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Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted

by inspiraling compact binaries: Ready-to-use gravitational waveforms
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We provide ready-to-use time-domain gravitational waveforms for spinning compact binaries with
precession effects through 1.5 post-Newtonian (PN) order in amplitude, and compute their mode
decomposition using spin-weighted —2 spherical harmonics. In the presence of precession, the
gravitational-wave modes (€, m) contain harmonics originating from combinations of the orbital fre-
quency and precession frequencies. We find that the gravitational radiation from binary systems with large
mass asymmetry and large inclination angle can be distributed among several modes. For example, during
the last stages of inspiral, for some maximally spinning configurations, the amplitude of the (2, 0) and
(2, 1) modes can be comparable to the amplitude of the (2, 2) mode. If the mass ratio is not too extreme,
the £ = 3 and ¢ = 4 modes are generally 1 or 2 orders of magnitude smaller than the € = 2 modes.
Restricting ourselves to spinning, nonprecessing compact binaries, we apply the stationary-phase
approximation and derive the frequency-domain gravitational waveforms including spin-orbit and
spin(1)-spin(2) effects through 1.5PN and 2PN order, respectively, in amplitude, and 2.5PN order in
phase. Since spin effects in the amplitude through 2PN order affect only the first and second harmonics of
the orbital phase, they do not extend the mass reach of gravitational-wave detectors. However, they can
interfere with other harmonics and lower or raise the signal-to-noise ratio depending on the spin
orientation. These ready-to-use waveforms could be employed in the data analysis of the spinning,
inspiraling binaries as well as in comparison studies at the interface between analytical and numerical

relativity.
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L. INTRODUCTION

Coalescing compact binaries made of neutron stars (NS)
and/or black holes (BH) can produce gravitational waves
(GW) strong enough to be detected by ground-based inter-
ferometers, such as LIGO [1], Virgo [2] and GEO [3],
operating in the frequency range 10-10* Hz. Moreover,
supermassive BH binaries could be observed at lower
frequencies 10°-10"! Hz and up to cosmological dis-
tances by the proposed laser space-based antenna LISA
[4]. For detection purposes, matched filtering is applied to
noisy data in order to extract any signals that match mem-
bers of the template bank [5-7].

Gravitational waves produced during the long inspiral
phase can accurately be modeled by the post-Newtonian
(PN) approximation to general relativity [8]. As the BHs
approach each other and their velocities increase, the PN
expansion is expected to become less and less reliable.
Late in the evolution, nonperturbative information con-
tained in numerical-relativity (NR) simulations and PN-
resummed methods [9], as well as perturbation theory need
to be taken into account in building analytical templates for
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inspiral, merger and ringdown. In this paper, we shall limit
the discussion to the inspiral phase of coalescing BHs.

In constructing templates for detecting inspiraling sig-
nals, it is recommended to account for all physical effects
which contribute significantly to the gravitational wave-
form. Those produced by the spins of the binary constitu-
ents are among the most important ones, especially for
asymmetric compact binaries [10], such as NS-BH binaries
[11], and BH-BH binaries with component masses
(my, my) € [5,15]My X [1, 5]M. For detecting such sys-
tems, one may be able to employ phenomenological meth-
ods which capture the essential features of spinning,
precessing waveforms [12]. However, parameter extraction
[13—15] would warrant the inclusion of as much informa-
tion about the spins of the binaries as possible, so that one
should employ physical templates [16—18] at the highest
PN order for this purpose.

For nonspinning compact binaries, the GW phase evo-
lution has been computed through 3.5PN order [19-23] and
the A, and hy polarizations are available through 3PN
order [24-28]. For spinning, precessing binaries, the GW
phase evolution is known through 2.5PN order [29,30] for
spin-orbit couplings, and through 2PN order [31] for spin-
spin couplings (spin(1)-spin(1) and spin(2)-spin(2) contri-
butions have been obtained in Refs. [32,33]). Spin-orbit
and spin(1)-spin(2) effects in the 4, and hy polarizations
were computed through 1.5PN and 2PN order, respec-
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tively, in Refs. [34,35].! More recently, the spin(1)-spin(2)
contributions at 3PN order in the conservative two-body
dynamics were found employing either effective-field the-
ory techniques [37—40] or the Hamiltonian formalism of
Arnowitt, Deser and Misner [41-43]. Now, spin(1)-spin(1)
and spin(2)-spin(2) effects at 3PN order in the conservative
two-body dynamics are also available [44]. For including
those higher-order spin effects in the GW phase evolution
and polarizations, the results [39-41,43,44] need to be
extended to the nonconservative dynamics, notably to the
GW energy flux.

The importance of using templates that have amplitude
corrections beyond the leading PN order (henceforth re-
ferred to as Newtonian approximation®) was emphasized
by different authors in the context of ground-based [45-48]
and space-based detectors [49-55], both for detection and
parameter estimation. So far, the effect of spins and pre-
cession on parameter estimation was studied in
Refs. [15,56-58], but those studies were limited to non-
spinning and Newtonian GW polarizations [24-26].

In this paper we provide ready-to-use &, and hy polar-
izations in time domain for spinning, precessing binaries
through 1.5PN order. The actual computation of the gravi-
tational waveform h;; through 1.5PN order was done by
Kidder [34], as well as Will and Wiseman [35], but the
ready-to-use i, and hy polarizations at 1.5PN order were
only written explicitly for strictly circular orbits for which
spins are aligned with the orbital angular momentum.
Recently, Ref. [59] has obtained the time-domain GW
polarizations for generic orbits through 1.5PN order in
the binary’s comoving frame. The %, and &y polarizations
derived in the present paper for spinning, precessing bi-
naries through 1.5PN order reduces to that of Refs. [34,35]
in the aligned case except for a few typographical errors
which we correct.

In view of future studies at the interface between ana-
lytical and numerical relativity [60-71] we decompose the
time-domain 4, and Ay polarizations in spin-weighted —2
spherical harmonics and compute the modes, /,,, to 1.5PN
order. We then consider spinning, nonprecessing binaries
for which we derive the Fourier domain representation of
the generated gravitational waveform within the
stationary-phase approximation (SPA). We provide a very
compact way of writing the Fourier transforms of /4, and
hy which can readily be used for data analysis, for com-
parisons with numerical simulations, or for building ana-
lytical frequency-domain templates including inspiral,

"Note that spin-orbit effects through 2PN order in the 4, and
hy polarizations were calculated in Ref. [36]. However,
Ref. [30] pointed out that a few multipole moments were
computed incorrectly there.

*Note that the leading PN order in the polarization amplitude
is proportional to 1/c* when one turns the fundamental constants
on. However, being the leading term in a PN expansion, it is has
become common to call it Newtonian.
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merger and ringdown [72,73]. The impact of spinning,
precessing waveforms for parameter estimation will be
investigated in a future paper.

The remainder of the paper is organized in the following
way. In Sec. II, we draw the source and detector frames,
and introduce conventions and notations. In Sec. III, we
provide ready-to-use h, and hy polarizations in time
domain for nearly circular orbits. The polarization modes
he¢,, With respect to the spin-weighted —2 spherical har-
monics are derived in Sec. IV. The features of the modes
when spins are present is then discussed in Sec. V.
Section VI focuses on spinning, nonprecessing binaries.
We compute there the Fourier domain waveforms with spin
effects through 2PN order in the amplitude and 2.5PN
order in the phase before discussing the main features
caused by higher harmonics. Finally, we summarize in
Sec. VII our main conclusions. Appendices A and B
present the GW polarizations and modes for precessing
binaries on nearly circular orbits through 1.5PN order for
generic inclination angles, whereas Appendix C shows the
PN coefficients of the center-of-mass energy and radiative
energy flux for nonprecessing, spinning binaries.
Appendix D gives explicitly the frequency-domain ampli-
tude coefficients with nonspin terms to 2.5PN and spin
terms to 2PN order.

II. SOURCE FRAME, POLARIZATION AND
PARAMETER CONVENTIONS

To obtain the GW polarizations, it is useful to express
the gravitational strain tensor /;; in an appropriate source
frame. Next, one specifies an orthonormal polarization
triad composed of the direction of propagation N and
two polarization vectors P and Q which are used to con-
struct the GW polarizations from the strain tensor [74]:

2.1

(PIQ) + Q'P))h. (2.2)
The gravitational strain measured by a detector is then
given by

hstrain(t) = F+h+(t) + F><h><(t)’ (23)

where F, and Fy are the antenna response functions that
describe the detector’s sensitivity to the two different
polarizations. For laser interferometers with arms at a right
angle, such as the LIGO and Virgo detectors, the antenna
response functions for a GW coming from the sky location
(A, @) in the spherical coordinate grid built from the arm
basis, with polarization angle i, are [74]

1 _ _ _ _ _ _
F, = 5(1 + c0s20) cos2¢ cos2 i — cosf sin2¢ sin2 i,
2.4)
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Fy = =(1 + co0s0) cos2¢ sin2 ¢ + cosf sin2¢ cos2ip.

(2.5)

N =

Note that the strain measured in a given instrument,
Ngrain(2), 18 the same regardless of convention, whereas
the wave polarizations depend on the choice of polarization
vectors. Different choices of P and Q give different polar-
izations, but there is a compensating rotation of the polar-
ization angle ¢ so that Ay, (1) is unchanged.’ Here, we
follow the convention of Refs. [25,35], in which

N x J, R

I E—— =N><p,
IN X J

pP= (2.6)
where J, is the unit vector along the initial total angular
momentum of the binary. In the absence of precession, the
Newtonian orbital angular momentum Ly = ur X v (with
r, vand u being the binary separation vector, velocity and
reduced mass, respectively) is parallel to J,. In this case, P
coincides with the ascending node where the orbital sepa-
ration vector crosses the plane of the sky from below. In the
presence of precession, P is still defined as N X Jo/ IN X
Jol, but it is not in general the point where the orbital
separation vector ascends through the plane of the sky.4

For our source frame, we construct an adapted ortho-
normal basis (X, ¥, Z) (see Fig. 1). We take the z xis to be
along J, and the direction of GW propagation, N, to lie in
the x-z plane, tilted by an angle 6 from the z axis towards
the x axis. We describe the direction of the Newtonian
orbital angular momentum with the spherical coordinate
angles (¢, @), where ¢ denotes the angle between the orbital
angular momentum and the z axis while « is the angle
between the x axis and the projection of the orbital angular
momentum onto the x-y plane. For precessing binaries, as
these angles vary in time, one must solve the precession
equations to find their evolution. Notice that this source
frame is the same as used in Ref. [34], and depicted in
Fig. 2 of that paper.

We also find it useful to define basis vectors for the
instantaneous orbital plane. These vectors have an implicit
time dependence through the angles (¢, «), and rotate about
Ly as it precesses. Here are their components in the
(%, §, Z) source basis:

This can be seen explicitly from the relation linking /g, (7)
to the complex polarization A(r) introduced in Eq. (4.1): Ay =
R[he2¥ (e2Pcos*(8/2) + e 24sin*(/2))]. The reader can
easily check the equivalence with Egs. (2.3), (2.4), and (2.5).

“Note that Ref. [34] chooses polarization vectors rotated by
7r/2 relative to ours. This results in an overall sign difference
from our polarizations, as can be seen by making the substitu-
tions P — Q and Q — —P, or by noting that GWs are spin-2
objects and flip sign under a 77/2 rotation. As mentioned, the
polarization angle of this convention is then rotated by /2
relative to ours. This flips the sign of the antenna response
functions as well, and so the same strain (2.3) is measured by
either convention.
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FIG. 1 (color online). We show (i) our source frame defined by
the orthonormal basis (X, ¥, Z), (ii) the instantaneous orbital
plane which 1is described by the orthonormal basis
(&1, 91, Ly), (iii) the polarization triad (N, P, Q), and (iv) the
direction of the total angular momentum at initial time J,.
Dashed lines show projections into the x-y plane.

_ Jo XLy

= 2.7)
|J0 X LN|

X = (— sinq, cosa, 0),

V.= I:N X %; = (— costcosa, — cost sina, sine).
(2.8)

As an initial condition, we take the orbital separation
vector fi to lie along X, at initial time, i.e., fi(r = 0) =
X, (t = 0). Then, we define the phase ®(r) to be the cumu-
lative angle between X; (r) and f(7).

() = X, (¢) cos®(r) + (1) sind(z), (2.9)

A1) = =%, (1) sin®(1) + §, (1) cosD(2). (2.10)

We thus see that the phase ®(#) measures how i has rotated
relative to the vector X; . However, for a precessing binary,
X, is itself rotating about L ~- This means that the total
rotation of fi about L can be decomposed as a rotation of
i in the comoving basis parametrized by ®(z) times a
rotation parametrized by a precession phase due to the
movement of the orbital plane itself. In the nonprecessing
case we have J,||Ly and ®(7) is expected to become the
standard orbital phase whose time derivative is the orbital
frequency. However, when J| I n holds, we cannot define
® =0forh=J, X Ly/|Jy X Lyl, and we set ® = 0 at
the ascending node Nx L N = P, where the orbital sepa-
ration crosses the plane of the sky from below. Now, ® = 0
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at the ascending node is achieved for &, = fi and P = #,
hence a = r, so that the nonprecessing regime is reached
in the limit where ¢ = 0 and a = 7 for all time. This is
applicable when the spins of the bodies are aligned or
antialigned with the orbital angular momentum (or in the
nonspinning limit). The waveforms are then greatly
simplified.
We define the following mass parameters:

M = my + m,, (2.11)
nmymy
== 2.12
. (my + m,)? (212
M = M5, (2.13)
S = u’ (2.14)
my + my
1
v= Z(l — 82). (2.15)

They are the total mass M, the symmetric mass ratio v,
the chirp mass M and the fractional mass difference 6.
The symmetric mass ratio is bounded according to 0 <
v = 1/4 and the fractional mass difference satisfies —1 <
5 <1.

