
RðtÞ is the scale factor of the isotropic universe, while the
electromagnetic field (see Eq. (3.17)) is also proportional
to R�2. The coefficients of R�2 in both cases involve an
arbitrary analytic function whose appearance is a charac-
teristic of electromagnetic radiation (which is shear-free
[11] in the optical sense that the null propagation direction
in space-time, given by the gradient of the function � in
(2.28) below, is shear-free) and of shear-free (in the optical
sense) gravitational radiation [12].
The interaction of gravitational waves and electromag-

netic fields has led to proposals for a mechanism to detect
gravitational waves [13–15]. Our approach is influenced by
the fundamental paper by Szekeres [16] on the interaction
of gravitational waves with matter and with electromag-
netic waves. With the inclusion of matter many modelling
possibilities open up. For example, a recent model for the
generation of gravitational waves from matter and electro-
magnetic waves can be found in [17].
This paper is organized in the following way: in Sec. II

the relevant Ellis-Bruni perturbation equations (for tensor
perturbations) are listed and the explicit solutions derived
in [3] are summarized. Analogous test electromagnetic
waves having the same wave fronts as these gravitational
waves will be required and they are described in Sec. III. In
Sec. IV the construction of test electromagnetic waves of
the type considered in Sec. III are derived from the gravi-
tational waves of Sec. II. In addition in this section these
electromagnetic waves are shown to be capable of being
interpreted as resulting from the interaction of the gravita-
tional waves with an explicit test magnetic field. The paper
ends with a brief discussion in Sec. V.

II. GRAVITY WAVES IN FLRW UNIVERSES

We make use of a four dimensional space-time manifold
with a metric tensor having components gab in a local
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coordinate system fxag. This manifold contains a preferred
congruence of timelike world lines which are the integral
curves of a vector field having components ua in the
coordinate system fxag and which satisfies uau

a ¼ �1.
The electric and magnetic parts of the Weyl tensor Cabcd

are defined, respectively, by

Eab ¼ Capbqu
puq; Hab ¼ C�

apbqu
puq: (2.1)

These are equivalent to Cabcd and the star superscript
denotes the dual C�

apbq ¼ 1
2�ap

rsCrsbq with �abcd ¼ffiffiffiffiffiffiffi�g
p

�abcd, g ¼ detðgabÞ and �abcd the Levi-Civita permu-

tation symbol. We note that for the Weyl tensor the left and
right duals are equal. The energy-momentum-stress tensor
Tab ¼ Tba describing the matter distribution can be de-
composed with the respect to the vector field ua to read
[18]

Tab ¼ �uaub þ phab þ qaub þ qbua þ �ab; (2.2)

with� the density of matter measured by the observer with
4-velocity ua, hab ¼ gab þ uaub the projection tensor, p
the isotropic pressure, qa the energy flow measured by the
observer with 4-velocity ua and �ab ¼ �ba the anisotropic
stress. Here

qaua ¼ 0; �abub ¼ 0; �a
a ¼ 0: (2.3)

The covariant derivative ua;b is decomposed into

ua;b ¼ !ab þ �ab þ 1

3
�hab � _uaub; (2.4)

with the dot in general indicating covariant differentiation
in the direction of ua (and thus in particular _ua ¼ ua;bu

b).

Here

!ab ¼ u½a;b� þ _u½aub�; (2.5)

is the vorticity tensor (with !ab ¼ �!ba, !abu
b ¼ 0 and

square brackets denote skew symmetrization),

�ab ¼ uða;bÞ þ _uðaubÞ � 1

3
�hab; (2.6)

is the shear tensor (with �ab ¼ �ba, �
a
a ¼ 0, �abu

b ¼ 0
and round brackets denote symmetrization) and

� ¼ ua;a; (2.7)

is the expansion or contraction scalar.
In the isotropic FLRW space-times with ua the 4-

velocity of matter we have qa ¼ 0 and �ab ¼ 0 and thus
(2.2) specializes to the perfect fluid form

Tab ¼ �uaub þ phab; (2.8)

with, in addition, hbap;b ¼ 0 and hba�;b ¼ 0. We also have

in this case _ua ¼ 0, !ab ¼ 0, �ab ¼ 0 and hba�;b ¼ 0
which has the effect of simplifying (2.4) to

ua;b ¼ 1

3
�hab: (2.9)

In this case � satisfies the simplified Raychaudhuri equa-
tion

_�þ 1

3
�2 ¼ � 1

2
ð�þ 3pÞ; (2.10)

and the equations Tab
;b ¼ 0 reduce in this case to the

single equation

_�þ �ð�þ pÞ ¼ 0: (2.11)

