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We consider how accelerated expansion, whether due to inflation or dark energy, imposes strong

constraints on fundamental theories obtained by compactification from higher dimensions. For theories

that obey the null energy condition (NEC), we find that inflationary cosmology is impossible for a wide

range of compactifications; and a dark energy phase consistent with observations is only possible if both

Newton’s gravitational constant and the dark energy equation of state vary with time. If the theory violates

the NEC, inflation and dark energy are only possible if the NEC-violating elements are inhomogeneously

distributed in the compact dimensions and vary with time in precise synchrony with the matter and energy

density in the noncompact dimensions. Although our proofs are derived assuming general relativity

applies in both four and higher dimensions and certain forms of metrics, we argue that similar constraints

must apply for more general compactifications.
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I. INTRODUCTION

Compelling evidence exists that the present Universe is
dominated by some form of dark energy and undergoing a
period of accelerated expansion. Also, a widely accepted
hypothesis is that the early Universe underwent inflation, a
period of accelerated expansion shortly after the big bang
that smoothed and flattened the Universe and generated a
nearly scale-invariant spectrum of density perturbations.

The purpose of this paper is to explore the implications
of cosmic acceleration for fundamental theories obtained
by compactification from a higher-dimensional theory, a
feature common to Kaluza-Klein theory, Randall-Sundrum
models, string theory, and M-theory, for example. A gen-
eral property of compactified theories is that the expansion
of the noncompact directions required for any realistic big
bang cosmology has the tendency to cause the extra di-
mensions to contract unless some interaction prevents it.
The contraction of the extra dimensions has undesirable
physical effects, such as the time variation of Newton’s
constant or other fundamental constants and a deviation
from standard Friedmann-Robertson-Walker (FRW) evo-
lution. For decelerating universes, these problems can be
avoided, in principle, by introducing ordinary interactions.

In this paper, though, combining techniques developed
in Refs. [1,2] with new approaches, we shall derive a series
of no-go theorems showing how one is forced to consider
more exotic solutions in order to obtain accelerated expan-
sion in compactified theories. The power of these theorems
may surprise some readers, yet they emerge from fairly
simple considerations. The key constraint is that the mod-
els are described by Einstein gravity both in the 4d effec-
tive theory and in the higher-dimensional theory. What
seems relatively innocuous in the 4d effective theory—
e.g., accelerated expansion of the noncompact directions—

can require something extraordinary when lifted into the
higher-dimensional Einstein gravity. As a simple example,
consider the original Kaluza-Klein model with a single
static extra dimension whose size, we will assume, has
been frozen by some interaction. Accelerated expansion
of the 4d effective theory means that the 5d theory is
described by a metric ds2 ¼ �dt2 þ a2ðdx21 þ dx22 þ
dx23Þ þ dx24, where the FRW scale factor satisfies _a > 0
and €a > 0. By substituting the metric into the 5d Einstein
equations, it is possible to show [1] that the equation of
state in the compact dimension (the ratio of the 4-4 to the 0-
0 components of the energy-momentum tensor) is w5 <
�1; for example, for an expanding Universe with aðtÞ �
tp>1, its value isw5 ¼ ð1� 2pÞ=p <�1. The fact that this
ratio is less than �1 means the higher-dimensional theory
necessarily violates the null energy condition (NEC), an
extraordinary constraint. The NEC is not violated by any
observed matter fields or by unitary two-derivative quan-
tum field theories; and violating the NEC can produce
problems of its own. Under many conditions it leads to
unacceptable consequences, such as superluminal propa-
gation, instabilities, or violations of unitarity [3–7].
We begin in Sec. III by considering compactified theo-

ries that do not violate the NEC, including the original
Kaluza-Klein model, the Randall-Sundrum II model [8],
and many string theory models, and see how difficult it is to
accommodate accelerated expansion. For a wide class of
models, we derive a no-go theorem that rules out infla-
tionary cosmology altogether and additional no-go theo-
rems that rule out the simplest dark energy models,
including �CDM. We further show that a dark energy
phase with accelerated expansion consistent with current
observations is only possible if both Newton’s gravitational
constant and the dark energy equation of state vary with
time.
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Then, we turn our attention in Sec. IV to models that do
violate the NEC. In spite of the potential dangers cited
above and in Refs. [3–7], models of this type have been
suggested that may safely violate NEC, such as the
Randall-Sundrum I model [9] and recently proposed flux
compactifications on the string landscape. Examples of
NEC-violating components invoked in string constructions
include orientifold planes, which have negative tension,
and quantum effects analogous to Casimir energy. Here,
though, we find another set of new no-go theorems that rule
out some forms of NEC violation and impose precise
conditions on how any NEC-violating components must
vary with time as the Universe evolves. Although the
discussion here is confined to certain common types of
metrics and assumes Einstein’s general theory of relativity
applies in higher dimensions, we argue in Sec. V that
similar no-go theorems must apply in more general cases.

Our approach complements but is quite different from
previous no-go theorems based on supersymmetry or su-
pergravity [10]; supersymmetry is not assumed in our
analysis, so our conclusions apply to more general com-
pactified theories. Our results are also different from infla-
tionary no-go theorems based on requiring small values of
the slow-roll parameters � and � in the case of inflation; or
constructions leading to the long-lived metastable de Sitter
minima in the string landscape [11–15]. Previous theorems
are based on what might be called ‘‘micro-to-macro’’
approaches where the microphysics is specified first and
then the constraints on the macroscopic pressure, energy
density and equation of state are derived.

Ours is a more ‘‘macro-to-micro’’ approach in which we
assume a certain equation of state on macroscopic scales
(based on observations) and derive constraints on the mi-
crophysics. This method is more closely related to the one
used by various authors [16–20] to constrain compactified
theories with purely static de Sitter minima. A purely static
de Sitter universe has equation of state w ¼ wDE ¼ �1,
where we use throughout this paper the symbol w (without
subscript) to represent the ratio of total pressure to total
energy density and wDE to represent the pressure-to-
density ratio for the dark energy component alone.
References [1,2] and this paper, though, use somewhat
different technical approaches resulting in several advan-
ces over previous work, including:

(i) extension to cases where w is greater than �1;
(ii) extension to time-varying extra-dimensional

metrics;
(iii) extension to practical cases where w is time varying

(e.g., the present Universe has w � �0:74 today and
varying with time) [21–23];

(iv) extension from R flat (RF) to R flat up to a confor-
mal factor (CRF) metrics;

(v) in cases where NEC is satisfied, demonstration that
substantial variations in G and w are required;

(vi) in cases where NEC violated, demonstration that
many additional conditions on the NEC-violating

component must be satisfied to match observed cos-
mology (e.g., the introduction of negative tension
branes in inflation or dark energy models is not
sufficient).