The spin of a rotating compact body is of the order S ~
mlvgy, with [ ~ Gm/c?.1f the compact body is maximally
rotating, then vy, ~ ¢ and § ~ xGm?/c. In other words,
from the PN point of view, the spin is formally of order
0.5PN. By contrast, if the compact body is slowly rotating,
then v, << ¢, and the spin is formally of higher PN order,
S ~ xGm?vgy, /c? ~ 1/c*. Throughout the paper, we use
geometrical units where G = ¢ = 1. Henceforth, we shall
work with the spin vectors normalized by the component
masses as
S,

L, n=12, (2.16)

Xn =

m

so that |x,| = 1 for objects that obey the Kerr bound on

rotational angular momentum. We also define symmetric
and antisymmetric spin combinations as in Ref. [35],

1
X5 = E(Xl + X2), (2.17)

X1 — X2)- (2.18)

1
Xa =5
III. READY-TO-USE GRAVITATIONAL-WAVE
POLARIZATIONS FOR PRECESSING BINARIES
ON CIRCULAR ORBITS THROUGH 1.5PN ORDER:
SMALL INCLINATION ANGLES

The expression of the strain tensor /;; for generic orbits
through 1.5PN order was derived in Refs. [19,35] and is
given by Eq. (6.11) of Ref. [35]. In this section we compute
ready-to-use polarizations in time domain through 1.5PN
order within the adiabatic regime where the binary inspiral
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is modeled as a quasistationary sequence of orbits assumed
to be nearly circular. By nearly circular, we essentially
mean an orbit that would be exactly circular, with separa-
tion vector r of constant radius 7, in the absence of spins
and gravitational radiation. The perturbation of the sepa-
ration Or of such a motion is assumed to remain small with
respect to rq on time scales on which the radiation-reaction
effects can be neglected. This can only happen when the
precession angles are at most of the same order of magni-
tude as the relative corrections induced by the spins in the
dynamical quantities. Now, the evolution of §r is governed
by the radial part of the 1.5PN perturbation of the force per
mass unit given in Eq. (2.1) of Ref. [34]. It turns out that
this perturbation depends on the spin exclusively through
the two projections (S, - Ly) with n =1, 2 which are
almost constant apart from remainders that will contribute
at higher orders in our weak precession hypothesis. In
order to write the equation for 6r, we project the relative
acceleration a in the basis {f, AL ~1. For the sake of
convenience, we introduce an ‘‘orbital-like” frequency
wo, defined as w.y, = (v-A)/r. The closure relation
yields the following decomposition for v and a:

v=rn +w0rbrx,
a=(i— rwgrb)ﬁ + (rogy + 2m0rb))1

o dLy\~
— rwoﬂ,<)\ . TzN)LN’ (3.1

with i = dr/dr. Splitting a into an unperturbed part a,
plus a perturbation éa and using the equations of motion,
we find finally that 8r satisfies the equation 87 + w38r =
const, where w, is the constant angular frequency of the
background motion. A particular solution is given by a
constant perturbation, 6r = const, whereas the homoge-
neous solution satisfies an harmonic oscillator equation
independent of the spin.

By making the particular choice of a zero homogeneous
solution, we can always eliminate the oscillations of r that
are not directly linked to the nonzero spins of the BHs.
Based on these observations, we shall define precisely a
nearly circular motion to be a perturbed circular motion
whose homogeneous radial perturbation solution (8r)yom
is zero, as it would be for an exactly circular motion.
Assuming such a dynamics for our binary system implies
that both 6r and r = ry + 6r must be constant, provided
we neglect higher-order spin terms and radiative effects.
We can generalize nearly circular motions to the case
where spin precession angles are arbitrary in the absence
of spin-spin interactions. This is achieved by introducing
the concept of spherical motion defined as a motion having
a constant separation r. It immediately follows from
Eq. (3.1) that the full (conservative) acceleration is still

3 Though this type of motion can exist and is more general than
the spin-aligned or antialigned case, it does not necessarily
represent yet the most likely evolution to be observed.
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of the form — w2, rn. Moreover, when radiation-reaction
effects are neglected, the orbital frequency computed from
the 1.5PN equations of motion keeps being almost constant
[31,34], even for precession angles that are no longer
small. This can be seen [29] by noticing that the only
possible nonconstant terms in w,y, at the 1.5PN order
come from the leading spin contribution of the equations
of motion, and thus, are of the form (S,, - L ~). Their time
derivative reads (dLy/dt - S,) + (Ly - dS,/dt). The first
term is zero due to the precession equation dS,/dt =
Q, X S,, while the second term is a higher-order correc-
tion quadratic in spins because of the approximate conser-
vation of L. The treatment of the spin-spin dynamics is
more delicate. A possible way to proceed consists in aver-
aging the time dependent spin contributions in .y, over
one orbital period [34,75].
Introducing the invariant velocity,

v = (Mworb)1/3: (32)

we reduce Eq. (6.11) of Ref. [35] to nearly circular orbits
and expand it in powers of v with the help of the relativistic
extension of Kepler’s law linking w4, and M/r provided
by Eq. (7.1) of Ref. [35]. Schematically, we obtain

2M
hi/‘ _ 2

’ D,
+ (P3/2Qij + P3/2Q§a}ll + P3/2Q§]Q)U3]TT,

———[Q;; + P'2Qv + (P'Q;; + P'Qf0)v?

(3.3)

where SO indicates the spin-orbit terms; the tail integral
p3/ 2Q§‘}ﬂ given by Eq. (6.11e) of Ref. [35] reads

P3/2Quil = 4[77()1")1/ — Alpd) + 121n< )/\“ Af)] ,
Vo TT
(3.4)

with v being an arbitrary numerical constant reflecting the
freedom in the choice of the radiative time origin. The
symbol TT on the square bracket indicates the transverse
trace-free projection in the plane orthogonal to the direc-
tion N of the observer. We remind the reader that the
nonspinning contributions to Eq. (3.3) are known through
3PN order [27,28].

Apart from the spins, there are four vectors that appear
in the expressions for the P"Q;;’s in Eq. (3.3). In the source
frame constructed in Sec. III, they have the following
(x, y, z) components:

i = (— sina cos® — cost cosa sin®, cosa cos®

— cost sina sin®, sine sin®), (3.5)
A= (sina sin® — cost cosa cos®, — cosa sind
— cost sina cosP, sine cosP), (3.6)
N = (sin6, 0, cosf), (3.7)
L x = (sinc cose, sine sina, cost), (3.8)
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where @ is the phase defined in Eq. (2.9) that measures
how n has rotated relative to the vector X;. As X; is itself
rotating about Ly for a precessing binary, the orbital
frequency, or the total angular velocity of i about L N> 1S
the angular velocity of the motion of the binary within its
instantaneous orbital plane, plus a precession velocity due
to the movement of the orbital plane itself. To derive the
relationship between the phase ®(z) and the orbital phase
(or carrier phase), we compute the derivative of fi(z) by
means of Egs. (2.7) and (2.9), obtaining

dn dd da du
— = +cost— )\ + (= — ,
’ (dt cosL— ))\ <dt sin® — sin¢ cos® ’r )LN

(3.9

By imposing Ly =1 X v/[fi X v| = X di/dt/|i X
dfi/dt|, and using Eq. (3.5) as well as Eq. (3.8), we find
that the term proportional to L y in Eq. (3.9) must be zero.
Thus, we have dfi/dt = ir/r* + ¥/r = (v N\, where v -
X is the orbital frequency w,y, defined before Eq. (3.1),
which may be now interpreted as the angular velocity with
which A rotates about L. ~- Identification with Eq. (3.9)
leads to the relation

wop, = P + cosua; (3.10)
the phase ®(¢) being simply the integral
() = f T () — cosu)a(ldl. (.11
0

Because of the freedom in the choice of the time origin by
the radiative observer, h;; depends on an undetermined
time scale or, equivalently, on an arbitrary reference orbital
frequency w(. The constant w, is actually associated to the
presence of gravitational-wave tails and appears solely in
logarithms of the form In(w.y/w,). Such contributions
may be absorbed in the orbital phase by a redefinition of
@ into a shifted phase W [24]. Through 1.5PN order in the
shift, we can pose ¥ = ® — 2v° In(wyy,/ @,). By plugging
Egs. (3.5), (3.6), (3.7), and (3.8) into Eq. (3.3), taking the
combinations given in Eq. (2.1), and collecting terms by
powers in v, we obtain the waveform polarizations

2M vv?
Dy
+HSO + B2 + Y250, (3.12)

The Newtonian, 0.5PN and 1PN order terms were already
computed explicitly in Refs. [34,35] [see, in particular,
Egs. (B2), (B3) of Ref. [34]], but as a series expansion of
M /r rather than v. Let us list for the reader convenience a
few typographical errors we found there. In Eq. (4.9d) of
Ref. [34], the factor of (1/6)(149 — 6v) has to be replaced
with (1/6)(149 — 36v); in Eq. (B2c) Q, must be changed
0 —(Q.;in Eq. (B3c) the right parenthesis is missing in the
expression (cos?isin’a + cos’a); at last, in Eq. (B2j) cd
should be read as —cd. In Ref. [35], Eq. (f14b) must be
multiplied by 3v; in Eq. (F20) —3» has to be replaced with

hyx ="———[HY, + H? + HY25O + 5],
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+3w; there should be an overall minus sign in front of
Eq. (F25c¢). If we reexpand Kidder’s polarizations in v, and
correct all the previous typos, we obtain complete agree-
ment with both results through 1PN order.®

The lengthy expression for the GW polarizations can be
reduced to a much more compact form by noticing (see
also Sec. IVD in Ref. [34]) that in the limit § << L the
angle ¢ can be considered a 0.5PN order correction. This
can be seen from

_1Jo XLl
JoL

if we neglect radiation-reaction effects, i.e., we assume
Jo=J,anduse J=L + S, +S, and S, = O(1/c). We
may then replace sint and cose in A,y with their Taylor
series expansions in ¢,

, (3.13)

3
mmq—%+@mx (3.14)

HY = —(c,2 + 1) cos2(a + P),

2

H&l/z) = v5s9[<% +

4 2 2
1 c 3c 19 Ilc
HQzu{(—%f+iwag+<%4+ :
4 5¢,2 19 c,t ¢ 49
(3/2) _ 0 6 0 0
H 0 —_— = -z -7 4
Y [ N (192 16 64 ( 9% 8 96

(( 8lc,*  45¢,? 657) (81c0
+ Ssol (- + +— )+
128 16 128 64

X cos5(a + \If)],

H(+1/2’SO) = —2ucpsycos(a +2W),

g)cos(a + ) — %(602 + 1)cos3(a + \If)],
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2
am=1—%+m&. (3.15)

However, the assumption S <« L becomes less and less
reliable for smaller mass-ratio binaries. In fact, as a first
approximation, we have S,/L = (m,/M)>x,v/v with
v = (GMw,y/c*)'/3. Thus, even if S, ~ O(1/c), L can
become comparable to S, when v is sufficiently small.
Moreover, we have assumed J, = J in Eq. (3.13), but the
latter is not exact when radiation reaction is included, and
it can be strongly violated in presence of transitional
precession [76]. For these reasons, though we have decided
to list in this section the GW polarizations expanded in ¢,
we display in Appendix A the full expressions for generic
inclination angles. For the t-expanded polarizations, we
find

(3.16a)

(3.16b)

— 169) )cosZ(a + W)+~ (1 — ¢y )3y — 1) cosd(a + \11)] (3.16¢)

) )cos(a + W) —27(c,? + 1) cos2(a + V)

HSO = 2yt + 8x2) — 551 + 8x) cos(a + W) — ¢y(xch + 8x3) sin(a + V)]

2

1
+ ‘ULBC@I:ZSHZ cosW — (% + g) cosQQa + V) + (— —+

3 1
+ L2|:—5S02C052‘I’ + E(cﬂ2 + 1) cos2(a + ‘lf)],

9c,> 225 65
2¢° a)v)cos3(a+‘l’)+8s9@(l 2w —1)
(3.16d)
(3.16¢)
9 27,
g )cos(2a + 3\1’)]
(3.16f)

4 4
H(f/z’so) = v3[s0c9(25)(§ +Q2—-v)x})+ (5(1 + c02)6,\/§ + g((l + cez) + (1 — 5c02)))(§ —sgcg(ROxE+ (2 + 71/),\/;‘))

, 2
X cos2(a + W) — sgcg(R8xn + 2 — v) x3) sin2(a + ‘I’)] + szs(,I:c9<—c€2 +4+ <3c(,2 + §)V) cos(a +2W)

2 16 , ,
+ cf)(—% — 1+ (c,> + 3)V)cos(3a +2¥) + cf,(? — 16v)cos(3a +4%) — (yy + SX'})sin\If]

3¢y” 9 llc,?
+ vﬂsﬁ[(——fé + E)cos(a - V) - ( 3c20
45 135¢,”

X + W) +
cos(Ba + V) ( 32 3

2 2 1
+ —3) cos(ar + W) + é(c(f +eos(a + W) = (e, + 1)

)cos(a + 3‘1’)] + L3c0s0|:% cos(a —2W) + % cos(a + 2‘1’)]

32

(3.16g)

®It is also worth noting that Ref. [34] sets the origin of phase to be at a point referred to as the ascendlng node and defined to be the
point where the orbital separation crosses the x-y plane. This is in fact the same as our phase origin, X; = J, X L N/ 1T X L ~|, but to
reduce the possibility of confusion, we do not call this point the ascending node. We reserve this term to mean the point where the

separation vector crosses the plane of the sky from below.
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H(XO) = —2cysin2(a + V),

3
HY = wsegs,[ =2 sims(a + W) + 2 inta+ ) |

dc,)? 17 13 8
H) = v2c9[<— o 4Ly (—? + 4c, ) )sin2(a +¥) + 502(—§ + 81/) sind(a + \I’)]

3 3

PHYSICAL REVIEW D 79, 104023 (2009)
(3.17a)
(3.17b)

(3.17¢)