The space-times are now necessarily conformally flat and
thus Eab ¼ 0 and Hab ¼ 0. The metric tensor gab is given
via the line-element in the Robertson-Walker form

ds2 ¼ R2ðtÞ ½ðdx
1Þ2 þ ðdx2Þ2 þ ðdx3Þ2�

ð1þ k
4 r

2Þ2 � dt2; (2.12)

with RðtÞ the scale factor, r2 ¼ ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2 and
kð¼ 0;�1Þ is the Gaussian curvature of the t ¼ constant
spacelike hypersurfaces. In these coordinates ua@=@xa ¼
@=@t and x� (� ¼ 1, 2, 3) are constant on each integral
curve of the vector field @=@t. In addition � ¼ �ðtÞ, � ¼
�ðtÞ and p ¼ pðtÞ are obtained from the scale factor RðtÞ
as � ¼ 3 _R=R with �, p given by (2.11) along with an
equation of state while RðtÞ is derived from the Friedmann
equation (whose time derivative in this case coincides with
(2.10); see, for example [18]).
In the Ellis-Bruni [2] theory perturbations of the FLRW

models, in particular, are described by the basic gauge-
invariant variables Eab, Hab, �ab, !ab, _ua, hba�;b, h

b
a�;b,

hbap;b, q
a, and �ab, which are taken to be small of first

order. The differential equations determining these varia-
bles are obtained by retaining first order small terms in the
Ricci identities, the Bianchi identities and the equations
Tab

;b ¼ 0 with Tab given by (2.2). There are two excep-

tions to this procedure: the propagation equation for �
along the integral curves of ua (Raychaudhuri’s equation),
which follows from the Ricci identities, and the propaga-
tion equation for � along the integral curves of ua, which
follows from Tab

;b ¼ 0. These equations are converted

into differential equations for the gauge-invariant variables
listed above by projecting their gradients orthogonal to ua

(see [2]). For perturbations that exclusively describe gravi-
tational waves propagating through FLRW universes we
only require the variables Eab,Hab,�ab, �

ab (the so-called
‘‘tensor’’ perturbations), with the remaining gauge-
invariant variables vanishing. The linear equations deter-
mining these first order quantities are [3]

_� ab þ 2

3
��ab � 1

2
�ab þ Eab ¼ 0; (2.13)

and

Hab ¼ ��ða
g;c�bÞfgcuf; (2.14)

from the Ricci identities and
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Ebd
;d ¼ � 1

2
�bd

;d; (2.15)

Hbd
;d ¼ 0; (2.16)

_E bt þ �Ebt ¼ �urH
ðb
s;d�

tÞrsd � 1

2
_�bt � 1

6
��bt; (2.17)

_H bt þ �Hbt ¼ urE
ðb
s;d�

tÞrsd � 1

2
�ðb
rad�

tÞa;dur; (2.18)

from the Bianchi identities. To obtain simple solutions of
these equations we look for solutions which have an arbi-
trary dependence on a scalar function �ðxaÞ by writing

�ab ¼ sabFð�Þ; �ab ¼ �abFð�Þ: (2.19)

We will then substitute these into (2.13) and (2.14) to
obtain expressions for Eab and Hab which depend on F
and its derivative with respect to �. These, along with
(2.19), are then substituted into (2.15), (2.16), (2.17), and
(2.18) to arrive at differential equations for sab and �ab.
We note that

sab ¼ sba; sabu
b ¼ 0; gabsab ¼ saa ¼ 0;

(2.20)

with similar equations holding for �ab. When the substi-
tutions indicated above are carried out the consistency of
the resulting equations requires [3]

gab�;a�;b ¼ 0; (2.21)

(the comma denoting partial differentiation with respect to
xa) so that the hypersurfaces �ðxaÞ ¼ constant are null,
and the following consistent equations (also consistent
with (2.20)) must hold:

sab�;b ¼ 0; �ab�;b ¼ 0; (2.22)

along with

sab;b ¼ 0; �ab
;b ¼ 0; (2.23)

the propagation equation for sab along the generators of the
null hypersurfaces �ðxaÞ ¼ constant,

sab;c�;c þ
�
1

2
�;d

;d �
1

3
� _�

�
sab ¼ � 1

2
_��ab; (2.24)

and the wave equation,

sab;d;d �
2

3
� _sab þ

�
� 1

3
�2 þ 3

2
p� 1

6
�

�
sab

¼ � _�ab � 2

3
��ab: (2.25)