II. COMPACTIFIED MODELS AND NEC
VIOLATION

The NEC is commonly assumed in fundamental theories
to avoid the classical and quantum instabilities (closed
timelike curves, big rips, ghosts, and unitarity violation)
normally associated with its violation [3–7]. Nevertheless,
we will show that, for a wide range of compactified mod-
els, inflationary cosmology and the NEC are completely
incompatible and that dark energy is compatible only if
Newton’s gravitational constant GN and the dark energy
equation of state wDE vary with time.

A. Assumptions

Our conclusions rest on rigorous theorems that apply to
compactified satisfying certain conditions in addition to
NEC:
(i) GR condition: both the higher-dimensional theory

and the 4d theory are described by Einstein’s theory
of general relativity (GR), either exactly or with
small corrections;

(ii) Flatness condition: the 4d theory is spatially flat;
(iii) Boundedness condition: the extra dimensions are

bounded;
(iv) Metric condition: the metric of the higher-

dimensional theory is RF or CRF:

ds2 ¼ e2�ð�dt2 þ �a2ðtÞdx2Þ þ gmndy
mdyn; (1)

where the x are the noncompact spatial dimensions;
y � fymg are the extra dimensions; �aðtÞ is the usual
FRW scale factor; and

gmnðt; yÞ ¼ e�2 �� �gmn; (2)

where �gmn has Ricci (scalar) curvature R ¼ 0, as
evaluated in the compact dimensions. We do not
require that �gmn have zero Ricci tensor. We call the

metric RF if �� ¼ const and CRF if ��ðt; yÞ ¼
�ðt; yÞ. We will use indices fM;Ng to represent all
4þ k dimensions, f�; �g to represent the noncom-
pact dimensions, and fm; ng to represent the extra
dimensions.

These conditions are common to many models pub-
lished in the literature. The GR condition dates back to
the original Kaluza-Klein theory and underlies the idea of
unified theories based on compactifying extra dimensions.
It is reasonable to expect corrections, such as higher de-
rivative terms, in the higher and 4d effective theory. So
long as those are small, the theorems will apply with
obvious caveats (as discussed in Sec. VI). The spatial
flatness condition for the 4d theory is motivated by cos-
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mological observations, e.g., from WMAP [23]. The
boundedness condition on the extra dimensions is needed
because the theorems rely on integrating fields and warp
factors over the compact direction. In particular, the
boundedness condition insures that, if � is nontrivial and
has continuous first derivative, then the Laplacian ��
must be nonzero for some y; this fact is useful in some
of the proofs.

The metric condition is motivated by common construc-
tions in the literature, especially string theory. The original
Kaluza-Klein model, the Randall-Sundrum models, and
Calabi-Yau based models are all RF; some useful theorems
for this case were developed in Refs. [1,2]. Metrics of CRF
type appear in warped Calabi-Yau [11] and warped coni-
fold [24] constructions (where they are sometimes referred
to as conformally Calabi-Yau metrics). Here, we derive no-
go theorems for both RF and CRF models. Our constraints
for RF and CRF are slightly different in terms of the
number of extra dimensions and the moduli fields to which
they apply. However, the differences do not affect our
conclusions for practical cases relevant to string theory,
M-theory, the Kaluza-Klein model, etc., so we will only
present the details for CRF models and ignore the fine
distinctions.

B. Detecting NEC violation

In this subsection, we develop some basic relations that
make it possible to detect easily when a higher-
dimensional theory is forced to violate the NEC.

To describe a spatially flat FRW spacetime after dimen-
sional reduction, the metric gmnðt; yÞ and warp function
�ðt; yÞ must be functions of time t and the extra-
dimensional coordinates ym only. Following the conven-
tion in Ref. [1], we parameterize the rate of change of gmn

using quantities � and �mn defined by

1

2

dgmn

dt
¼ 1

k
�gmn þ �mn; (3)

where gmn�mn ¼ 0 and where � and � are functions of
time and the extra dimensions; this relation assumes the
gauge choice discussed in Ref. [1].

It is important to note that all discussions of the equation
of state, the NEC, accelerated expansion, the energy-
momentum tensor TMN , and the pressure and density of
any components always refer to Einstein frame quantities
in either the higher-dimensional or 4d effective theory. The
space-space components of the energy-momentum tensor
are block diagonal with a 3� 3 block describing the
energy momentum in the three noncompact dimensions
and a k� k block for the k compact directions. The 0-0
component is the higher-dimensional energy density �.
The 0-m components are generally nonzero but will be of
no special interest for our theorems.

Associated with the two blocks of space-space compo-
nents of TIJ are two trace averages:

p3 � 1

3
���
3 T�� and pk � 1

k
�mn
k Tmn; (4)

where �3;k are, respectively, the 3� 3 and k� k blocks of
the higher-dimensional space-time metric. Violating the
NEC means that TMNn

MnN < 0 for at least one null vector
nM and at least one space-time point.
Our approach in this paper is not to identify all cases

where the NEC is violated, which can be complicated;
rather we find simple methods for identifying a subset of
cases where it must be violated. For this purpose, the
following two lemmas, proven in Ref. [1], are very useful:
Lemma 1: If �þ p3 or �þ pk is less than zero for any

space-time point, then the NEC is violated. (Note that the
converse is not true, �þ p3 � 0 and �þ pk � 0 does not
guarantee that the NEC is satisfied.)
The second lemma utilizes the concept of A-averaged

quantities introduced in Ref. [1]:

hQiA ¼
�Z

QeA�
ffiffiffi
g

p
dky

���Z
eA�

ffiffiffi
g

p
dky

�
; (5)

that is, quantities averaged over the extra dimensions with
weight factor eA� where, for simplicity, we restrict our-
selves to constant A. Using the fact that the weight function
in the A average is positive definite, a straightforward
consequence is:
Lemma 2: If h�þ p3iA < 0 or h�þ pkiA < 0 for any A

and any ft;xg, then the NEC must be violated.
As with the case of Lemma 1, this test is asymmetrical:

finding an A average less than zero proves NEC is violated,
but finding a positive average is not sufficient to conclude
NEC is satisfied.
To illustrate the utility of A averaging, we introduce the