21  5¢,? 5¢,> 23
32 = 3 e Sl +<——"’ + )) + in2(a +
HS, v c9|:6s9<( 2 o6 ) TR sin(a + V) — 47 sin2(a + V)
135¢,% | 603 171 | 135¢3 . .
+ 5s9<<— 640 + a) + (— = + > 9)1}) sin3(a + V) + 5s0(192 Q2v — 1)s,? )smS(a + \I’):I,
(3.17d)
H(Xl/z,so) = =25y sin(a + 2V), (3.17e)
HS = v + dxi) cos(a + W) + cyleqxs + 6x) = so(x; + 3x3)) sin(a + W)
2 1 2
+ Lv8|:s92 sin® — (% + 4_1) sina + W) + (—Z + 9%) sinQa + 3\1’)] + ’cysin2(a + V), (3.17f)
HY/?S0) = v3|:s9(26)(2 + 2 = v)x5)(1 + cos2(a + V) + <§c98,\/§, + c(,(g - (% + 4c(2,)v))(§

—s5o28x+ 2+ (3 + 4692)1/),\/’;)) sin2(a + ‘I’):I + vasgl:(cg(/\/j; + 8xY) — so(xX5 + 6x%)) sin¥

16

+ ((—3c92 +6) + (— 3 +9c¢, ) )sin(a +2%) + (—(c,f + %) + (3¢,? + 1)1/) sin(3a + 2W)

+ ((—g + 8c02> + (—24c,* + 8)1/) sin(Ba + 4‘If)] + USC@S@[% sin(la — V) — 1—; sin(a + W)

27 1 45
+ T3 sin3(a + ¥) — — s1n(3a + ) + — sm(a + 3\If):|

where s, and ¢, are shorthand notations for sinf and cosé,
respectively. In Sec. IV (see Fig. 2), we shall discuss
typical variations of the inclination angle ¢ depending on
spin orlentatlons and binary mass ratios. Note that whereas
the terms of H' by i linear in X, depend on the first har-
monic of the orbital frequency, those of H 3/ 2.50) depend on
its zeroth and second harmonic, and so do the terms of
H<2 59 quadratic in the spin components, although we do
not use them here. We include these 2PN SS polarization
corrections when constructing frequency-domain wave-
forms for binaries having their spins aligned or antialigned
with the orbital angular momentum in Sec. VI. The har-
monic dependence of the polarization corrections pro-
duced by the spins can be understood from the explicit
expression for h;; shown in Egs. (4.9¢) and (4.9d) of
Ref. [34] or Egs. (F15a)-(F15c) of Ref. [35]. The 1PN
SO contributions are proportional to the components of
the orbital separation vector, fi, which are themselves
proportional to sin® and cos®, so that H(+1 io depend on
the first harmonic of the orbital phase. Next, the 1.5PN SO
and 2PN SS contributions are proportional to products of
the orbital separation or instantaneous velocity unit vec-
tors, i or X, and to products of sin® or cos®. These can be
reexpressed in terms of sin2®, cos2® or constant quanti-

1
[zsg sin(a —2W) + gsg sin(a + 2‘1’)]

(3.17¢)

ties independent of @, so that H (:/Xz S9) and HY @ SS) depend
on the zeroth and second harmonics of the orbltal phase.
Because the expressions for £;; in Refs. [34,35] are ex-
panded in (M/r), while we use an expansion in v =
(Mw,)"3, one has to convert from one expansion to the
other by using Eqgs. (7.1) and (F20) of Ref. [35]. In doing
so0, the v expansion gains additional 1.5PN SO and 2PN SS
corrections proportional to the Newtonian order term de-
pending on the second harmonic of the orbital phase. The
1PN SO term is left unchanged.

Ready-to-use time-domain GW polarizations for spin-
ning, precessing binaries through 1.5PN order in phase and
amplitude can be obtained by solving numerically the
following equations: (i) the spin precession equations
[29,30]

dsS,
— =0, XS, 3.18
dr 1 1 ( a)
s,
— =0, X8S,, 3.18b
o 2 2 ( )
where at 1.5PN order
3 v_3\~
5/3 —
Q=) (Z +3F Z5)LN; (3.19)
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FIG. 2 (color online). The left panel shows the inclination angle of the orbital angular momentum relative to the total angular
momentum, ¢, as a function of 2M® for binaries with mass ratios 1:1 and 4:1, having initial spin orientations relative to the orbital
angular momentum: Spin, = {0, = 7/2, ¢, =0, 0, = 7/2, ¢, = 7w/2} and Sping = {0, = w/6, ¢, = w/4,0, = 7/6, P, = 7}.
The right panel compares the modulus of /,, for the two precessing spin configurations with the nonspinning, aligned and antialigned
cases for equal masses. The computations use waveforms accurate to 1.5PN in amplitude and phase evolved with the precession
equations at 1.5PN order [see Egs. (3.11), (3.18), (3.20), and (3.21)]. Note that these plots (and those of Figs. 3 and 4) begin at
2M®d = 0.02 which is approximately where the dominant second harmonic from a binary of total mass 16M, enters the LIGO band at

40 Hz and where the second harmonic from a binary of total mass 6.5 X 10°M,, enters the LISA band at 10~* Hz.

(i1) the evolution equation for the Newtonian angular mo-
mentum

A v - .
Ly= _;(Sl +Sy); (3.20)
(iii) the equation for the orbital frequency
3 6 743 11
wgrb = 9— Vv5{1 - (— +— 1/)112
wry S 336 4
19 113 . 113 .
+ =2y — = . _ - . 3
[( 3 v 12 )XS LN 12 5Xa LN]U
+ 47Tv3}. 3.21)

Integrating w,,, yields the orbital phase @4 (1) =
[ wo(f)df’. The GW polarizations (3.12) through
1.5PN order in phase and amplitude are computed by
solving numerically Egs. (3.11), (3.18), (3.20), and (3.21).
In order to compute the GW polarizations (3.12) through
1.5PN order in amplitude, but at the highest available PN
order in phase, one should replace Egs. (3.18) and (3.20)
with Eq. (7.5) in Ref. [30] and Eq. (32) in Ref. [60],
respectively.

IV. GRAVITATIONAL-WAVE MODES FOR
PRECESSING BINARIES ON NEARLY CIRCULAR
ORBITS THROUGH 1.5PN ORDER: SMALL
INCLINATION ANGLES

Because of the spin-2 nature of GWs, it is convenient to
decompose the waveform components in the dyad {(P +
iQ)/+/2, (P — iQ)/+/2} with respect to an orthonormal
basis of spin *£2 functions that are defined on the two-
sphere and belong to an irreducible representation of
SO(3). Most commonly, the complex polarization

PI—iQl P* —iQF

V2 V2

is expanded into the set of spin-weighted —2 spherical
harmonics. Like the standard spherical harmonics, these
functions of the two angles of spherical coordinates are
labeled by a pair of integers, say (€, m), with € = 2 and
m =< |€|. The spin-weighted —s spherical harmonics asso-
ciated to any such pair are given by’ [77]

"Our definition of _Y*"(, ¢) differs from that of Ref. [77] by
a factor (—1)" so that ,Y“"(6, ¢) coincides with the most
broadly used definition of Y“"(6, ¢); for the d matrix dfn,m(B),
we adopt the same convention as Landau-Lifchitz [78].
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o, g) = oy @, @)

with
min(€+m,{—s) (_ 1)k

s, )= > z

k=max(0,m—s)
JE+ m) (€ — m)(€ + s)!(€ — 5)!
(k=—m+s)€+m—k)Il—k—s)!

O\2¢+m—2k—s O\2k—m+s
X (cosz) (sini) ,

and the orthogonality relation holds

4.3)

[ dQ_ Y, ¢)_,Y'm(9, ) = 60 smm',  (4.4)

where d() = sinfd6fd¢ denotes the element of solid angle
and 6 is the Kronecker symbol. The integration is per-
formed over the unit sphere, so that 0 = § = 77 and 0 =
¢ = 2. The mode expansion of the complex polarization
(4.1) is then of the form

+o00

€
h(O, ) =D > hyw Y0, b).

=2 m=—+¢

4.5)

The GW modes hy,, are extracted using the orthogonality
property (4.4) by means of the surface integral

how = [ OB, 8) Y 6.0, G6)
where the star on the spin-weighted —2 harmonic indicates
the complex conjugation. Therefore, the calculation of &g,
requires the knowledge of the polarizations 4, and Ay for
an arbitrary value of the azimuthal angle ¢ of the direction
N. In Sec. III, we have computed 4, and iy only for ¢ =
0; however, a specific choice of the x-axis orientation
cannot be responsible for any information loss. Thus, we
must be able to recover h(6, ¢) from the expression of
h(0, 0) alone.

The quantity £ at a given point depends on a number of
parameters, such as ¢ or the spin variables, and can actually
be regarded as a function of 6, ¢ as well as a function of
the whole set of parameters that possess a geometrical
character. More precisely, we may write h(6, ¢) =
h(, b, v, a, @, X%, xn, x5). Let us now introduce the pro-
jection basis (%', §/, 2’ = 7) obtained by applying a rotation
of angle ¢ about the z axis on the vectors of the original
basis (X, §, Z). Let us also associate to each variable of ha
primed counterpart, which is defined in the same way as
the unprimed variable but refers to the new basis rather
than the original one. For instance, &’ denotes the azimu-
thal angle of the orbital angular momentum measured from
the fixed vector &’ instead of X. In particular, we have 6’ =
0, d' =0, =1, a' = a — ¢. The phase P, defined as
the angle (Ly X % fi) = (Ly X 2, i), is not affected by

PHYSICAL REVIEW D 79, 104023 (2009)

the transformation: ®' = ®. The x’ and y’ spin compo-
nents can be obtained from the two-dimensional formula
for a passive rotation of angle ¢, that is

xX*, = xLcose + xising, 4.7

X%y = —xising + xi cosd, (4.8)

while the third component is left unchanged. With our
conventions, the polarization vectors in the new basis
remain equal to P and Q, respectively. Therefore, the
complex polarization is identical to that of the old frame.
Moreover, by construction of the primed variables, the
functional dependence of / is the same as before, meaning
that h = h(8, ¢, 1, a, D, x5, x0 x2) = h(0', ¢/, , o, D,
X" x” . x',). Hence the important relation

h=h, ¢, i, a ® x: xn x2)
=h(0,0,1, a — ¢, D, cosgxi + sing xi,

— sing x* + cosd xn X2), 4.9)

where the function (6,0, t, a, i xn x3) is given by
Egs. (3.16) and (3.17) for the t-expanded expressions or
by Egs. (A2) and (A3) for the full ones.

At 1.5PN order, the GW polarizations decompose into a
sum of 3 terms, hy(0, v, a, ®) + ¥, _ | ,X,-h, (6, ¢, a, D),
which shows that 4 may be written as

ho(B, 1 a — &, @) + > [ Lk, (0,1, @ — b, D)

n=1,2
+eTL (0,1 a — ¢, ®) + Xihi(0, L @ — ¢, D)),
(4.10)

with &, = (x* + ix})/v2 and k, = (h* + ih})//2. Each
mode Ay, splits accordingly into 7 contributions: the spin-
free term and 6 terms proportional to each of the spin
variable components. These contributions are parametrized
by a vector weight m’ = —1, 0, 1, as well as the body label
n =1, 2 of the spins; n = 0 refers to quantities entering
the spin-free part of & for which we also set m’ = 0. As a
result, for precessing binaries, the integral to compute /g,
takes the form

1
h(fm = Z
m=-—1

2
Z Xm/,n fdQKm/,,,(e, L, a — ¢, (I))
n=1

!

X el=m'=md _ ytm=(g,0), 4.11)

where Xoo = 1, Xo,» = x5, (forn’ =1,2), Xy, = {7,
Xl,n’ = gn” KO,() = hO? KO,n’ = hf,l? K*l,n’ = kn’ and
K, = k,,. By means of the change of variable ¢ — ¢ +
a, we are able to factor out a complex exponential
e imtm)a which contain all the dependence in «. Let us
now focus henceforth on the case where the waveform has
been expanded in powers of ¢. As we shall explicitly see
below [see Eq. (4.17)], the hy,,’s are then made of (i) a spin-
free piece proportional to e~ ™, (ii) two spin pieces pro-
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portional to e ="~ D@ and to [ or {5, respectively, (iii) two
spin pieces proportional to e~V and to £, or &,
respectively, (iv) two spin pieces proportional to e "¢
and to xj or x3, respectively. In contrast to what happens
in the nonspinning case, %, is not in general proportional
to e~ "™® except for the terms that are free of ¢, since both i
and A reduce to trigonometric functions of ® + « as ¢ —
0. The contributions to the polarization modes that are
linear in ¢ involve couplings of the type
e~ imtm)(@Fa) cosd or ¢ {mTM)IPTA) gind because the
terms of first order in ¢ entering fi and A can only be linear
combinations of ¢ cos® or ¢ sin® (or equivalently te™'®).
Couplings like e~ "t @+ @) cosadsinb d, with a, b € N,
arise at higher orders making the dependence in ® more
complicated. A close inspection to the results below [see
Egs. (4.17a)-(4.17r) with ¥ — @] confirm these expecta-
tions. Beware that our mode normalization is tuned to
factor out the exponential factors e,

The structure of the modes is much more complicated
for precessing binaries than for nonprecessing binaries.
When the orbital angular momentum is aligned with the
total angular momentum (¢ = 0, @« = 7r), note that a rota-
tion by ¢ about the z axis produces an offset in the orbital
phase angle, so that

h(8, ¢, D) = h(6,0,d — ¢). (4.12)

This ensures that only terms proportional to ¢~ "% con-
tribute to the integral over ¢ to compute hy,. In the
precessing case, a rotation by ¢ produces an offset in the
a angle, and so terms with different powers of ¢~'® can
contribute to the same h,, mode. As we will see below,
these terms with different powers of e '® interfere to
produce rather complicated modulations to the modes on
the orbital time scale. Since the precessional motion is
typically much slower than the orbital motion (several
orbital cycles are completed in any precessional cycle for
the systems we consider), it may be surprising that the
relatively slow precessional motion can produce such rapid
oscillations in the modes. This is simply a breakdown of
the nice structure (i.e. that &, « ¢~ ™®) of the hy,, modes
in the precessing case. Note however, that what is actually
observed are the gravitational-wave polarizations. In the
polarizations, precessional effects are indeed on a slower
time scale than the orbital motion. They modulate the
“envelope” of the waveform, rather than create orbital
time scale interference.