The null hypersurfaces �ðxaÞ ¼ constant are the histories
in the FLRW space-times of the wave fronts of the gravi-
tational waves described by these perturbations (see [3,4]).
To exhibit explicit solutions we first choose these null
hypersurfaces. To obtain some naturally occurring null

hypersurfaces which will lead to surveyable solutions we
start by writing the Robertson-Walker line-element (2.12)
in the form [19]

ds2 ¼ R2ðtÞfdx2 þ p�2
0 f2ðdy2 þ dz2Þg � dt2; (2.26)

with p0 ¼ 1þ ðK=4Þðy2 þ z2Þ, K ¼ constant, f ¼ fðxÞ.
The following cases are allowed: (i) if k ¼ þ1 then K ¼
þ1 and fðxÞ ¼ sinx; (ii) if k ¼ 0 then K ¼ 0, þ1 with
fðxÞ ¼ 1 when K ¼ 0 and fðxÞ ¼ x when K ¼ þ1; (iii) if
k ¼ �1 then K ¼ 0, �1 with fðxÞ ¼ 1

2 e
x when K ¼ 0,

fðxÞ ¼ sinhx when K ¼ þ1 and fðxÞ ¼ coshx when K ¼
�1. The details of these special cases are given in [3]. The
following equations are satisfied in the cases (i)–(iii):

f00 þ kf ¼ 0; ðf0Þ2 þ kf2 ¼ K; (2.27)

with the prime denoting differentiation with respect to x. A
convenient family of null hypersurfaces is given by

�ðxaÞ ¼ x� TðtÞ ¼ constant; (2.28)

with dT=dt ¼ R�1.
Using the null hypersurfaces (2.28) and the Eqs. (2.23),

(2.24), and (2.25) for sab,�ab subject to (2.20) (and similar
conditions on �ab) and (2.22) yields solutions in the form

sab ¼ �smamb þ s �ma �mb; (2.29)

�ab ¼ ��mamb þ� �ma �mb; (2.30)

with ma given by the 1-form madx
a ¼ Rp�1

0 fd	=
ffiffiffi
2

p
with

	 ¼ yþ iz (and thus mam
a ¼ 0 ¼ �ma �m

a and ma �m
a ¼

þ1) and the bar denoting complex conjugation. In addition

�s ¼ � p2
0

Rf
Gð	; x; tÞ; (2.31)

�� ¼ � 2p2
0

R2f
ðDG þ _RGÞ: (2.32)

Here G is a complex analytic function of its argument and
D ¼ @=@xþ R@=@t. Also G satisfies

D2G þ kG ¼ 0; (2.33)

with k ¼ 0,�1 and this can easily be solved with each case
involving two arbitrary complex analytic functions, of 	
and x� T ¼ �, of integration. The corresponding per-
turbed Weyl tensor is given by

Eab þ iHab ¼ � 2p2
0

R2f

@

@x
ðGFð�ÞÞmamb; (2.34)

which is a Petrov type N Weyl tensor with degenerate
principal null direction �;a, confirming the interpretation

of the perturbations of the FLRW space-times described
here as being due to gravitational waves having the null
hypersurfaces � ¼ constant as the histories of their wave
fronts. Further properties of these waves are discussed in
[3].
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III. ELECTROMAGNETIC WAVES IN FLRW
UNIVERSES

Electromagnetic test fields on the space-time described
at the beginning of Sec. II are encoded in a skew-
symmetric tensor with components Fab ¼ �Fba having
electric and magnetic parts defined by [18]

Ea ¼ Fabu
b; Ha ¼ F�

abu
b; (3.1)

with F�
ab ¼ 1

2�ab
rsFrs. The vectors Ea, Ha are equivalent

to a knowledge of Fab with

Fab ¼ uaEb � ubEa � �abcdu
cHd: (3.2)

If these are source-free electromagnetic test fields on the
FLRW space-times then they must satisfy Maxwell’s equa-
tions in the form [18]

Ea
;a ¼ 0; Ha

;a ¼ 0; (3.3)

and

_E a þ 2

3
�Ea ¼ ��abedubHe;d; (3.4)

_H a þ 2

3
�Ha ¼ �abedubEe;d: (3.5)

To obtain solutions analogous to the gravitational waves
described in Sec. II we first introduce a 4-potential �a with
[20]

�aua ¼ 0; �a
;a ¼ 0; (3.6)

and

Fab ¼ �b;a � �a;b: (3.7)

Using the Ricci identities along with the conformal flatness
of the FLRW space-times we have

�a;dc � �a;cd ¼ 2

3
�ga½c�d� þ ð�þ pÞuau½c�d�: (3.8)