CRF metric into the higher-dimensional Einstein equa-
tions, and then try to express terms dependent on �a in
terms of the 4d effective scale factor using the relation

aðtÞ � e	=2 �aðtÞ, where [1]

e	 � ‘�k
Z

e2�
ffiffiffi
g

p
dky (6)

and ‘ is the 4þ k-dimensional Planck length. The 4d
effective scale factor aðtÞ obeys the usual 4d Friedmann
equations: �

_a

a

�
2 ¼ 1

3
�4d; (7)

�
_a

a

�
2 þ 2

€a

a
¼ �p4d (8)

(henceforth, we use reduced Planck units, 8
GN ¼ 1 in
4d; also, except where displayed explicitly, we choose ‘ ¼
1 in the 4þ k-dimensional theory). Note that the 4d effec-
tive energy density �4d and pressure p4d are generally
different from � and p3 in the higher-dimensional theory
if the warp factor � is nontrivial. Then, using the Einstein
equations, we obtain
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e�	he2�ð�þ p3ÞiA ¼ ð�4d þ p4dÞ � kþ 2

2k
h�i2A

� kþ 2

2k
hð�� h�iAÞ2iA � h�2iA;

(9)

e�	he2�ð�þ pkÞiA ¼ 1

2
ð�4d þ 3p4dÞ

þ 2

�
A

4
� 1

�
kþ 2

2k
hð�� h�iAÞ2iA

� kþ 2

2k
h�i2A � h�2iA þ

�
�5þ 10

k

þ kþ A

�
�3þ 6

k

��
he2�ð@�Þ2iA

þ kþ 2

2k

1

a3
d

dt
ða3h�iAÞ: (10)

A averaging is a powerful tool because, with a judicious
choice, one can insure that certain coefficients on the right-
hand side, the ones that depend explicitly on A, are non-
positive. This opens a path for proving some of the no-go
theorems below.

This freedom is possible provided there is a range where

4 � A � 10� 5kþ k2

3k� 6
� A�; (11)

which is the case for 13 � k � 3 (for CRF). Some theo-
rems below rely on choosing A ¼ 2; for this value to be
within the range given in Eq. (11), it is necessary that 8 �
k � 3. (The corresponding ranges of k in the RF case are
given the Appendix.) Since this includes the relevant string
and M-theory models, we will implicitly assume this range
of k for CRF models for the remainder of this paper. (For
k ¼ 1, the metric reduces to RF and similar theorems in
Ref. [1] apply.)

The two relations in Eq. (9) can be rewritten

e�	he2�ð�þ p3ÞiA ¼ �4dð1þ wÞ � kþ 2

2k
h�iA2

þ non-positive terms for all A;

(12)

e�	he2�ð�þ pkÞiA ¼ 1

2
�4dð1þ 3wÞ

þ kþ 2

2k

1

a3
d

dt
ða3h�iAÞ

þ non-positive terms for some A;

(13)

where the values of A that make the last term nonpositive
are those that are in the range in Eq. (11). Henceforth,
unless stated otherwise, we always choose A to be in that
range. Recall that w represents the ratio of the total 4d

effective pressure p4d to the total 4d effective energy
density �4d. In the Appendix, we provide the coefficients
of the last term in Eqs. (12) and (13) relations for the case
where the moduli are frozen � ¼ 0.
On the left-hand side of Eqs. (12) and (13), both 	 and

h. . .iA depend on the warp factor,�, but the combination is
invariant under shifts � ! �þ C, where C is a constant.
Furthermore, the combination tends to have a weak depen-
dence on �. For example, if �þ pk is homogeneous in
fymg, the left-hand side reduces to Kð�þ pkÞ, where the
dimensionless coefficient K is not very sensitive to� or A;
in particular, K ¼ ‘kIðAþ 2Þ=IðAÞIð2Þ, where

Ið �AÞ �
Z

e
�A� ffiffiffi

g
p

dky: (14)

In this notation, the k-dimensional volume of the compact
space is Vk ¼ Ið0Þ; then, K is equal to ‘k=Vk, a coefficient
which is strictly less than unity. Similarly, if �þ pk is
smooth and � has a sharp maximum on some subspace of
dimension s and volume vs, then the left-hand side of
Eq. (13) is Oð1Þð‘s=vsÞð�þ PkÞ, where ð�þ pkÞmax is
the value of �þ pk evaluated on the subspace, where �
is maximal. We will use this example in Sec. V.

III. NO-GO THEOREMS FOR MODELS THAT
SATISFY NEC

The lemmas of the previous subsection can be used to
prove that compactified theories satisfying NEC and meet-
ing the other assumptions given at the beginning of
Sec. (II) are incompatible with inflation and the simplest
dark energy models consistent with observations. The
theories include the original Kaluza-Klein model and
many string theories. The Randall-Sundrum II model [8],
with a single brane, also satisfies NEC; formally, it does not
satisfy the boundedness condition, but, because the warp
factor is well behaved at infinite distances from the brane,
we conjecture that the same theorems apply.
As a first step, we show that w must be strictly greater

than�1. The argument is simple. If w¼�1, the first term
in Eq. (12) is precisely zero, and the second two are non-
positive. Consequently, NEC can only be satisfied if the
last two terms are precisely zero as well. However, in
Eq. (13), the first term is strictly negative, and the last
term is nonpositive. Hence, the middle term must be posi-
tive for this equation to satisfy the NEC; but this requires �
and/or its time derivative to be nonzero. But this is incom-
patible with having the middle term in Eq. (13) be zero.
Hence, one or both equations must violate the NEC if w¼
�1.
An immediate consequence is a first dark energy no-go

theorem. (Theorems labeled IA, IB, etc. refer to models
obeying NEC, and models labeled IIA, IIB, etc. refer to
models that violate NEC.)
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Dark Energy No-go Theorem IA: �CDM (the current
concordance model in cosmology) is incompatible with
compactified models [25] satisfying the NEC.