A useful property of /i coming from the arbitrariness of
the body labeling is that it must be invariant in the ex-
change of particles 1 and 2: m; < m,, x; < x2, 1 — —n,
v — —v. Under this transformation, the direction of the
angular momentum L remains invariant hence X — —\.

PHYSICAL REVIEW D 79, 104023 (2009)

The orbital frequency w,y = (v - N) is unchanged as well
as the direction of the total angular momentum, due to its
structure and parity. Therefore, the phase ® becomes
(%, —fi) = ® + 7 whereas the angles « and ¢ are unaf-
fected. This yields the relation

hO, b, 1, a, D, xT, x5 X1 X0 Xr X5)

=[O, &, 1, a, ® + 7, X3, X5 X5 XD X5 XD 5o
(4.13)

The previous identity may be supplemented by another one
which originates from the classical parity invariance of
physics: for any given time instant ¢, the waveform result-
ing from the stress-energy tensor parametrized by the
worldlines x,, and the spins x,, must have the same value
at point x as the waveform resulting from —x,, and +%,, at
point —x. Taking into account the transformation of the
polarization vectors under parity, this means for the func-
tion h:

E(Q’ ¢) L, «, (I)) Xi; /\/ﬁy Xfl)

=h(T—0, 0+ 7 0a®+ 7 x5 xmxs). (4.14)

The above formula allows us to express the modes 4y, in
terms of the modes h,_,, by performing the change of
variable # — 7 — 6 and ¢ — ¢ + 7 in Eq. (4.6). The first
factor of the integrand can be then rewritten as
(0, ¢, v, a, ® + 7, x5, 0, x2) making use of Eq. (4.14).
The second factor _,Y“"*(7r — 6, ¢ + ) may be trans-
formed by means of two important symmetry properties
of the spin-weighted spherical harmonics: _,Y*" (7 —
0, +m) = (—1",Y"0,¢) and Y0, ¢)=
(=n)"_,Y (=m*(p, ¢), which leads to the new expression
(=), y*=m(0, ¢) for this factor. As a consequence,
the link between hop(P) = fdQﬁ(ﬁ, b, 1, a,
®, X5 X0 X3) oY (0, ) and fy—,(®) is given by

(@) = (— 1)+ ] A0 (0, b, 1, a,

D+, x5 xon Xa) Y™, @)

= (=D)""mh;_ (D + ). (4.15)
The explicit expressions for the modes 4, are obtained by
inserting Eq. (4.9) into the surface integral (4.4). We nor-
malize them in such a way that the leading order mode
starts with coefficient 1. Posing

e—im(‘lH—a)}'l\e
m»

(4.16)

QMvv?) 167
hgw = ——F— =

Dy
and expanding in the inclination angle ¢, we arrive at®
81n the case of spins aligned or antialigned with the Newtonian

angular momentum, the modes (2, 2), (2, 1) and (3, 2) were also
computed in Ref. [71]. We fully agree with their results.

104023-10



HIGHER-ORDER SPIN EFFECTS IN THE AMPLITUDE ... PHYSICAL REVIEW D 79, 104023 (2009)

1. 1 1 , 2
hyy =1+ get‘l’am + Uz{ﬁ(—107 +55v) — Ee“a”’)[;(g —ixn + 6(xt — i)(ﬁ)]} -

2
463 4 1
+ U3|:27T _9Xa —(—1+ v),\/ﬁjl + (9(—4), (4.17a)
3 3 c
N Sv . v? 5 1, 4 L v ,
hy = iy +e Wy + 7(/\/2 + 8x%) + 5L2‘U<E — Ze”“') + v3{—e’(“+‘l’)|:5()(§ —ixn) + (1 — E)()(’S‘ — l/\/f)il

. X 5 1)
+ e_’(““l')[é()(z +iyn) + (1 + 61/)(/\/’5‘ + iXX):I + Q(” — 201/)}

- 1 : . 3 , , 1
+ U2L{642 (=107 + 55v) + Z(Xg —ixn +0(xt —ixy))e“(—1+ 62“1')} + %(— ge_”l' — e3’qf) + (9<?>,
(4.17b)
A 1 [3[v? i(a+W Sy Sy —i(a+W Sy Ly
hao =3 5{?[—%“ s = ixa + 8¢t — ixd)) + eI+ ixa + (i + ixd))]
4 , 4, i
+ ngS sin¥ + 242 cos2W¥ — JV sinW(y% + 5,\/§)} + @(—4), (4.17¢)
c
o 3 /15 16 . o 4 . Svi? s 1
hyy = — Z»‘,ﬁ{6v + v3[25(—2 +v) + ?e’(““y)v(,\/? - l)(ﬁ)il - §e’\PLv2(—l +3v) + = (—3 + 5 )} + O(?)’
4.17d)
- 9 58 , €Y\ 32 1
I’l32 = — g ?[E‘U (_1 + 31/) + 5UL<€ - E) - EU VXS] + @(?), (4176)
N 1 2 . ! .
hy = — NIT _14{511 + v3[— 55(4 + v) — 16 1@tV p(yr + i)(ﬁ)il +2002u(—1 + 3p)e ¥
Svi? 11 135 . ) 1
+ —— == %V — 2!‘1’)} + (—) 4.1
3 ( 3 5> ¢ 3e O a) (4.17f)
N 1 1
hyy = — ——==0vicosWV + (9(—), 4.17
30 SN/ v o (4.17g)
N 8 |5 1
h44 = §J;U2(l - 37/) + (9<F>’ (417h)
= 10[ 81 38(—1 +20) + (1 — 3 )(f“l’ eiw)] + (9(1) (4.170)
Y I - v (1 — 3w - — .
B9V 71320 16 c
. \5 1 .
h42 = avz(l - 31/) + @(g), (417])
A 1 [5r60° 4 1
= o = (—1+2v) + %1 — —l‘l’]+ (—) .
hay 71 2[ 20 (=1 +2p) +v2u(l —3p)e O a) (4.17k)
A 1
c
N 625 1
hss = — sv3(1 —2v) + (9(—), 4.17m
N R )+ O (4.17m)
A 1
h54 = (9<—4), (417n)
c
N 9 [3 1
=2 |2 — + 0= )
hes 321/ = v75(1 - 20) (9(64), (4.170)
A 1
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1 1
= ———==656v(1-2 +(9(—),
288385 ( v) ct

N 1

In Appendix B, we display the modes hy,, h33 and &y, for
generic inclination angle ¢. The modes hy,, for m <0 are
derived from Eq. (4.17) by means of the relation
ﬁg_m(CI)) = (—l)fﬁzm(db + 7). The nonprecessing expres-
sions are obtained by setting ¢ = 0 and @ = 7. Notice that
when £y, (P) does not depend on P, we have simply
hy_,, = (—1)¢h},,. For comparison with the modes of
Refs. [27,28] in the nonspinning case, it is important to
be aware that the origin of the azimuthal angle there differs
from ours by —4r/2, which produces an extra factor (—i)”
(respectively, i) with respect to us in the modes (respec-

tively, in the spin-weighted spherical harmonics).
|

cosA —sinA O
Rij(A, BTI)= /| sinA cosA 0
0 0 1

PHYSICAL REVIEW D 79, 104023 (2009)

(4.17q)

(4.17r)

Finally, let us emphasize that the (¢, m) modes defined
by Eq. (4.5) depend on the particular choice of the source
frame. In fact, they are functions of the spin and angular
momentum components with respect to the (%, §, Z) basis
introduced in Sec. II. As there is no canonical way to fix the
reference frame for precessing binaries because of the
secular but perpetual variation of the direction J/|J|, it is
important to be able to relate the h om S given in Eq. (4.17)
to the polarization modes /), computed in another frame
with different polarization vectors. Under a passive rota-
tion

cosB 0 sinB cosI' —sinl" 0O
0 1 0 sin’  cosI' 0|,
—sinB 0 cosB 0 0 1

the (¢, m) modes transform in the same way as they would in the case of a standard spherical harmonics decomposition
[79,80]. In fact, the spin-weighted —2 spherical harmonics are precisely devised to ensure this property for the modes of a
spin-weighted —2 object [77]. The law of transformation for the &,,’s is given by

¢
(@, o/ ) xid xE) =D D (A B D, (P, a, x5 X X5, (4.18)
m=—¢
where the primed quantities refer to the new frame and where Di,m is the unitary Wigner matrix [77]
DL, (A B,T) = (— 1)y -7 ytn(p, A)ein'T 4.19
m/m( y Dy )_( ) 2€+ 1_m/ ( » )e ( . )
with the convention of Landau-Lifchitz [78]. The new angles read
! = arccos[cosB cost — cos(I" + «) sinB sint], (4.20a)
, , cosA[cose sinB + cosB cos(I" + ) sint] — sinA sine sin(I" + «)
o' = arccos cosa’ = arccos
V1 — (cosBcost — cos(I' + «) sinB sin¢)?
if costsinA sinB + sint[cosB cos(I' + a) sinA + cosAsin(I" + a)] = 0, (4.20b)
o' = 24 — arccos cosa’ otherwise, (4.20¢)
@’ = arccos cosd’
_ aI‘CCO“COSB cos® sint — sinB sinl'(cost cos® sina + cosa sin®) + cosl sinB(cost cosa cos® — sina sin®)
V1 — (cosBcost — cos(I” + &) sinB sin¢)?
if cos® sinBsin(I" + a) + (cost cos(I” + «) sinB + cosB sint) sin® = 0, (4.20d)
@’ = 271 — arccos cos®’ otherwise. (4.20e)

When the direction of the total angular momentum used to built the new frame coincides with that of J,, which results in
the equality 2’ = Z, the Euler angle B vanishes. Then, it can be checked from Egs. (4.20d) and (4.20e) that &’ = ® as
expected.
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V. FEATURES OF GRAVITATIONAL-WAVE MODES
FOR PRECESSING BINARIES ON NEARLY
CIRCULAR ORBITS

We now study how spin effects change the waveform
modes for generic precessing binaries. We consider two
maximally spinning configurations with mass ratios 1:1
and 4:1. We label the spin configurations with the angles
{0y, &1, 05, &>}, where {0;, ¢;} describe the orientation of
the spin vector of the ith body relative to the orbital angular
momentum in the initial configuration, which we take to be
a circular orbit with M w4, = 0.001. We use the full ex-
pressions for the hy,,’s (i.e., the expressions that have not
been expanded in ¢) as given in Appendix B and normal-
ized following Eq. (4.16), but we replace ¥V with ®.

After evolving through 1.5PN order all dynamical quan-
tities they depend on [see Egs. (3.11), (3.18), (3.20), and
(3.21)], we compute the modulus—more often referred to
as the absolute value—of a sample of modes. Considering
the complicated structure of the hy,,’s, their qualitative
behavior in the presence of spins is discussed here in terms
of the t-expanded formulas (4.17). Let us focus on two
spin configurations. The configuration Spin, = {7/2, 0,
7r/2, 7r/2} has both spin vectors in the orbital plane, mean-
ing a relatively large inclination angle. The configuration
Sping = {7/6, 7/4, /6, 7} has a smaller component of
total spin transverse to the orbital angular momentum,
hence a smaller inclination angle. In Figs. 3 and 4, we
plot the amplitude of the ﬁ(m over the frequency range

A T T T

T T X
L Equal Mass hy, Sping \
IVCAVia VAN / N _
h , Spin,, b
i
<<
J— A .
0.5 hy, SpilA A |
AN
\ / \/ N
VAT
W‘ ’WI \I\/\' /v hy, Spin,

A /
h Splr; N \/

yb b
N ll‘lu |nl‘
T n'u y!

0,05

0.02

2Md

FIG. 3 (color online).
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2M® = 0.02-0.15, the upper frequency being reached
roughly 2 cycles before merger, for an equal-mass, non-
spinning binary [70]. For a binary of total mass 16M, the
dominant second harmonic varies over the frequency range
40-300 Hz. For a 6.5 X 10°M,, binary, this range is shifted
to 1074-7.5 X 10™* Hz.

The left panel of Fig. 2 shows the inclination angle ¢ as a
function of the dimensionless frequency 2M®. We see that
the inclinations are much larger in the case of 4:1 mass
ratio than for equal masses. Moreover, the inclination
increases monotonically in the equal-mass case, whereas
the 4:1 mass ratio exhibits nutation, since the inclination
oscillates, but grows on average. These observations can be
explained as follows. At early times, when the binary has a
large orbital separation, we have |L|>> [S|, where S =
S, + S, is the total spin, so that J =L + S and L are
nearly aligned. Radiation reaction causes |L| to decrease,
making J move away from L and toward S. This is why the
inclination angle ¢ grows on average as the frequency
increases. The absence of oscillations for the inclination
angle ¢ in the equal-mass case can be explained by the fact
that we are evolving the dynamics, in particular, the pre-
cession Egs. (3.18), through 1.5PN order, i.e., we are
neglecting spin-spin effects. Because of the equality 2, =
), at this accuracy level, the precession equations simplify
then to a single equation of the form dS/dr = Q X S. In
the absence of radiation reaction, S precesses around a
fixed direction with a constant frequency, and the inclina-

l

0.15

2Md

We plot the modulus of the € = 2 modes for mass ratios 1:1 (left panel) and 4:1 (right panel) with the spin

configurations described in Fig. 2. The computations use waveforms accurate to 1.5PN order in amplitude and phase evolved with
precession equations at 1.5PN order. The dashed lines are the larger ¢ configuration (Spiny) and the solid lines are the smaller ¢
configuration (Sping). We see that as ¢ increases, the modulus of ﬁzz decreases while the modulus of the other £ = 2 modes increases.
This effect becomes more pronounced when the mass ratio is more extreme.
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FIG. 4 (color online). We plot the modulus of the € = 3 modes (left panel) and € = 4 modes (right panel) for equal masses with the
spin configurations described in Fig. 2. The computations use waveforms accurate to 1.5PN order in both amplitude and phase evolved
by means of the 1.5PN precession equations. The dashed lines refer to the larger ¢ configuration (Spiny, ), the solid lines to the smaller
iota configuration (Sping). We see a redistribution of power among the modes similar to Fig. 3. As ¢ increases, the largest modes for the

nonprecessing cases (|3, and |/44]) become smaller, while the other modes become larger.

tion is constant (apart from the increase produced by
radiation reaction). For unequal masses this symmetry
does not exist, with the consequence that one must solve
two coupled equations for S|, S, instead of a single equa-
tion for S. The motion of the spin vectors is thus more
complicated. Schematically, they rotate about a fixed di-
rection while also bobbing up and down [81].