This helps to establish that (3.3) are now satisfied auto-
matically. In addition (3.4) reduces to the wave equation

�a;d
;d ¼

1

2
ð�� pÞ�a; (3.9)

and (3.5) is automatically satisfied. The equations to be
satisfied by�a are (3.6) and (3.9). Following (2.19) we look
for solutions of the form

�a ¼ saFð�Þ; (3.10)

with F an arbitrary function of �ðxaÞ. With sa � 0 we
arrive again at (2.21) along with

sa;a ¼ 0; sa�;a ¼ 0: (3.11)

We also obtain the propagation equation for sa along the
generators of the null hypersurfaces �ðxaÞ ¼ constant,

sa;b�;b þ 1

2
�;d

;dsa ¼ 0; (3.12)

and the wave equation,

sa;d;d ¼ 1

2
ð�� pÞsa: (3.13)

Solving these with �ðxaÞ given by (2.28) we find

sa ¼ �s0m
a þ s0 �m

a; (3.14)

with ma given following (2.29) and

�s 0 ¼ p0

Rf
F ð	; x; tÞ; (3.15)

with F a complex analytic function required to satisfy

DF ¼ 0; (3.16)

with the operator D defined following (2.32). Thus F ¼
F ð	; x� TÞ and is otherwise arbitrary. The corresponding
electric and magnetic fields (3.1) are given via

Ea þ iHa ¼ 2p0

R2f

@

@x
ðFFÞma; (3.17)

analogous to (2.34). The radiative nature of this electro-
magnetic field, with propagation direction �;a, is evident

from (3.17).

IV. ELECTROMAGNETICWAVES FROMGRAVITY
WAVES

We now demonstrate how electromagnetic waves of the
type described in Sec. III can be constructed from the
gravitational waves given in Sec. II. The construction is
not unique (see the discussion in the next section) but it can
be given the interpretation of arising from the coupling of
the gravitational waves of Sec. II with a test magnetic field
in agreement with [1].
The gravitational waves of Sec. II are obtained from a

complex analytic function Gð	; x; tÞ which satisfies (2.33).
We see from the argument in Sec. III that the electromag-
netic waves given there are obtained from a complex
analytic function F ð	; x; tÞ which satisfies (3.16). Given
G satisfying (2.33) and fðxÞ satisfying (2.27) we define

F ð	; x; tÞ ¼ fDG � f0G: (4.1)

Clearly this function satisfies (3.16) and so F ¼ F ð	; x�
TÞ. With this choice ofF electromagnetic waves in Sec. III
corresponding to the gravitational waves of Sec. II are
described by the 4-potential (3.10) with sa given by
(3.14) and (3.15).
A source-free test magnetic field on the FLRW space-

times must satisfy (3.3), (3.4), and (3.5) with Ha � 0 and
Ea ¼ 0. A simple example of such a field is given by

Ha ¼ 
a

Rf2
; 
a ¼ hba�;b: (4.2)
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This field can be derived from a 4-potential in the manner
of (3.7) with (3.6). In this case the potential is given by the
1-form

H�adx
a ¼ ydz� zdy

2p0

; (4.3)

or equivalently by the covariant vector

H�
a ¼ ið	 �ma � �	maÞ

2
ffiffiffi
2

p
Rf

; (4.4)

withma given following (2.30). We note in passing that any
source-free magnetic test field on the FLRW space-times is
given by Ha ¼ R�1q;a with q;au

a ¼ 0 and gabq;a;b ¼ 0
and (4.2) corresponds to q ¼ qðxÞ given by dq=dx ¼ f�2.

Observing that the function F in (4.1) is linear in the
arbitrary analytic function G and its derivative DG we first
note from (2.29), (2.30), (2.31), and (2.32) that

sab ¼ � p2
0

Rf
Gmamb � p2

0

Rf
�G �ma �mb; (4.5)

and

�ab � 2

3
�sab ¼ � 2p2

0

R2f
DGmamb � 2p2

0

R2f
D �G �ma �mb:

(4.6)

Hence using (4.4) we arrive at

�2p�1
0 Rff0sabH�b � p�1

0 R2f2
�
�ab � 2

3
�sab

�
H�b

¼ p0

Rf
ðJma þ �J �maÞ; (4.7)

with

J ¼ i	ffiffiffi
2

p F ; (4.8)

and F is given by (4.1). The right hand side of (4.7) is the
4-potential of a radiative Maxwell test field on the FLRW
space-times of the type described in Sec. III. The left hand
side of (4.7) provides a Marklund-Dunsby-Brodin physical
interpretation of the origin of this electromagnetic field as a
coupling of the gravitational waves described by sab and
�ab with the magnetic test field described by the 4-
potential H�

a, due to the appearance of the products
sabH�b and �ab

H�b.