A pure de Sitter universe is obviously ruled out by the
argument above. Also, w<�1 is forbidden by the as-
sumption that the 4d effective theory obeys the NEC. It
is further apparent that w>�1 but close to �1 is subject
to the same problems. Consequently, a �CDM universe,
with a mixture of matter and positive cosmological con-
stant that approaches w ¼ �1 in the future, is also ruled
out.

This point can be made more forcefully and precisely.
Depending on the number of extra dimensions and whether
the metric is RF or CRF, there exists a wtransient between
�1=3 and �1 such that w can only remain in the interval
ð�1; wtransientÞ for a few e-folds. The condition
w< wtransient cannot be maintained indefinitely because it
requires either NEC violation of Eq. (13), if the average �
and d�=dt are kept small or negative, or NEC violation of
Eq. (12), if � is made large and positive enough to avoid
NEC violation in Eq. (13). In principle, it is possible to
satisfy NEC for both relations if � is near zero and d�=dt is
large and positive, but this can only be maintained for a
brief period.

How brief is brief? In order for the right-hand side of
Eq. (13) to remain positive, it is necessary that

kþ 2

2k

1

a3
d

dt
ða3h�iAÞ>� 1

2
�4dð1þ 3wÞ: (15)

The right-hand side is positive for w<wtransient and has
magnitude Oð�4dÞ ¼ OðH2Þ, where H � _a=a is the
Hubble parameter. Hence, H�2dh�iA=dt ¼ Oð1Þ. Now
suppose h�iA begins small so that Eq. (12) is satisfied
initially. Integrating over a Hubble time, we find that
h�iA, grows until

h�iA=H ¼ Oð1Þ (16)

at which point Eq. (12) violates NEC. In other words, the
brief period during which � remains small cannot last more
than a few Hubble times.

To reach w<wtransient in the first place, it must be that
wDE is less than wtransient. But, then, the only way to avoid
violating NEC is for w to increase above wtransient after a
few e-folds, which is only possible if wDE itself increases
abovewtransient after a few e-folds (which we will take to be
three e-folds, for the purposes of this paper).

A plot of wtransient as a function of the number of extra
dimensions is given in Fig. 1; note that wtransient is substan-
tially greater than�1 for the cases of greatest interest, such
as string theory (k ¼ 6) or M-theory (k ¼ 7). [See
Ref. [26] for a more detailed quantitative discussion].

Two additional no-go theorems follow from this
analysis:

Dark Energy No-go Theorem IB: Dark energy models
with constant wDE less than wtransient or time-varying wDE

whose value remains less than wtransient for a continuous
period lasting more than a few Hubble times are incompat-
ible with compactified models [25] satisfying the NEC.
This theorem rules out a wide spectrum of dark energy

models, including a range that is currently allowed obser-
vationally and that the JDEM mission is designed to ex-
plore [27]. Conversely, if JDEM indicates wDE <wtransient

and constant, this would rule out this entire class of com-
pactified models.
Inflationary No-go Theorem IA: Inflationary models

consistent with observations are incompatible with com-
pactified models [25] satisfying the NEC.
Inflationary cosmology requires a period of 40 or more

e-folds of accelerated expansion with w � �1 to within a
few percent in order to smooth and flatten the Universe and
to obtain a scalar spectral index within current observatio-
nal bounds [23]. For the compactified models considered
here, this value of w is far below wtransient and cannot be
maintained for more than a few e-folds—certainly not for
40 e-folds.
Inflationary Corollary: Compactified models [25] satis-

fying the NEC are counterexamples to the common asser-
tion that inflation with nearly scale-invariant spectra are an
inevitable consequence given chaotic or generic initial
conditions after the big bang.
The common lore is that, after the big bang, the Universe

is chaotic but there are always rare patches of space that are
smooth enough and have the right conditions to initiate
inflation (assuming an inflaton with a sufficiently flat po-
tential); and these patches soon dominate the volume of the
Universe. For the entire class of theories considered here,
though, no patches of space undergo inflation that is slow
and long lasting enough to produce a spectral tilt anywhere
near the observational bounds. The problem is not finding a
scalar field with a sufficiently flat potential, because none
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FIG. 1 (color online). Plot of wtransient vs the number of extra
dimensions k for extra-dimensional models based on RF (circle)
and CRF (square) metrics. The dashed horizontal segment
represents the current value of w according to WMAP.
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of the compactified models explicitly forbids that. Rather,
the problem is that accelerated expansion induces a rapid
variation of � which, in the 4d effective theory in Einstein
frame, appears as a time-varying field whose kinetic en-
ergy increases the overall equation of state w and prevents
inflation from continuing long enough.

Additionally, for all models (RF or CRF, and for any k),
h�iA ¼ _GN=GN for A ¼ 2, if the theory is expressed in the
Jordan-Brans-Dicke (JBD) frame. Although we keep to the
Einstein frame in this paper generally, it useful to express �
in terms of _GN for the purpose of comparison to observa-
tional constraints on _GN , which implicitly assume the JBD
frame. For RF models, A ¼ 2 lies outside the correspond-
ing range of A (see the Appendix) and so theorems below
about changing GN should be re-expressed as conditions
on changing � or, equivalently, changing size of the extra
dimensions. For CRF models, A ¼ 2 lies in the range in
Eq. (11) when 8 � k � 3. Converted to the JBD frame, we
could restate our conclusion for CRF models as follows:
accelerated expansion induces a rapid variation of the
gravitational constant _GN=GNH ¼ Oð1Þ.

Returning now to Eq. (15), we note that it requires that,
regardless of the value of A, dh�iA=dt ¼ OðH2Þ be positive
not only for w<wtransient, but also for w<�1=3. From
this emerges:

Dark Energy No-go Theorem IC: All dark energy mod-
els are incompatible with compactified models [25] satis-
fying the NEC if the moduli fields are frozen (or,
specifically, GN is constant, in the case of CRF models).

This follows trivially because any form of dark energy
requires w reach a value less than �1=3, and, as we just
argued, �must vary with time wheneverw<�1=3 if NEC
is satisfied.

As a practical matter, the current value of w � �0:74 is
already less than wtransient for k ¼ 7 dimensions (e.g., M
theory). In this case, both dark energy no-go theorem IC
and IB apply, but Theorem IB is more stringent. Theorem
IB says that both wDE and GN must vary with time and at
high rates. One might wonder: Is it already possible to rule
out all RF and CRF compactified models [25] satisfying
the NEC based on current observations? In Ref. [26], we
show that the answer is no; there remains a small window
in the parameter space fwDE; dwDE=dt; _GN=GNg consistent
with all current observations. However, anticipated obser-
vations will be able to check this remaining window to
determine if this class of theories is empirically ruled out or
not.