The right panel of Fig. 2 plots, for the case of equal
masses, the absolute value of the /#,, mode normalized to
its Newtonian order expression, /,,, for both precessing
spin configurations as well as the nonspinning, aligned and
antialigned cases. One interesting feature is that the
aligned and antialigned cases do not bound the absolute
value of the modes for generic spin configurations. This
and other features of the plot can be understood from the ¢
expansion (4.17a) of ﬁ22, which contains four spin correc-
tions. The first correction, —¢?/2, is zero for the aligned
and antialigned cases, while it decreases the absolute value
of the /5, mode for all other spin configurations. If ¢ is
comparable to 1 rad, it can be a significant correction. The
second correction, (1/3)e’¥8ve, vanishes for equal
masses. For unequal masses, it interferes with the non-
spinning terms and, because it has a different dependence
on the orbital phase, produces oscillations in the absolute
value of ﬁzz. Next, the 1PN order spin correction,
—(02/2)e" @tV — iyh + 8(x¥ — ix))], generates os-
cillations that depend on the spin vector components trans-
verse to the total angular momentum. Finally, the 1.5PN

order spin correction, v3[—48x%/3 + (4/3)( 1+ v)xil,
lowers (raises) the absolute value of h22 for spins
aligned (antialigned) with the total angular momentum. It
is solely responsible for the spread between the aligned
and antialigned cases, as the other corrections all vanish
then.

A similar analysis can be applied to understand the
behavior of the other modes. As an illustration, we plot
in Fig. 3 all of the € = 2 modes for mass ratios 1:1 and 4:1.
The }221 mode (4.17b) is zero for nonspinning equal-mass
binaries. However, it contains several spin corrections and
can have significant amplitude for precessing binaries,
particularly for large ¢. It can exhibit complicated modu-
lation, as its different spin corrections interfere with one
another. The ﬁzo mode (4.17¢) also has several spin cor-
rections, most notably 2¢% cosW. This correction is respon-
sible for the large oscillations in the absolute value of ﬁzo.
Note that in the late stages of the inspiral evolution for the
4:1 mass-ratio case, where ¢ ~ 1 radian, these oscillations
in the absolute value of hzo peak near the absolute value of
h22 The other spin corrections in hzo are responsible for
the further modulations of the absolute value.

Figure 4 plots the absolute value of the { = 3 and { = 4
modes for equal masses. Note that these modes are about 2
orders of magnitude smaller than the £ = 2 modes. This
remains true in the nonspinning case for the mass ratios we
consider. In the case of nonspinning, equal-mass binaries,
for € = 3 only the /13, mode (4.17¢) is nonzero. The 1.5PN
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order spin correction decreases (increases) this mode’s
absolute value if the spins are aligned (antialigned) with
the total angular momentum, in a similar way as in the }222
mode. For unequal masses, the ﬁg,z mode (4.17e) also has
an interference term proportional to ¢. The other € = 3
modes are nonzero for generic precessing binaries, and
generally have larger absolute values for larger inclina-
tions. In the left panel of Fig. 4, we indeed observe that
|33, A5], and |/s| are greater for the configuration
Spin, than for Sping. For € = 4, only the ﬁ44 and ﬁ42
modes (4.17h) and (4.17j) are nonzero for nonspinning,
equal-mass binaries, with /4, being the largest. Though the
t-expanded form of the }244, ﬁ42 and ﬁ4o modes in
Eq. (4.17) do not have any spin corrections through
0O(1/c?), we do see spin effects in all of the £ = 4 modes
when we plot the full expressions accurate through v3. The
v? and v3 coefficients in the full expressions for the Ay,
ﬁ42 and ﬁ4o modes depend on the inclination ¢ but not on
the spin vector components and this dependence is such
that if we treat ¢ as a 1/¢ correction by performing a Taylor
expansion in powers of ¢, then the spin terms are propor-
tional to v?¢?, v and higher order in ¢. They are thus
considered as higher-order corrections in the ¢ expansion,
though they are present when we expand only in powers of
v. None of the £ = 4 modes contain any spin corrections
proportional to the spin vector components through order
v3. Those corrections would appear only at higher order
in v.

While we have plotted the € =3 and ¢ = 4 modes
solely for equal masses, we have also studied these modes
for 4:1 mass-ratio binaries. We find that they are affected
by the change of mass ratio in much the same way as the
€ = 2 modes: the redistribution of signal among the € = 3
and € = 4 modes is more pronounced for asymmetric
binaries than for equal-mass binaries. However, even for
4:1 binaries with large ¢ (Spin,) spin configuration, all of
the € = 3 and € = 4 modes are still one or 2 orders of
magnitude smaller than ﬁzz, whereas the EQI and ﬁzo modes
can be comparable to ﬁzz. The reason is essentially that ﬁz 1
and ﬁzo have ¢ corrections at leading order in v, while ¢
corrections to the € = 3 and € = 4 modes all appear at
higher order, and so they do not have as strong an effect as
for 1’221 and ]:l\z().

By examining the absolute values of the ﬁgm modes for
precessing binaries, we see that they can be significantly
altered by the motion of the orbital plane relative to the
frame used to perform the mode decomposition and the
signal may be redistributed among the modes as observed
in Ref. [80]. This suggests that al/l modes, not just the
dominant ones for nonspinning binaries, are needed to
accurately describe the waveforms emitted from precess-
ing binary systems, especially for asymmetric binaries and
binaries with large inclinations where this redistribution of
signal among the modes is most dramatic.

PHYSICAL REVIEW D 79, 104023 (2009)

Let us close this section with a few comments about the
applicability of the full and ¢-expanded expressions for the
modes and the possibility of combining them with higher-
order nonspinning corrections. We find that the absolute
values of the full and ¢-expanded h ¢m Modes are often quite
close to each other for relatively small ¢. For inclinations
less than half a radian (30°), the difference in |/, is
typically of a few percent. For ¢« comparable to or larger
than a radian (60°), significant differences between the full
and c-expanded modes develop and the absolute values
may differ by ~10%-100% when ¢ = 1 radian. None-
theless, the ¢-expanded modes are very useful in under-
standing the qualitative behavior of precessing binaries,
even for inclinations ~1 radian, albeit they should not be
used for precise quantitative studies of binaries with large
inclination angles.

In Refs. [27,28], expressions of the modes are given to
3PN order for nonspinning binaries. We have compared
their absolute values to that of the corresponding quantities
truncated at 1.5PN order, which has shown us that they
typically differ by ~1%—10%. For example, the absolute
value of the 1.5PN and 3PN order /,, modes for equal-
mass binaries differ by less than 1% at 2M & =0.01 and by
about 3% at 2M® = 0.05 or 2M® = 0.12. The other
modes typically have a larger difference. The 1.5PN order
and highest known order absolute values for /s,, hy, and
hy, differ by about 5%-15% over this same frequency
range for equal-mass binaries. For 4:1 mass-ratio binaries,
the differences in absolute value are similar.

Known higher-order nonspinning terms can actually be
included in the amplitude if enough care is taken. In the
nonprecessing case, the modes hy, are proportional to
e~™Y¥ a5 in the nonspinning case, because it and \ appear-
ing in the strain tensor h;; are trigonometric functions of
the orbital phase ®. In constructing the £,,’s from h;;, they
generate an exponential dependence on multiples of ®.
However, for the case of a precessing binary with small ¢, fi
and A\ are trigonometric functions of ® + «. Thus, the
he,’s contain then all of the nonspinning terms, but with
the substitution ¥ — ¥ + «. The situation is different for
the general precessing case. The vectors fi and A depend on
®, a and ¢, and the resulting Ay, have a complicated
dependence on all three of these quantities that cannot be
simply related to the nonspinning case. These considera-
tions show that it is only for binaries with a small inclina-
tion (or no inclination) that we can readily construct the
he,,’s with spin effects up to 1.5PN order and nonspinning
corrections up to 3PN order. For spins (anti-)aligned it is
trivial to add the higher-order nonspinning corrections of
Refs. [27,28] to the hy,, given in Eq. (4.17). For precessing
binaries with small inclinations, they can be added to our
expressions in Eq. (4.17) with the substitution ¥ — ¥ +
«. For general precessing binaries, it is not so simple to
include higher-order nonspinning corrections to the full
expressions for the hy,, given in Appendix B. To do this
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properly, we would need the spin terms at the same order as
the nonspinning terms and repeat the derivation of the /g,
to a higher order.

VI. READY-TO-USE FREQUENCY-DOMAIN
TEMPLATES FOR SPINNING, NONPRECESSING
BINARIES

A. Gravitational-wave polarizations in time domain

In the nonprecessing case, the orbital angular momen-
tum points in a fixed direction which we take to be the z
axis (see Fig. 1) and the spins are either aligned or anti-
aligned with it. The basis vectors of the orbital plane, X; (7)
and ¥, (¢), are constant in time. They can be freely chosen
to be any pair of orthogonal unit vectors in the x—y plane.
Here, following the convention of Ref. [25], we choose
%, =P =N XxL,/IN X Ly, so that the phase is zero at
the ascending node (where the orbital separation vector
crosses the plane of the sky from below). This is equivalent
to setting ¢ = 0 and @ = 7 in Eqs. (3.12), (A2), and (A3).
Note also that since the orbital plane remains fixed, the
phase ® defined through Eq. (3.10) coincides with the
standard definition of the orbital phase, that is

Wy = D. (6.1)

In the nonprecessing case, the vectors in terms of which the
GW polarizations are expressed originally take the simpler
form

N = (sin®, — cos®, 0), (6.2)
= (cosD, sin®, 0), (6.3)

N = (sin6, 0, cosf), (6.4)
Ly=1(001). (6.5)

By plugging the expressions (6.2), (6.3), (6.4), and (6.5)
into Eq. (3.3) and taking the combinations given in
Eq. (2.1), we obtain an equation similar to Eq. (3.12).
The spin-dependent 1PN, 1.5PN and 2PN order polariza-
tion coefficients read

HSO = 325, cosV[x, - Ly + 8x, - Lyl (6.6a)
H(f/z’so) =3 COSZ\Ifg[(l + ) (xy Ly +8x. Ly
+v(l — 50(29)Xs . ]:N], (6.6b)
H(f’ss) = —v42v(1 + cf))(,\/? - XZ) cos2V, (6.6¢)
HSO = 25,0, sinW]x, - Ly + 8x, - Ly] (6.6d)
Hg/z,so) =3 sinZ\I’gctg[Z(xS Ly + 8x,-Ly)
— (1 + 36(29))“ . ﬁN], (6.6e)
HZSS) = —*4pc,(x2 — x2) sin2V, (6.6f)

PHYSICAL REVIEW D 79, 104023 (2009)

where SS labels the spin(1)-spin(2) contributions.” In the
equations above, we use the shorthand ¢, = cosf and sy =
sinf. Note also that the phase WV is the shifted orbital phase
that relates to & at our accuracy level as

V=0 — 2v3<1 - 3u2)1n<@),
2 (1)0

where w, can be chosen arbitrarily. Expressed in terms of
the orbital phase @, the GW polarizations would contain
terms logarithmic in wy, arising from the propagation of
the tails. However, introducing the phase (6.6g), they are
all absorbed (up to the 2.5PN order we are considering)
into the phase variable [25].

The spin-dependent polarizations (6.6a)—(6.6f) were de-
rived in Ref. [35] [see Eqgs. (F24a)—(F25c) in that paper],
although the 1.5PN and 2PN order cross polarizations had
an erroneous sign, which is corrected here.