V. DISCUSSION

We make two observations regarding the electromag-
netic waves constructed in Sec. IV from the gravitational

waves in Sec. II. The first observation concerns the lack of
uniqueness of the resulting electromagnetic waves. To see
this we note that if G and H are two complex analytic
functions satisfying (2.33) then

F ð	; x; tÞ ¼ kHG þDHDG; (5.1)

satisfies (3.16). In view of (2.27) a choice of H is simply
H ¼ fðxÞ. In this case

F ð	; x; tÞ ¼ kfG þ f0DG: (5.2)

It is easy to see from (3.17) that these waves are distinct
from those obtained using F given in (4.1). In addition we
note that there are no waves of this type for the case (ii)
with k ¼ K ¼ 0 given following (2.26), in contradistinc-
tion to the example (4.1). On the other hand since (5.1) is a
linear combination of G and DG these electromagnetic
waves also lend themselves to the interpretation of arising
from the coupling of the gravitational waves of Sec. II to
the test magnetic field given in Sec. IV.
The significance of utilizing a test magnetic field rather

than a test electric field in (4.2) is clarified by the following
observation: A source-free test electric field given by (3.1),
(3.6), and (3.7) with Ha ¼ 0 has a potential 1-form of the
form E�adx

a ¼ a1dxþ a2dyþ a3dz with a� (� ¼ 1, 2,
3) functions of x, y, z, t. Maxwell’s Eqs. (3.3), (3.4), and
(3.5) with Ha ¼ 0 imply that E�

a ¼ R�1lðx; y; zÞua, for
some function l, up to a gauge transformation. The scalar
products of this 4-potential with sab and �ab are therefore
zero.
Finally we remark that astrophysical gravitational waves

are generally low frequency and in universes containing
ionized matter the corresponding electromagnetic waves
propagate poorly. In our treatment no mention has been
made of the frequency of the resulting electromagnetic
waves with 4-potential (4.7). This would be introduced
via a Fourier analysis of the arbitrary analytic function
G. To further study this electromagnetic radiation and
follow the dissipative consequences of its interaction
with the matter and gravitational radiation would require
calculating its perturbative effect on the cosmological
model. In this paper this electromagnetic radiation is
weak but is still considered a test field.

ACKNOWLEDGMENTS

S. O. F. wishes to thank IRCSET for financial support.

GENERATING ELECTROMAGNETIC WAVES FROM GRAVITY . . . PHYSICAL REVIEW D 79, 104028 (2009)

104028-5



[1] M. Marklund, P. K. S. Dunsby, and G. Brodin, Phys. Rev.
D 62, 101501(R) (2000).

[2] G. F. R. Ellis and M. Bruni, Phys. Rev. D 40, 1804 (1989).
[3] P. A. Hogan and E.M. O’Shea, Phys. Rev. D 65, 124017

(2002).
[4] G. F. R. Ellis and P.A. Hogan, Classical Quantum Gravity

14, A171 (1997).
[5] C. G. Tsagas, Classical Quantum Gravity 22, 393 (2005).
[6] C. G. Tsagas and A. Kandus, Phys. Rev. D 71, 123506

(2005).
[7] C. G. Tsagas, Phys. Rev. D 72, 123509 (2005).
[8] C. G. Tsagas, Phys. Rev. D 75, 087901 (2007).
[9] J. D. Barrow, R. Maartens, and C.G. Tsagas, Phys. Rep.

449, 131 (2007).
[10] J. D. Barrow and C.G. Tsagas, Phys. Rev. D 77, 107302

(2008).
[11] I. Robinson, J. Math. Phys. (N.Y.) 2, 290 (1961).

[12] I. Robinson and A. Trautman, Proc. R. Soc. A 265, 463
(1962).

[13] G. A. Lupanov, Sov. Phys. JETP 25, 76 (1967).
[14] V. B. Braginskii, L. P. Grishchuk, A. G. Doroshkevich,

Ya. B. Zeldovich, I. D. Novikov, and M.V. Sazhin, Sov.
Phys. JETP 38, 865 (1974).

[15] L. P. Grishchuk and M.V. Sazhin, Sov. Phys. JETP 41, 787
(1976).

[16] P. Szekeres, J. Math. Phys. (N.Y.) 7, 751 (1966).
[17] C. Barrabès and P.A. Hogan, Phys. Rev. D 77, 104014

(2008).
[18] G. F. R. Ellis, in Relativistic Cosmology, edited by E.
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