IV. NO-GO THEOREMS FOR MODELS THAT
VIOLATE NEC

In this section, we continue to consider compactified
models satisfying the GR, flatness, boundedness, and met-
ric conditions assumed in Sec. II. The difference is that,
before, we only considered models that satisfy the NEC, in
which case we showed that moduli fields � (and GN) must

vary with time at a fast rate barely compatible with current
observational constraints and potentially ruled out by near-
future observations. So now we consider models that vio-
late NEC but with fixed (or very slowly varying) moduli.
Theories of this type include the Randall-Sundrum I model
[9], because it includes a negative tension brane, and some
models that arise in flux compactifications of Calabi-Yau
manifolds when NEC-violating components, such as ori-
entifold planes or Casimir energy, are introduced.
If the only requirement for incorporating accelerated

expansion were NEC violation, then it would suffice if
�þ p3 < 0 or �þ pk < 0 at any one space-time point.
However, we now will present a set of no-go theorems that
show that cosmic acceleration imposes a host of stringent
conditions on the spatial distribution and temporal varia-
tion of the NEC-violating elements. The no-go theorems in
this section are qualitatively the same for dark energy and
inflation because the theorems only rely on the fact that the
universe must evolve from w>�1=3 to w<�1=3 or
vice versa, which is required both for inflation and dark
energy cosmology. Recall that w refers to the ratio of the
total pressure (p4d) to the energy density (�4d) in the 4d
effective theory.
Inflationary/Dark Energy No-go Theorem IIA: Inflation

and dark energy are incompatible with compactified mod-
els [25] (with fixed moduli) if the NEC is satisfied in the
compact dimensions (i.e., �þ pk � 0 for all t and ym)—
whether or not NEC is violated in the noncompact
directions.
The first step in the proof is to note that, since GN (and

other moduli) are assumed to be fixed, the middle term in
the expression for e�	he2�ð�þ pkÞiA in Eq. (13) is zero.
In this case, the relations in the Appendix apply. We can
use the freedom to choose A in our A averaging so that the
third term in Eq. (13) is zero; this corresponds to A ¼ A� in
Eq. (11). That leaves only the first term, proportional to
1þ 3w, which is positive for w>�1=3 and negative for
w<�1=3. Hence, whenever the Universe is accelerating
(w<�1=3), NEC violation must occur in the compact
dimensions. (It may or may not occur in the noncompact
dimensions as well.)
Inflationary/Dark Energy No-go Theorem IIB: Inflation

and dark energy are incompatible with compactified mod-
els [25] (with fixed moduli) for which the net NEC viola-
tion (�þ pk) is time independent.
This theorem relies on the fact that both inflation and

dark energy models have a transition from phases with
w>�1=3 to phases with w<�1=3. (This proof does not
apply to a pure de Sitter phase where w is always equal to
�1.) Since e�	he2�ð�þpkÞiA� is proportional to 3wþ1,

which switches sign as w evolves past w¼�1=3, the NEC
violation (summing over all energy density and pressure
contributions) in the compact direction must be time
dependent. In the case of inflation, there is also a transition
in which w changes from less than �1=3 to greater than
�1=3. This leads to an important corollary:
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Inflationary Corollary: Inflationary cosmology is only
compatible with compactified theories [25] that include an
NEC-violating component in the compact dimensions
whose magnitude is of order the vacuum density (that is,
e�	he2�ð�þ pkÞiA� � �4d); such that h�þ pkiA� switches

from positive to negative when inflation begins and
switches back when inflation is complete.

The corollary means that the requirements usually asso-
ciated with inflation—a scalar field with a flat potential,
stringent conditions on slow-roll parameters, a reheating
mechanism, etc.—are not sufficient to have inflation in
compactified theories since they do not produce or annihi-
late NEC violations. Furthermore, the magnitude of the
NEC violation is 100 orders of magnitude larger than what
is required to support a dark energy phase; so the source of
NEC violation must be different from whatever is used to
produce the current vacuum state. Finally, after inflation is
over, e�	he2��þ pkiA� must switch sign again, so the

reheating in the noncompact dimensions must somehow
have backreaction that changes the NEC violation in the
compact directions by 100 orders of magnitude.

There is more to be said. Theorem IIA imposes the
condition that NEC is violated in the compact dimensions.
The next no-go theorems constrain the spatial distribution
of the NEC-violating elements within those compact
directions.

Inflationary/Dark Energy No-go Theorem IIC: Inflation
and dark energy are incompatible with compactified mod-
els [25] with fixed moduli if the warp factor �ðt; yÞ is
nontrivial and has continuous first derivative and if any
of the following quantities is homogeneous in y:

(1) �þ p3;
(2) x�þ pk for RF metric, for any ð1=2Þ�

ð1� 3wÞ> x> 4ðk� 1Þ=3k;
(3) � for CRF metric for k > 4;
(4) 2�þ pk for CRF metric for k > 3 and w>�1;
The first condition follows straightforwardly from Eqs.

(A1) and (A9), which show that �þ p3 ¼ e	�2�ð�4d þ
p4dÞ. This expression must be inhomogeneous because �
is y dependent (by assumption) and the 4d effective energy
density �4d and pressure p4d are y independent (by
definition).

The remaining conditions are proven by using Eq. (A9)
in the Appendix to express each of the linear combinations
of � and pk in the list above as

C��þDð@�Þ2 þ Ee�2��4d; (17)

where C and E have the same sign. For example, consider
the case where C and E are positive. If � is nontrivial and
has continuous first derivative and if the compact dimen-
sions are bounded, then � must have a nonzero maximum
and minimum on the compact manifold. At the maximum,
we have that @� ¼ 0 (so the middle term is zero),��< 0
and e�2� is minimal; similarly, at the minimum, the
middle term is also zero but ��> 0 and e�2� is maximal.