(6.6g)

B. Spin-orbit effects at 1.5PN order and spin-spin
effects at 2PN order in the frequency-domain
gravitational-wave amplitude

Writing A(f) = hy F, + hyFy and collecting terms by
PN order and by sines or cosines of harmonics of the
orbital frequency, we can write the time-domain strain in
the compact form:

7
My Z VEray” cos(kW(r))
D, <

+ B sm( V(1)] + O®®),

2 5 7
Z > v ol costkw (o)

h(t) =

+ 8" cos(k‘lf(t) - g)] +00®), (67
where n/2 is the PN order and k labels the harmonics of the
orbital phase. The PN expansion parameter is defined as
= 27MF)'3, with F = w,y,/(27). We shall denote the
GW frequency by f. For the kth harmonic, we have then
the relation f = f, = kF, so that
1/3
Vi = (2 MJZ‘) . (6.8)
Given a function of the form h(r) = A(r) cos¢(r), where
¢(t) is a monotonically increasing function satisfying
dInA(1)/dt < d¢(r)/dt, we can compute its Fourier trans-
form by applying the SPA:

el CTf1f)= () —m/4)

h(f) = 5 AG(f) d>( (f))

(6.9)

“We remind the reader that spin(1)-spin(1) and spin(2)-spin(2)
effects in the waveform polarizations are currently unknown.
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with 7(f) being defined here for each frequency f as the
value of ¢ for which (d¢/dt)(r) = 27f. In a similar man-
ner, we apply the SPA to each term in the sum of Eq. (6.7).
Moreover, for each harmonic of the orbital phase, we
expand the factor inversely proportional to the second
time derivative of the orbital phase entering Eq. (6.9) in a
PN series of the form

2 dF\-1/2
7 (%)

b~ \Far
5
2T My L+ S, V2 SV + S,V
K48
+ 85V + O(VD)], (6.10)
with
743 11
=" 4
Q2=en T
113 19 . 113 )
— omt (2 T, EYVS o
s 7T<24 6) N F g OXa Ly
7266251 18913 1379
S, = v v
8128512 16128° " 1152
721 R 6.11)
—V(—((xs L7 = (X, - L))
24T 2)
96( a)’
. _ (_4757+5_7 )
ST 1344 167)

The expansion (6.10) without spin corrections in the am-
plitude was first given in Ref. [48]. We have added to it the
leading order SO corrections through 1.5PN order and the
spin(1)-spin(2) SS corrections appearing at 2PN order. In
principle, SO corrections at 2.5PN order and spin(1)-
spin(1), spin(2)-spin(2) SS corrections at 2PN arising
from the spin contribution to the orbital frequency are
also present. However, when calculating spin terms in the
frequency-domain amplitude, we neglect them because
they have not been calculated yet beyond the 1.5PN order
in the time-domain amplitude. The spin contribution at
2PN and 2.5PN order to the Fourier domain amplitude is
not complete unless we take both into account.
Defining the frequency-dependent SPA phase as

Wepa(f) = 27f1(f) — W(f), (6.12)

the frequency-domain waveform with amplitude correc-
tions containing SO effects through 1.5PN order and
spin(1)-spin(2) effects through 2PN order is

PHYSICAL REVIEW D 79, 104023 (2009)

()

=0 k=1

h(f)—D—L

% (agcn)ez(anft(F)fk\I’(F)fTrM)

+ /32") ei(277ft(F)f(k‘I’(F)*77/2)777'/4))’

MV S
VIS M1+ S,V + SV
DL };)k ka48v ( . B

+ 84‘/? + S5V,§)(a§€”)
+ eiw/ZBI((H))ei(klIfspA(f/k)—77/4),

STV o & n=1/2(n) i(kWepa(f/k)—/4
= Z Z Vk Ck i KWspa(f/k) =/ ),
48 n=0k=1

(6.13)
with
+igrm),

(6.14)

=S _
C(n) — a(”) + i (n) + m a(” m)
\/-( By") m§:2 k( K

where the index n denotes the PN order and the index & the

harmonics. Explicit expressions for the C;:’) can be found in
Appendix D. The nonspinning terms in the amplitude agree
with Ref. [47], although we have written them in a differ-
ent, more explicit manner. Notice that recently the non-
spinning amplitude corrections were calculated through
3PN order [28], but in this paper we restricted the compu-
tation to 2.5PN order.

C. Spin-orbit effects at 2.5PN order in the frequency-
domain gravitational-wave phase

For matched filtering, it is best to know the GW phasing
at the highest PN order. We now derive the SO contribu-
tions to the SPA phase through 2.5PN and the SS contri-
butions [including spin(1)-spin(1) and spin(2)-spin(2)
contributions] to the SPA phase through 2PN order.

The PN expansion of the SPA phase Wgps(F) can be
obtained from the PN expansions of the binary center-of-
mass energy E and GW flux F via the energy balance
equation

dE

—=7F (6.15)

Using dV/dt = 27F = v3/M, we can rewrite the energy
balance equation as the differential equations

dt = —— —dv, 6.16
dv F (6.16)
and
dE 1 v?
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The quantities E and F are known as power series in v =
(27rM F)'/3. The nonspinning terms in the expansions of £
and F have been calculated by Refs. [29,82-86], while the
spin contributions to these quantities through 2.5PN order
were derived by Refs. [22,23,30,34,35,75]. The center-of-
mass energy and the flux read

6
E(v) = ENewtvz(l + Eivi), (6.18)
i=2
7 .
F) = FNewtum(l +y F,»v’), (6.19)
i=2

where the coefficients E; and F; are explicitly given in
Appendix C. By inserting Eqgs. (6.18) and (6.19) into
Egs. (6.16) and (6.17), we obtain rational function approx-
imations to the integrands. We then find the Taylor series of
the rational functions and integrate up to some reference
frequency, often chosen to be the time of coalescence,
when the orbital frequency formally diverges. Thus, we
obtain PN approximations of the form

_ v ENewt -9 U i—9
tv) =1, —f F—(Zv +jzzztjv/ ) (6.20)

v £ Newt

1 (vE U .
V() =W, — " f M<2v7(’ + Z tjv/76), (6.21)
V. j:2

F Newt

where the 7; coefficients are linear combinations of prod-
ucts of the E; and F;. Plugging Egs. (6.20) and (6.21) into
Eq. (6.12), we obtain the following expression for the SPA
phase through 2.5PN order'”

Wepa(F) = 27Ft, — ¥, + i(zwavlF)—S/3

256
3715 55
X1+ [=—+= 2/3
{1 (756 9V)(27TMF)
+ (4B — 167)27MF)
(15293365+27145 L3085 , 10)
14 I 2
508032 | 504 72 7
38645 65
><2MF4/3+< ——av— )
@mMF) 756 9" Y

x (1 + 3log(v))(27rMF)5/3}, (6.22)
where the 1.5PN SO phase corrections are contained in 3,
the 2PN SS corrections are contained in o and the 2.5PN
SO corrections are contained in y. Note that 8 and the spin
(1)-spin(2) contributions to o were previously known
[13,14], while we have calculated the spin(1)-spin(1) and
spin(2)-spin(2) contributions to ¢ and the 2.5PN SO cor-

'The nonspinning terms in the SPA phase through 3.5PN order
can be found in Ref. [87].
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rections to the SPA phase using the results for the center-
of-mass energy and GW flux of Refs. [29,30,33,75].
Explicitly, these corrections are

11319 113 )
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(222 Sx. - L. 6.25
( 2268 63 ”) Xa * LN (6.25)

We note that these expressions are only valid when both
component spins are aligned or antialigned with the orbital
angular momentum. The spin(1)-spin(1) and spin(2)-
spin(2) contributions to o were also derived in
Refs. [32,33] and we found full agreement with them.

D. Features of frequency-domain nonprecessing
waveforms with higher harmonics

We now discuss some interesting features of the spin-
ning, nonprecessing waveforms derived in Sec. VIB.
Several papers have studied the effect of higher harmonics
in the amplitude corrections of nonspinning binaries ob-
servable by ground- and space-based detectors [47,48,52—
54,88].

One important feature of the higher harmonics in the
waveform amplitude is that they can increase the mass
reach of a detector [52]. This is because high-mass binaries
whose dominant second harmonic is not in the detector’s
sensitive band can have higher harmonics in band and
therefore become visible to the detector. A closer look at
Eq. (6.14) and Appendix D shows that spin corrections
through 2PN order appear only in the first and second
harmonics. In particular, the only SPA amplitude coeffi-
cients with spin dependence are C(IQ), C(23) and Cg‘) given in
Appendix D. Thus, in the nonprecessing case spin correc-
tions through 2PN order in the waveform amplitude do not
affect the mass reach of the detector, and only affect
binaries whose second harmonic appears in band.

Another general feature of the higher harmonics is that
they interfere with one another, typically destructively
[47,52,54]. For binaries that would be visible with
Newtonian waveforms, this effect tends to decrease the
signal-to-noise ratio (SNR). As we shall study in detail in
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this section, spin effects can play a role in this interference,
either raising or lowering the SNR depending on the spin
orientations.

We define the power spectrum, P(f), as

A2
P(f) = | S(Z)Cl) , (6.26)
and the optimal SNR, p, as
TFis0 |E(f)|2
2=4 df, 6.27
= 27

where f, is the low frequency seismic cutoff of the detec-
tor, and the upper frequency cutoff is taken to be the
highest harmonic of the orbital frequency at the last stable
orbit (LSO) which for simplicity we choose to be the LSO
of a test particle in Schwarzschild,

1

Frso = M (6.28)

Note that the kth harmonic ends at kF7 5o as enforced by a
step function O(kFigo — f) [see Egs. (D1)—(D21) in
Appendix D]. In Eqgs. (6.26) and (6.27), we denote with
S, (f) the noise power spectral density of the detector. For
Advanced LIGO, we take the spectral density to be
Eq. (4.3) of Ref. [48] and fix f, = 20 Hz. For LISA, we
use the so-called effective non-sky-averaged spectral den-
sity given in Eqs. (2.28)—(2.32) of Ref. [89]. We do not
consider the orbital motion of the LISA spacecraft [90] and
consider only the single detector configuration.'' In the
presence of higher harmonics, the lower and upper cutoff
frequencies are chosen following Sec. IIIA of Ref. [52].
For LISA we assume an observation time of 1 yr, and the
orbital frequency at the beginning of observation to be
Eq. (3.3) of Ref. [52]. As explained in Ref. [52], this can
be implemented by multiplying the kth harmonic by the
step function O(f — kF;,), where Fi, is the orbital fre-
quency at the beginning of observation. Finally, because
of the 60° angle between LISA’s arms, we use A(f) —
(+/3/2)h(f) in Egs. (6.26) and (6.27) in the case of LISA.
All tables and figures in this section, refer to a binary
with orbital angular momentum inclined relative to the line
of sight by 6 = /3, sky location § = ¢ = 7/6 and
polarization angle iy = 7/4 [see Egs. (2.4) and (2.5)].
We have verified, by considering random values for the
four angles, that the qualitative trends reported in this
section are generic and do not depend on the specific values
of them (see a detailed discussion at the end of this sec-
tion). Regardless of the PN order of the amplitude, all
waveforms use the SPA phase with nonspinning terms up

"It should be noted that in our model, though we do not
perform an average over the antenna pattern functions, we do
not account for the orbital motion of LISA either. In this sense,
our model falls in between the pattern averaged and nonpattern
averaged cases described in Ref. [89]
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to 3.5PN order [87], and spin terms up to 2.5PN order, as
given in Egs. (6.22), (6.23), (6.24), and (6.25). In the case of
Advanced LIGO (LISA) we consider binaries at a distance
of 100 Mpc (3 Gpc). Moreover, all masses and distances
refer to the redshifted quantities.

The destructive interference between different harmon-
ics can be seen in Fig. 5. The Newtonian waveform’s power
spectrum is simply proportional to f~7/3/S,(f). The
higher harmonics present in the 2.5PN waveform introduce
oscillatory cross terms that on average lower the power.
Notice that although the higher harmonics extend the ob-
servable frequency band significantly, the power beyond
the cutoff of the second harmonic, being at a higher PN
order, is suppressed by one or several orders of magnitude.
These features explain why the SNR listed in Tables I and
IT tends to decrease as the PN order increases for the range
of masses we consider. For equal-mass binaries, all non-
spinning odd harmonic corrections are suppressed because
the latter are proportional to & which is zero for equal
masses [see Eqgs. (D1)—~(D21) in Appendix D]. This is not
true of spin-dependent amplitude corrections. For example,
the first harmonic has a spin-dependent amplitude correc-
tion at 1PN order which does not vanish for equal-mass
systems unless spins are equal and aligned with one an-
other [see Eq. (6.6a)].

Tables I and II show the SNR for the case of maximal
spins both aligned or antialigned with the orbital angular
momentum. From the bottom three rows of Tables I and II,
we see that, depending on the spin orientation, the 2.5PN
amplitude corrections with spins can have SNR ~10%
higher or lower than the 2.5PN amplitude corrections
without spins. We caution that this ~10% change in the
SNR from spin corrections is only meant as a bound on
spin effects for spinning, nonprecessing binaries. As we
have seen in Sec. V, the affect of spin corrections on
precessing binaries is not bounded by the cases of maximal
spins aligned and antialigned with the orbital angular
momentum.

Quite interestingly, the 1.5PN SO and 2PN SS correc-
tions are far more important than the 1PN SO correction in
terms of their effect on the power spectrum and the SNR.
Notice that in Tables I and II the 1PN SO term always has
little or no effect, while the 1.5PN SO term changes the
SNR by ~10%, and the 2PN SS term changes the SNR for
the equal-mass binary. The reason the 1PN SO term is less
important is that the 1.5PN SO and 2PN SS terms are
corrections to the second harmonic, so they increase or
decrease the power in the dominant term. On the other
hand, the 1PN SO term is a correction to the first harmonic.
Thus, it is merely a perturbation to the dominant signal,
and only in the lowest part of the spectrum where the first
harmonic is observable. This is illustrated in Fig. 6, where
we plot the power spectrum as a function of frequency (up
to 2F;gp) for different spin contributions for the (30 +
30)M, binary system. We see that the 1.5PN SO and 2PN
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FIG. 5 (color online).

We compare the power spectra computed with the Newtonian amplitude waveform (red dashed line) and the

2.5PN waveform with 1.5PN SO and 2PN SS effects included (blue, continuous line). In the left panel we consider a typical source for
LISA, a binary with total mass (10° + 10°)M, and spins maximal and aligned with the orbital angular momentum. In the right panel
we consider a typical source for Advanced LIGO, a binary of total mass (30 + 30)M, with spins y; = 1, y», = 0.5 aligned with the
orbital angular momentum. Note that the kth harmonic ends at kF 5o, and these frequencies are marked by the vertical dashed lines on
the graph. The spectrum of the 2.5PN waveform is much simpler in the equal-mass case than unequal mass case because in the former
case all nonspinning odd harmonics are suppressed.

TABLE I. For several binary configurations observable by Advanced LIGO we list the SNR as
the PN order of the amplitude corrections is varied. In each column we show the component
spins (x; - Ly, X2 - Ly). We include all nonspinning, spin-orbit (SO) and spin-spin (SS)
corrections up to the orders given in the first column. For example, 2.5PN + 1.5PN SO +
2PN SS means we include nonspinning amplitude corrections from Newtonian to 2.5PN order,
1PN and 1.5PN SO corrections, and the 2PN SS correction. Regardless of the PN order of the
amplitude, we always use the SPA phase with nonspinning terms up to 3.5PN order, and spin
terms up to 2.5PN order, as given in Egs. (6.22), (6.23), (6.24), and (6.25). The binary is at a
distance of 100 Mpc with orbital angular momentum inclined relative to the line of sight by
6 = /3, sky location § = ¢ = 77/6 and polarization angle ¢ = /4 [see Eqs. (2.4) and (2.5)].

Advanced LIGO SNR

(50 + 5)M, (30 + 30)M,
(1, 1) (=1,-1) (1, 1) (=1, -1)
Newtonian 76.4 76.4 131.1 131.1
0.5PN 84.3 86.5 131.1 131.1
IPN 73.7 774 116.9 115.2
1PN + 1PN SO 73.7 77.6 116.9 1152
1.5PN 68.9 72.7 116.9 115.2
1.5PN + 1.5PN SO 79.4 62.6 134.3 98.2
2PN + 1.5PN SO 75.5 59.1 123.2 88.0
2PN + 1.5PN SO + 2PN SS 75.2 58.8 121.2 86.1
2.5PN 63.4 66.7 104.5 102.9
2.5PN + 1.5PN SO 73.5 57.4 121.7 86.2
2.5PN + 1.5PN SO + 2PN SS 73.5 57.4 121.7 86.2
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TABLE II. For several binary configurations observable by LISA we list the SNR as the PN
order of the amplitude corrections is varied. In each column we show the component spins (x; -
L N X2 L ~). We include all nonspinning, spin-orbit (SO) and spin-spin (SS) corrections up to
the orders given in the first column. Regardless of the PN order of the amplitude, we always use
the SPA phase with nonspinning terms up to 3.5PN order, and spin terms up to 2.5PN order, as
given in Egs. (6.22), (6.23), (6.24), and (6.25). The binary is at a distance of 3 Gpc with the same
orientation as in Table I. The binary masses and distances refer to the redshifted quantities.

PHYSICAL REVIEW D 79, 104023 (2009)

LISA SNR
(2 X 10° + 109 M, (106 + 10)M,
(L, D (=1, -1 (1, D (=1 -1)
Newtonian 382.6 382.6 2764.5 2764.5
0.5PN 599.2 598.7 2764.5 2764.5
IPN 620.3 619.9 25159 2456.4
IPN + IPN SO 620.1 619.9 25159 2456.4
1.5PN 512.2 510.9 2515.9 2456.4
.5PN + 1.5PN SO 552.0 477.8 2882.2 2105.7
2PN + 1.5PN SO 524.0 452.9 2612.7 1861.5
2PN + 1.5PN SO + 2PN SS 524.0 452.9 2569.7 1823.0
2.5PN 479.7 4782 2286.8 2230.6
2.5PN + 1.5PN SO 516.8 448.9 2646.1 1891.3
2.5PN + 1.5PN SO + 2PN SS 516.7 448.8 2603.7 1853.9

SS corrections add or subtract their power coherently with
the dominant second harmonic. Their net effect is to shift
the power spectrum of the full waveform upward without
changing its shape. On the other hand, the 1PN SO correc-
tion, which is proportional to the (sine or cosine of ) half the
dominant harmonic, simply changes the modulation pat-
tern of the full waveform up to Fygg (37 Hz). It should
however be noted that the structures in the power spectra
could be more complicated for asymmetric systems where
the nonspinning terms proportional to cosW and sinV are
not suppressed.

I ' I ' I ' T
Newt+1.5PN SO+2PN SS |
1

o PN

150

100

P(f)

50

Frequency (Hz)

The 1.5PN SO term is typically the most important of
the spin terms. This term is linearly proportional to the
spins of the two bodies, as can be seen in Eq. (D8). If the
spins are aligned with the orbital angular momentum it
increases the SNR. If the spin terms are antialigned with
the orbital angular momentum it decreases the SNR. If one
spin is aligned with Iy and the other antialigned, the body
with the greater spin S; = m?y;, which is typically the
larger body, dominates. Thus, the large body dictates
whether the SO effect increases or decreases the SNR,
unless the spin of the smaller body is much greater than

FIG. 6 (color online). For a binary of total mass (30 + 30)M,
with spins y; =1, x, = 0.5 aligned with the orbital angular
momentum (the same binary of the right panel of Fig. 5), we
show the power spectra up to 2F} go. We plot the power spectrum
for the waveform through 2.5PN order with no spin corrections
(cyan solid line) and with SO corrections through 1.5PN (that is,
1PN and 1.5PN) and SS corrections at 2PN order (dark-blue solid
line). We also plot power spectra for the waveform with
Newtonian amplitude (red dashed line), Newtonian amplitude
plus the 1PN SO correction (black dotted line), Newtonian
amplitude plus SO effects through 1.5PN (green, dot-dashed
line), and Newtonian amplitude plus SO corrections through
1.5PN and the 2PN SS correction (magenta, double-dot-dashed
line). The 1.5PN SO and 2PN SS effects raise and lower the
power in the dominant harmonic while the 1PN SO effect merely
changes the modulation pattern up to its cutoff frequency of
Fiso. Vertical dashed lines mark the frequencies Fjgo and
2F150-

104023-21



ARUN, BUONANNO, FAYE, AND OCHSNER
TABLE III.

PHYSICAL REVIEW D 79, 104023 (2009)

For a typical binary observable by Advanced LIGO, we compare the SNR

obtained using the 2.5PN amplitude corrected waveform without spin effects, with spin-orbit
effects, and with spin-orbit and spin-spin effects. In each column we show the component spins
(x; Ly, X2 * L ). In all cases we use the SPA phase with nonspinning terms up to 3.5PN order,
and spin terms up to 2.5PN order, as given in Egs. (6.22), (6.23), (6.24), and (6.25). The binary is
at a distance of 100 Mpc with the same orientation as in Table I.

Advanced LIGO SNR

(60 + 40)M,
(1,-1) (0.8, —0.8) (0.5, —0.5) (0.2, —0.2)
2.5PN 79.6 81.9 81.6 82.0
2.5PN + 1.5PN SO 83.1 84.6 83.4 82.7
2.5PN + 1.5PN SO + 2PN SS 84.6 85.6 83.8 82.7

the spin of the large body. This is illustrated in Table IV,
where the mass ratio m:m, = 10:1. The spin of the larger
body is aligned with L y and tends to increase the SNR
while the spin of the smaller body is antialigned with L
and tends to decrease the SNR. For a spin ratio yi:x, =
1:1 there is a large increase in SNR due the larger BH. For a
spin ratio 1:10, the larger BH still dominates and we get a
small increase in SNR. For the spin ratios of 1:100 and
1:1000, the smaller BH is now able to overcome the larger
BH and produce a net decrease in the SNR.

The 2PN SS term decreases the power spectrum and
SNR when the component spins are aligned with one
another, and increases the power spectrum and SNR
when they are antialigned with one another. The 2PN SS
term has a greater effect on the SNR and power spectrum
than the 1PN SO term, but is less important than the 1.5PN
SO term. This is because it is suppressed relative to the
1.5PN SO term by a factor of v/c and it is quadratic in the
spins and proportional to the symmetric mass ratio ». Thus,
the 2PN SS term are most important for binaries with two
large component spins and comparable masses. From
Tables I and III, we can see that the 2PN SS term has little
or no effect on binaries with a mass ratio greater than 10:1.
In Tables I and II, for the columns with equal masses and
spins aligned with one another, the 2PN SS term decreases
the SNR by a few percent. For the binary in Table III, we
see that the 2PN SS term increases the SNR by an amount

comparable to the SO terms when the spins are maximal.
As we decrease the spin magnitude, the SS effect is sup-
pressed faster than the SO effect because it is quadratic in
the spins while the SO effect is linear.

Before ending this section we study how different values
of the source position and inclination angle can affect the
SNR trends shown in Table 1. For (5 + 50)M,, and (30 +
30)M,, systems we calculated the SNRs at different PN
orders in amplitude for various random realizations of 6,
¢, i and 6 and for the spinning and nonspinning cases. For
the spinning cases, when all the known spin effects are
included at different PN orders, the trends across different
orders remains the same for all the random realizations
except between the Newtonian and 0.5PN order. Though
on most of the occasions, the SNR increases from
Newtonian to 0.5PN order, there are cases when it de-
creases, albeit slightly. All these cases where the SNR
decreases have inclination angle 6 very close to zero or
7. For these cases, the third harmonic, which is propor-
tional to sind, is largely suppressed and the spin-dependent
interference accounts for the small drop in SNR. This drop
is observed for systems for which y; = x, = —1 whereas
the nonspinning and y; = x, = 1 cases consistently
showed the increase in SNR between Newtonian and
0.5PN order. To further assert this, we fix the inclination
angle to a value very close to zero and 7 and randomly
varied the other three angles. We find that for all the

TABLE IV. For a typical binary observable by LISA, we compare the SNR obtained using the
2.5PN waveform without spin effects, with spin-orbit effects, and with spin-orbit and spin-spin
effects. In each column we show the component spins (x; L N X2 L ~). In all cases we use the
SPA phase with nonspinning terms up to 3.5PN order, and spin terms up to 2.5PN order, as given
in Egs. (6.22), (6.23), (6.24), and (6.25). The binary is at a distance of 3 Gpc with the same
orientation as in Table I. The binary masses and distances refer to the redshifted quantities.

LISA SNR
(10° + 10%)M,
(1,-1) 0.1, 1) (0.01, —1) (0.001, —1)
2.5PN 2532.9 25322 2525.1 2576.9
2.5PN + 1.5PN SO 2909.7 25453 2503.5 2551.1
2.5PN + 1.5PN SO + 2PN SS 2924.1 2546.7 2503.7 2551.1
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realizations the SNR decreases in going from Newtonian to
0.5PN order. In brief, the trends shown in Table I is quite
general except for inclination angles close to zero or 77. We
however note that the trends of Table I need not be same for
much higher masses when the leading harmonic ap-
proaches the lower cut-off frequency of the detector
(2F1s0 = f,)- We have not done a thorough analysis for
the whole mass range.

VII. CONCLUSIONS

The ongoing search for GWs from compact binaries
with the network of interferometers LIGO, Virgo and
GEO, and the work at the interface between analytical
and numerical relativity aimed at providing accurate tem-
plates for the search, has made it urgent to include higher-
order PN effects in the theoretical predictions of the wave-
forms. This paper is a step forward in this direction.

We provided ready-to-use time-domain waveforms for
spinning, precessing binaries moving on nearly circular
orbits through 1.5PN order and decompose those wave-
forms in spin-weighted —2 spherical harmonics [see
Appendices A and B]. Neglecting radiation-reaction ef-
fects and assuming S < L, we found that the inclination
angle ¢ between the total angular momentum and the
Newtonian orbital angular momentum (see Fig. 1) is a
0.5PN correction. Motivated by this, we expanded the
GW polarizations and spin-weighted spherical harmonic
modes in a Taylor series in ¢ [see Eqgs. (3.16) and (3.7) and
Egs. (4.17a)-(4.17r)]. Their expressions become much
simpler and allow one to extract interesting physical fea-
tures of the gravitational waves from precessing binaries.

We found that, in contrast to what happens in the non-
spinning case, the /;,,’s are not in general proportional to
e~ ™Y They also depend on the angles ¢ and a, where ¢ is
the inclination angle of the Newtonian orbital momentum
relative to the total angular momentum and « is the angle
between the x axis and the projection of the Newtonian
orbital angular momentum onto the x—y plane (see Fig. 1).
For example, the terms independent of ¢ are proportional to
e~ im(¥+a) the terms that are linear in ¢ are proportional to
e~ imTm)(W+a) coq or ¢~ imTm)(¥+a) ¢inP while higher-
order contributions in ¢ involve terms of the form
e~ imtm)(V+a)ooqapgint ¥ where a, b €N and m' €
—1, 0, 1. In the presence of precession, the angles ¢ and
a vary in time and the different harmonics present in each
of the modes interfere, causing a strong modulation of the
mode amplitudes. We also found that, in contrast to what
happens in the nonspinning case, the signal can be largely
distributed among modes (€, m) other than the (2, 2) mode.
With our choice of the source frame, when spins are
maximal and the binary system has significant mass asym-
metry and/or a large inclination angle, we found that the
amplitude of the (2, 0) and (2, 1) modes can be comparable
to the amplitude of the (2, 2) mode, especially during the
last stages of inspiral. For the mass ratios we considered,
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we found that the € = 3 and € = 4 modes are generally 1
or 2 orders of magnitude smaller than the € = 2 modes.
These results are summarized in Figs. 2—4, for binaries
with mass ratio 1:1 and 4:1, and for two maximal spin
configurations having a small or large inclination angle ¢.
The ready-to-use time-domain waveforms for spinning,
precessing binaries can be employed for accurate compari-
sons with numerical simulations of binary BHs [66,80,91—
95] and for designing time-domain [63,67,69,70] analyti-
cal templates.

Restricting ourselves to spinning, nonprecessing bi-
naries, we computed ready-to-use frequency-domain
waveforms in the stationary-phase approximation. We de-
rived 1PN and 1.5PN order spin-orbit effects, and 2PN
order spin-spin [spin(1)-spin(2) only] effects in the
frequency-domain GW amplitude [see Eq. (6.14), and
Egs. (D1)—(D21) in Appendix D]. We also calculated the
2PN spin-spin [including spin(1)-spin(1) and spin(2)-
spin(2) effects], and the 2.5PN order spin-orbit effects in
the frequency-domain GW phase [see Egs. (6.22), (6.25),
and (6.24)]. For the 2PN spin-spin terms, we found agree-
ment with Refs. [32,33]. We wrote the frequency-domain
waveforms in a rather compact way, so that they can be
easily used for data analysis and for building analytical
frequency-domain [72,73] templates.

In the nonprecessing case, we found that, through 2PN
order, spin effects in the amplitude affect only the PN
corrections to the first and second harmonics. Thus,
through 2PN order, spin effects do not yet extend the
mass reach of GW detectors. However, as seen in Figs. 5
and 6, they can interfere with other harmonics and, depend-
ing on the spin orientation, lower or raise the signal-to-
noise ratio of ground-based (see Tables I, II, and III) and
space-based detectors (see Tables II, III, and IV). We also
expect that those spin terms will help in localizing the
binary source in the sky. We leave to a future publication
the use of the waveforms derived in this paper to extend
parameter-estimation predictions [15,45-58,87,89] of
ground-based and space-based detectors to spinning, pre-
cessing binaries.