Hence, for positive C and E, both terms in Eq. (17) are
smaller for maximal � compared to their values for mini-
mal�; the sum cannot be a homogeneous function of y. (A
similar argument applies if C and E are both negative.)
For the RF case, a similar argument can be used to show

that x�þ pk must be inhomogeneous for a continuum of
set of choices ð1=2Þð1� 3wÞ> x> 4ðk� 1Þ=3k. Note that
there exists a nonzero range of x provided w<�5=9þ
ð8=9kÞ, which includes all w<�5=9. Since all observa-
tionally acceptable dark energy and inflation models must
pass through phases where w<�5=9, these models re-
quire x�þ pk be inhomogeneous for a finite range of x. A
similar argument holds for the CRF case, but here we have,
for simplicity, limited ourselves to two linear combina-
tions: � alone and 2�þ pk, which must both be inhomo-
geneous for all w>�1.
We have made no attempt to be exhaustive here because

these examples suffice to make the point that the energy
density and pressure must have nontrivial distributions
across the extra dimension to satisfy the higher-
dimensional Einstein equations. Further constraints are
given by the following no-go theorems that rely on some-
what different methods of proof.
Inflationary/Dark Energy No-go Theorem IID: Inflation

and dark energy are incompatible with compactified mod-
els [25] with fixed moduli if the warp factor �ðt; yÞ is
nontrivial if �þ pk is homogeneous.
Note that this linear combination is the indicator of NEC

violation, so this no-go theorem says that the degree of
NEC violation must itself be inhomogeneously distributed
in the compact dimensions. To prove this result, it suffices
to restrict ourselves to showing that �þ pk is inhomoge-
neous for w ¼ �1=3 since both dark energy and inflation
models must pass through this value of w. For w ¼ �1=3,
the last term in �þ pk in Eq. (A1) ([for RF] and Eq. (A9)
[for CRF] in the Appendix is zero. Using Lemma A1 in the
Appendix, the remaining terms can be rewritten as
�e����e�� where � and � are positive. For nontrivial
�, �� must be nonzero and have different signs at the
maximum and minimum of � on the compact manifold.
Hence, �þ pk must be inhomogeneous.
Inflationary/Dark Energy No-go Theorem IIE: Inflation

and dark energy are incompatible with compactified mod-
els [25] with fixed moduli ifwkðA�Þ � hpkiA�=h�kiA� >�1

for h�iA� > 0 or if wkðA�Þ � hpkiA�=h�kiA� <�1 for

h�iA� < 0.

We will present the proof before explaining its signifi-
cance: Let us first consider the case where h�iA� > 0. Based

on Eqs. (A7) and (A16) in the Appendix, we can express
wkðAÞ as

wkðAÞ ¼
gðAÞhð@�Þ2iA þ 3w�1

2 X

fðAÞhð@�Þ2iA þ X
; (18)

where X ¼ he	�2��4diA > 0. (Recall that �4d > 0 in in-
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flation and dark energy models.) Recall that the denomi-
nator is <�A, the A-averaged energy density. For A ¼ A�
[as given in Eq. (11)], fðA�Þ=gðA�Þ ¼ �1. For w<�1=3,
as required for inflation or dark energy models, the coef-
ficient of X in the numerator is less than �1.
Straightforward algebra then shows that wkðA�Þ is strictly
less than �1. [A similar argument can be used to show
wkðA�Þ is strictly greater than �1 if h�Ai< 0.]

The quantity wk is the ratio of the volume-averaged
pressure to volume-averaged energy density with positive
definite weight e�2�. To have NEC violation in the com-
pact dimensions, as required by Theorem IIA, it suffices
that pk=� <�1 for � > 0 at a single point; or pk=� >�1
for � < 0 at a single point. Here, we have shown that the
ratio of the volume weighted averages must satisfy these
inequalities, generally a much stronger condition.

This no-go theorem is useful because it shows that
simply violating the NEC is not enough; one must be
deeply within the NEC-violating regime. For example,
for constant warp factor �, wkðAÞ ¼ ð3w� 1Þ=2 (inde-
pendent of A), which approaches �2 as w ! �1. This
value is far below the minimal value needed to violate the
NEC; e.g., inconsistent with simply Casimir energy or a
single orientifold plane as the source of NEC violation.

There are some other curiosities. For example, for con-
stant warp factor �, radiation alone exerts positive pres-
sure in the noncompact dimensions, but must exert zero
pressure in the compact dimensions; and matter exerts no
pressure in the noncompact dimensions, but must exert
negative pressure in the compact dimensions.

V. CONSTRAINTS ON MODELS VIOLATING THE
GR OR METRIC CONDITIONS

Formally, the theorems derived here apply strictly to
models in which the higher-dimensional theory satisfies
Einstein’s equations and is described by an RF or CRF
metric. However, the theorems provide useful insights for
some models that violate one or both conditions. For
example, some string inflation models satisfy the GR con-
ditions perturbatively but violate them nonperturbatively
[11,13,28]. One might inquire whether these models evade
the no-go theorems derived in this paper. Absent an explicit
expression for the nonperturbative interactions, a quantita-
tively precise answer cannot be reached. Nevertheless,
qualitatively, it is clear that the no-go theorems may only
be evaded if the violations are large and time-dependent.

For example, if the violations can be expressed as addi-
tions to the right-hand side of Eqs. (12) and (13), then,
these modifications have to balance the equations by
satisfying similar time-variation conditions as required
for the NEC-violating components in the proofs of the
no-go theorems. That is, there must be some sort of back-
reaction in the compact directions in either case. By the
argument given below Eq. (13), the modifications to
e�	he2�ð�þ p3ÞiA and e�	he2�ð�þ pkÞiA must be of

order �4d, and they must change by an amount Oð1Þ�4d

whenever the Universe switches from accelerating to de-
celerating (or vice versa) in order to change the sign of
e�	he2��þ pkiA� (as required by the kind of argument

presented for Theorem IIB).
What makes the backreaction problematic is that, phe-

nomenologically, the change from acceleration to decel-
eration (or vice versa) in the 4d effective theory is supposed
to be due entirely to the production of matter and radiation
(in the case of inflation) or redshifting of matter energy
density (at the onset of dark energy domination) that acts in
the noncompact dimensions; so it would seem that any
backreaction in the compact dimensions required to satisfy
Eq. (13) had better turn out to be quantitatively small
enough to have a negligible effect on the 4d effective
theory. If the effect of backreaction on the 4d effective
theory is not negligible, it will alter the course of
accelerated expansion in undesirable ways, such as short-
ening or eliminating the acceleration phase, as was
shown to be the case for models that satisfy the GR and
metric conditions. In the case of inflation, even if the
backreaction does not prevent inflation, it may change
the transition from inflation to reheating and, thereby, the
predictions.
In fact, in certain flux compactifications in string theory,

there is an argument to suggest that the backreaction will
have a very large effect. These models invoke orientifold
planes (extended objects with negative tension) that serve
as sources of the NEC violation necessary to stabilize a
true vacuum with positive cosmological constant [11,13].
Averaged over the bulk volume, the large negative tension
of the orientifold planes is nearly canceled by large
positive density contributions, such as branes. There can
also be positive density contributions in the throat.
However, several of the no-go theorems entail the A�
average of �þ pk, where A� � 1. For example,
Theorem IIB requires that this average switch sign and
change by an amount of order �4d when the Universe
transitions from acceleration to deceleration (or
vice versa). Because the A� average over the compact
volume weights contributions to �þ pk by a factor of
eA��, contributions from regions in the compact volume
where � is maximal will be strongly weighted compared
to regions where � is small. In the case of orientifold
planes, singular surfaces near which G00 < 0 and ð@�Þ2
approaches zero, Eq. (A9) implies��< 0; hence, orienti-
fold planes are (local or global) maxima of � and tend to
be strongly weighted in the A� average.
Consider, for example, a setup where � is maximal

along the orientifold planes which have some constant
ð�þ pkÞneg < 0 in a volume of dimension m and volume

vs; further suppose that �pos is somewhat smaller but

nearly uniform over the rest of the bulk where there is
some average stress energy ð�þ pkÞpos > 0 that nearly

balances the orientifold-plane component; finally, as in
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the case of d-brane inflation, suppose there is some positive
ð�þ pkÞthroat > 0 contribution in the throat. The A�-
weighted combination of these components is then

‘s

vs

ð�þ pkÞneg þ ‘2s�kVk

v2
s

e�ðA�þ2Þ��bulkð�þ pkÞpos

þ ‘2s�kVk

v2
s

e�ðA�þ2Þ��throatð�þ pkÞthroat; (19)

where ��bulk ¼ �neg ��pos > 0 and ��throat ¼ �neg �
�throat > 0. This sum is supposed to switch from an
amount of order ��4d to þ�4d at the end of inflation (or
the reverse at the onset of dark energy domination).
Because of the A� weights, the exponentially dominant
contribution to Eq. (19) is the due to the orientifold plane,
which contributes an amount ðls=vsÞð�þ pkÞneg, that is
exponentially enhanced compared to the positive energy
density contributions in the bulk or in the throat because,
by assumption, the warp factor � is much larger near
orientifold planes. In order for e�	he2��þ pkiA� to switch

sign when the Universe changes from accelerating to de-
celerating (or vice versa), the backreaction in the bulk must
either change the contribution of the orientifold planes by
an amount of order �4d, which seems unlikely given their
topological character; or the backreaction must change the
positive energy density components by an exponentially
larger amount. In the latter case especially, the effect of the
backreaction on the effective 4d theory is likely to be
overwhelmingly large. [One could switch the scenario so
that� is maximal in the bulk positive (�þ pk) regions and
smaller on the orientifolds; even so, the only way to change
the sign on the left-hand side of Eq. (13) is to have a
backreaction in which some energy components change
by an amount of at least �4d; and, in most cases, by an
amount exponentially greater amount.] It is, therefore,
essential to track the effect of this back-reaction on the
4d effective theory (where the leading contribution is
supposed to be of order �4d) to be sure the cosmological
scenario is not spoiled. As of this writing, though, the
backreactions during the transition from inflation to reheat-
ing and from matter domination to dark energy domination
are not well understood: In particular, they have not been
included in string inflation calculations and predictions or
in discussions of stringy dark energy models.

We note that our analysis has been restricted to the case
of RF or CRF metrics that are Ricci flat or conformally
Ricci flat and that we have ignored nonperturbative cor-
rections to GR. However, a similar argument applies if they
are included. They can be viewed as amendments to the
right-hand side of Eq. (13); then, by the same reasoning,
they must change by an amount of order �4d to balance the
equation. So, as in the case above, one must be concerned
about the effect of their backreaction in the 4d effective
theory.

VI. CONCLUSIONS

The essence of this paper is that cosmic acceleration is
surprisingly difficult to incorporate in compactified mod-
els. The problem arises in trying to satisfy simultaneously
the 4d and higher-dimensional Einstein equations. Both
must be satisfied for any equation of state, but we have
shown that, for the metrics assumed in this paper, this
requires increasingly exotic conditions as the Universe
goes from decelerated to accelerated expansion or, equiv-
alently, as w decreases below �1=3. For dark energy
models, either moduli fields (includingGN) have to change
with time at a rate that is nearly ruled out (and may soon be
excluded observationally altogether [26]) or NEC must be
violated. For inflation, only the second option remains
viable.
If the NEC is violated, it must be violated in the compact

dimensions; it must be violated strongly (wk significantly
below the minimally requisite value for NEC violation);
and the violation in the compact dimensions must vary
with time in a manner that precisely tracks the equation of
state in the 4d effective theory. For example, in realistic
cosmological models, there are known matter and radiation
components (baryons and photons, for example) that con-
tribute to the energy and density of the 4d effective theory
but are not normally related to NEC violation.
Nevertheless, the no-go theorems say that the magnitude
of NEC violation must vary with time in sync with how the
conventional matter and radiation energy density and pres-
sure evolve.
Satisfying these equations for �CDM is difficult, but

satisfying them for inflation is even harder. A period of
inflation with w within a few percent of �1 (as required
to meet the observational constraints on the spectral tilt)
must be sustained for at least 40 e-folds to resolve the
flatness and homogeneity problems; this requirement re-
stricts us to the case that the NEC is violated, according
to Inflationary Theorem IA. The magnitude of the NEC
violation is proportional to �4d according to Eq. (13),
which is roughly 10100 times greater during the inflationary
epoch than during the present dark energy dominated
epoch. Hence, the source of NEC violation for inflation
must be different and 10100 stronger. Also, identifying a
scalar inflaton field with a flat potential or branes and
antibranes approaching one another in some warped throat
does not suffice because they do not violate NEC,
either. For example, as a hypothetical, imagine that a D3
brane-antibrane pair collide and annihilate into ordinary
radiation; they do not change �þ pk at all since
neither branes nor radiation exert pressure in the compact
directions and the energy density remains the same. Yet,
after inflation is over and the equation of state increases
to w ¼ þ1=3 (the radiation epoch), the NEC violation
must be reduced or eliminated to continue to satisfy
the Einstein equations. This suggests some backreaction
effect must be built into the higher-dimensional theory
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that creates and later eliminates exponentially large NEC-
violating contributions at the beginning and end of infla-
tion, leaving behind exponentially small NEC-violating
effects needed for the current dark energy dominated
epoch. This needs to be incorporated into any realistic
theory of reheating [29].

The added complexity is disappointing. Inflation and
dark energy in 4d have always had the problem that they
require special degrees of freedom and fine-tuning. One
would have hoped that extra dimensions, which are intro-
duced to simplify the unification of fundamental forces,
would also alleviate the conditions needed for inflation.
The no-go theorems say the opposite: the number and
complexity of conditions needed to have inflation or dark
increase significantly.

The fact that NEC violation is required to have inflation
in theories with extra dimensions is unexpected since
this was not a requirement in the original inflationary
models based on four dimensions only. Curiously, a
criticism raised at times about models with bounces
from a contracting phase to an expanding phase, such
as the ekpyrotic [30,31] and cyclic [32] alternatives to
inflationary cosmology, is that the bounce requires a
violation of the NEC [or quantum gravity corrections
to GR as the FRW scale factor aðtÞ ! 0 that serve the
same function]. Now we see that, although the details
are different, all of these cosmologies require NEC viola-
tion when incorporated into theories with extra dimen-
sions.

In general, the no-go theorems are powerful because
they span a broad sweep of theories. They say that one
should be wary of focusing on one localized region of
the extra dimensions, such as a warped throat, since there
are nontrivial global constraints. Second, just because
some elements appear to add to the vacuum energy or
provide an inflaton potential in the 4d effective theory
does not mean the theory is viable; they may force
unacceptable conditions in the higher-dimensional
theory. Thirdly, the NEC violation must be time varying,
at least for the class of metrics considered here. This
power of the no-go theorems derives from the fact that
they arise from a macro-to-micro approach in which the
analysis only relies on known macroscopic properties,
although this also means that they tell us nothing directly
about the detailed microphysics needed to satisfy or evade
them.

We note that, thus far, we have restricted the analysis to
no-go theorems that are simple to express and simple to
prove. There are numerous other relations that must be
satisfied to have cosmic acceleration that will be consid-
ered in future work. However, we hope the examples
shown here and in Ref. [1] suffice to show how these no-
go theorems can be remarkably informative, complement-
ing other ways of thinking about how to construct higher-
dimensional models.
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APPENDIX: SOME USEFUL RELATIONS

For RF models, we have the following useful relations in
the case of fixed � (breathing mode) and metric gmn:

G00 ¼ �3��� 6ð@�Þ2 þ e	�2��4d; (A1)

p3 ¼ 3��þ 6ð@�Þ2 þ e	�2�p4d; (A2)

pk ¼
�
4� 4

k

�
��þ

�
10� 4

k

�
ð@�Þ2; (A3)

þ e	�2�ð12�4dð3w� 1ÞÞ; (A4)

�þ p3 ¼ e	�2�ð�4d þ p4dÞ; (A5)

�þ pk ¼
�
1� 4

k

�
��þ

�
4� 4

k

�
ð@�Þ2

þ e	�2�

�
1

2
�4dð1þ 3wÞ

�
: (A6)

Taking A averages and using h��iA ¼ �Að@�Þ2, we can
obtain an expression for the equation of state of the com-
pact directions

wRF
k ðAÞ¼ ½ð10�4AÞþ 4A�4

k �ð@�Þ2þð3w�1
2 Þe	he�2��4diA

ð3A�6Þð@�Þ2þe	he�2��4diA
:

(A7)

Following Ref. [1], we can obtain the RF analogue of (11)
by multiplying both sides of (A6) by e2��	 and taking the
A average. As shown in [1], for all k � 1 an A can be found
such that A-dependent coefficients are nonpositive. The RF
version of A�, for which the warp term contribution to
e�	he2�ð�þ pkÞiA vanishes, is given by

A� ¼ 2ðkþ 2Þ
k� 4

; (A8)

and A can be chosen equal to A� for all k � 1. The choice
A ¼ 2 is inconsistent with keeping the A-dependent coef-
ficients nonpositive in the RF case.
For CRF models, the analogous relations to (A1)–(A6)

are

G00 ¼ ðk� 4Þ��þ 1
2ðk2 � 3k� 10Þð@�Þ2 þ e	�2��4d;

(A9)
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p3 ¼ �ðk� 4Þ��� 1
2ðk2 � 3k� 10Þð@�Þ2 þ e	�2�p4d;

(A10)

pk ¼
�
7� 6

k
� k

�
��þ

�
6� 2

k
þ 5k

2
� k2

2

�
ð@�Þ2;

(A11)

þ e	�2�ð12�4dð3w� 1ÞÞ; (A12)

�þ p3 ¼ e	�2�ð�4d þ p4dÞ; (A13)

�þ pk ¼
�
3� 6

k

�
��þ

�
kþ 1� 2

k

�
ð@�Þ2

þ e	�2�

�
1

2
�4dð1þ 3wÞ

�
; (A14)

R
	 ¼ 2ðk� 1Þ��þ ðk� 1Þðk� 2Þð@�Þ2; (A15)

where R
	
is the Ricci curvature of the compact manifold.

Then, the effective equation of state is

wCRF
k ðAÞ ¼ ½�ð7� 6

k � kÞAþ ð6� 2
k þ 5k

2 � k2

2 Þ�ð@�Þ2 þ ð3w�1
2 Þe	he�2��4diA

½�ðk� 4ÞAþ 1
2 ðk2 � 3k� 10Þ�ð@�Þ2 þ e	he�2��4diA

: (A16)

In addition, the following Lemma proven in Ref. [1] is useful in deriving dark energy theorems:
Lemma A1: For real and nonzero � and �,

���þ �ð@�Þ2 ¼ �e����e��; (A17)

where � ¼ �� and � ¼ ��2.
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