Finally, we notice that the gravitational polarizations
computed in this paper do not include the modification of
the orbital phase evolution at the relative 2.5PN order
induced by the flow of energy into the black hole horizons
as explicitly computed in Ref. [96]. As summarized in
Table IV of Ref. [96], this effect can cause a variation of
the number of GW cycles at the Schwarzschild ISCO of
3%—-24% depending on the binary mass ratio. We postpone
to a future publication the inclusion of those effects.
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APPENDIX A: READY-TO-USE GRAVITATIONAL-
WAVE POLARIZATIONS FOR PRECESSING
BINARIES ON NEARLY CIRCULAR ORBITS

THROUGH 1.5PN ORDER: GENERIC

INCLINATION ANGLES
In Sec. III, we wrote the GW polarizations
By = 2Mvv? MYV po) 4 U/ 4 j/zsony,
O, + R+ (B2 + RO

(AD)

Cog
2

PHYSICAL REVIEW D 79, 104023 (2009)

expanded in the inclination angle ¢. Here we give the full
expressions. The Newtonian, 0.5PN and 1PN order coef-
ficients were computed explicitly in Ref. [34], the 1.5PN
order coefficients, are computed for the first time in this
paper. They read

N 3
h(f) = (_ 3 —)c‘L‘/2 cosQa +2W¥) — 2c?/2 cos(a + 2W)sy45, /5 + 2¢,/5 cos(a — 2‘1’)s20sf/2
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3 3

where sy and cy are shorthand for sinX and cosX, respectively, with X = 6, ¢, .. ..

APPENDIX B: GRAVITATIONAL-WAVE MODES FOR PRECESSING BINARIES ON NEARLY CIRCULAR
ORBITS THROUGH 1.5PN ORDER: GENERIC INCLINATION ANGLES

In Sec. IV, we wrote the gravitational-wave modes expanded in the inclination angle ¢. Here we give the full expression
of the h,,, hs3 and h,; modes. They read

2 ) 3 1 . . .
h22 — e—2z(a+‘l’)_‘/E{_e—2u(e4tllf(_1 + 6”)4 + ( + 6”)4) + ie —i(21— ‘I’)[eZz‘I’( 1+ 8”)3(1 + elb)
D, 2V516 9

. . 1 55 L 4
—(=1+ e+ e)Plvs + v2[252 “2(=107eMY (=1 + ) = 107(1 + ™)) + 5 e H (MY (=1 + i)t

) 1 . . . : 1 . ) . )
+ (1 + 6“)4)11 + §el(a*L+‘I’)(62!‘l’(_l + elL)2 _ (1 + 6“)2))(“2 + §el(oz*ﬁr‘l’)(e%\l’(_l + 6“)2 _ (1 + etL)Z)aXivc
1 . . ) ) R . ) )
+ i(gel(a—l,+‘l’)(_621\l’(_1 + ezL)Z + (1 + ezL)Z)XZ +§et(a—L+1I')(_eZz\If(_1 + 6”)2 + (1 + elL)Z)(SX?)]
1 o ) . 1 ) ) )
+ v3|:§e—2u(e41‘lf(_1 + elL)4 + (1 + elL)4)7T+ 5<%€—l(a+3L)(_5(_1 + e”)(l + 6”)5
+ (] + )3 (=5 + Tet — Tet + 5&3) + e* V(=1 + €/)3(1 + €')(—5 + 5@ + 5¢2(—1 + &%)
+ 28“(5 + ezm)) + 6621‘\1’((_1 + e2ib)3 _ ezm(_l _ 562” + 564“ + 66”))))(2
+ E6731L(6621\P(_1 + €2u)2(1 + eZzL) _ (1 + 6“)4(5 — 6elt + 562“) _ e41\l'(_1 + 6“)4(5 + 6eit + SeZZL))X‘ZI)
+ %e*t(aﬁ%c)(_s(_l + e“)(l + 6“)5 + 6210((1 + 6”)3(—5 + Telit — 762” + 563”)
+ MY (=14 e)3(1 + ) (—5 + 5e%@ + 5¢2(—1 + €2@) + 2¢(5 + 2i?))

+ 6821"1’((_1 + eZiL)3 _ eZia(_l _ 562ic + 564iL + eGib)))X¥ 31L(6621‘If( 1+ 62“)2(1 + 62”)

18
— (1 + )5 — 6e™ + 5¢%) — ™ (=1 + e)*(5 + 6e™ + 5¢%)) x?

1. ‘ . ‘ . .
+ i(B(Ee_’(Z‘_‘P)(—1762"1’(—1 + e P (1 + et) + 17(=1 + ) (1 + €™))

1 . . . . ) .
+ @e_’(z‘_q’)(Sez’q’(—l + e (1 + et) — 5(—1 + e*)(1 + e))w

104023-35



ARUN, BUONANNO, FAYE, AND OCHSNER PHYSICAL REVIEW D 79, 104023 (2009)
b3 S L )1 )T + (] + (=5 + Telt — TeHe + 5e)
+ V(=1 + P+ ) (5(—1 + e)? + X5 + 2e™ + 5e%4)) + 62V (—(—1 + &%)
— etia(—1 — 5¢%t + 5%t + e(’”)))/\/;) + 3—16e*"("‘+3‘)(5(—1 + e)(1 + et)?
+ 291 + )3 (=5 + Te' — Te? + 5¢3) + MV (—1 4 e)’(1 + ™) (5(—1 + €™*)> + &2%(5 + 2e' + 5¢%1Y))
+ 62V (—(—1 + €%t)3 — gia(—1 — 5¢%t 4 §eHiv + e6ic)))X)Sc
+ 71—26_i(“+3‘)((—1 + ) (1 + e)3(1 + e + e24(1 + %) — 2ei(—1 + 9¢%@))
+ etV (=14 P (1 + e ) (1 + 2@ + (1 + &%) + 2¢(—1 + 9e%9)) + 6>V ((—1 + €**)? + e¥*(—1 — 5¢2
T 5o+ e6”)))1/)(’§) " V(%e*i<a+3ﬂ>(—(—1 o) (1 + ¢S + (1 + eP(—1 + 1967 — 1962 + o)
+ et (=1 + P (1 + e)(—1 + 2 + (1 + €29) + 2 (1 + 9¢%9)) + 62 (—(—1 + €*it)?
+ e(—1 — 5% + 5e*t + ) yy + %673”(—66%\1’(—1 + 292(1 + €)= (1 + e™)*(1 — 10e™ + &%)
— V(=1 + ") (1 + 10e™ + 1)) Xg)] + (9(1)4)}, (B1)

2Mvv? 1 _. . . . . .
h21 I rv el(a+\l’)l"/—i{_el(2L+\l’)(_e4l‘I’(_1 + eu)3(1 + eu) _ (_1 + e”)(l + eu)3)
D, 512
+ _ie—ZlL[l + et + e3lL + 64” _ 621‘?(_1 + 6”)2(1 + eit + EZZL)]U(S
3
107 . . . ) ) . 1 ) . . .
+ UZI:%eﬂ(er‘I’)(_l + e“)(l + en)(e4t‘1'(_1 + 6“)2 + (1 + ezL)Z) + @871(2L+\I’)(_55€41\I’(_1 + (3“)3(1 + eu)
) . 1 . ) . 1 . . .
—=55(—1+ ) (1 + ™))y — Ee’(”‘”)(—l + 2 (=1 + ¥yt — Eel("‘f‘)(—l + e¥)(—1 + e*¥)s x*
1 . ) ) 1 . ) . )
+ i<§ez(a7L)(_1 + 62”)(—1 + eZt‘I’)XZ + 567“(62[\1,(—1 + 8“)2 _ (1 + eu)Z)X(zl
1 . ) . 1. ) ) )
+ 5(5 et(a*n)(_l + 62”)(—1 + ezlw)X?r + 56*10(621‘1’(_1 + 6”)2 _ (1 + ezb)Z)Xg))]
+ v3|:e—i(2L+‘If)(_e4ilP(_1 + eiL)3(1 + ein)ﬂ. _ (_1 + eiL)(l + eiL)37T)
+ 5(56—1(a+3L+\I’)((1 + elL)4(5 — Telt + 562”) _ 6210(_1 + e2lb)2(5 + it + 562”)
+ 6621"1’(1 + eZiL)(_(_l + eZiL)Z + eZia(l + eZiL)Z) + e4i‘l’(_e2ia(_1 + eZiL)Z(S _ eib + SeZib)
+ (=1 + e)*5 + Te'* + 5e%)) xn + 66"(3‘”’)((1 + e/*)3(—5 + 8e'* — 8% + 5¢31)
+ e4i‘l’(_1 + eib)3(5 + SeiL + SeZiL + 5€3iL) _ 662i‘l’(_1 + eZiL _ e4iL + €6“))){§)

+ Eeft(a+35+\l’)((1 + 6“)4(5 — 7eit + SeZzb) _ eZ:a(_l + 62“)2(5 + et + 5€2u)
+ 6e2i‘l’(1 + e2il.)(_(_1 + e2iL)2 + eZia(l + eZiL)Z) + e4i‘l’(_62ia(_1 + 62“)2(5 _ eiL + 562”)
+ (=14 e™)*(5 + Te* + 5¢24) xy + 86"(3”%((1 + el )} (=5 + 8elt — 8 + 5¢%)

+ 641"[’(_1 + eib)3(5 + SeiL + SeZiL + 563iL) _ 6621"[’(_1 + eZiL _ e4iL + e6ib))X§

104023-36



HIGHER-ORDER SPIN EFFECTS IN THE AMPLITUDE ... PHYSICAL REVIEW D 79, 104023 (2009)
+ i(6<g672zb(_17 + 17621‘?(_1 + ezL)Q(l + et + 62“) — 17€u(1 + e2n + €3u))

+ ﬁefz“(l + et + e3u + e4u _ eZz‘I’(_l + elb)2(1 + eft + 62”))1/

+ Eefl(a+3L+1I')(_(1 + 6”)4(5 — Telt + 5e2lL) _ eZla(_l + 62”)2(5 + elt + 562”)

+ 6621"1’(1 + eZiL)((_l + eZ[L)Z + eZia(l + eZiL)Z) + e4i‘I’(_82ia(_1 + 62”)2(5 _ eib + 562“)
12

_ eZia(_l + 62“)2(5 + eib + 582ib) + 662i‘l’(1 + eZiL)((_l + eZiL)2 + eZia(l + eZiL)Z)

+ e4i\If(_62ia(_1 + ezib)2(5 _ e” + 562”) _ (_1 + e”)4(5 + 76” + 562“)))/\/?

_ (_1 + elL)4(5 + Telt + 562”)))/\/2) + _e—l(a+3t+‘lf)(_(1 + 6”)4(5 — 7eit + 562”)

+ ﬂe*l(aJr?er\If)(_eQza(_l + 62”)2(1 — 13¢i + eQzL) _ (1 + 6“)4(1 + 3eit + 62”)

+ 6621'\1'(1 + eZiL)(_(_l + eZiL)2 _ eZia(l + eZiL)2) + e4i‘l’(_(_1 + eiL)4(1 _ 3eiL + eZic)

_ eZla(_l + 62”)2(1 + 13eit + 62“)))1/,\/?) + V(ﬂe—z(a+3l,+llf)(_62m(_1 + 62”)2(1 — 13eit + 62“)
+ (1 + eib)4(1 + 3eib + eZiL) + 6621"1’(1 + €2iL)((_1 + ezib)2 — e2i0[(1 + eZiL)Z)

+ e4i\If((_1 + eib)4(1 _ 3eiL + ezu) _ eZia(_l + eZiL)z(l + 136” + ezib)))X?;

+ E671(3L+‘l')((1 + elb)3(_l + 6eit — 662“ + 83“) + 641‘1’(_1 + 6“)3(1 + Gelt + 662“ + 63“)

+ 62V (—1 + o2t — 4t 4 66”))X§)] + @(U4)}’ (B2)

2 . 1 [7

Nan = —=3i(a+V)
BT 7p, ¢ 64 V42
+9(1 + e)®)vd + iv e B V(8 Y (—1 + €)5(1 + ) — 8(—1 + e™)(1 + €™*)’)

+ e C(=2464Y (—1 + )51 + ') + 24(—1 + )(1 + ™)) v]

{67311(966[‘1’(_1 + eiL)G _ e4i‘l’(_l + eiL)4(1 + eib)Z _ eZi‘I’(_l + eib)2(1 + eiL)4

+ v3[5(%e*3~(—108e6f‘1'(—1 T o)+ 8eMY(— 1 + (1 + et + 8eAV(— 1 + e)2(1 + ety

— 108(1 + ¢)®) + %e—3ﬂ(54e6"‘1’(—1 + )0 + 264V (=1 + ) (1 + )2 + 265V (=1 + &) (1 + ')*

+54(1 + e”)ﬁ)v) + 64 @ 2 (— V(] 4 i) + (1 + )yt + 64iell @2V 4V (=1 + eit)*

~ 1+ ey |+ 0] (B3)

APPENDIX C: CENTER-OF-MASS ENERGY AND GRAVITATIONAL-WAVE ENERGY FLUX

For nearly circular orbits, the center-of-mass energy is known through 2PN order, when spins are present and 3PN order
when spins are neglected. The coefficients entering Eq. (6.18) are [29,34,35,75,82—-86]
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The GW energy flux is known through 2.5PN order for spin effects [29,30,32,33], and 3.5PN order when spin effects are
absent [23]. The coefficients in Eq. (6.19) read
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APPENDIX D: FREQUENCY-DOMAIN AMPLITUDE CORRECTIONS

We give here the complex coefficients C;C") appearing in the frequency-domain nonprecessing waveform (6.13). The

lower index in C;C”) denotes the harmonic of the orbital phase, and the upper index denotes the (half) PN order. Since the
different harmonics end at different GW frequencies, the kth harmonic ends at k times the orbital frequency cutoff. Thus,
we introduce step functions @ (kF., — f) to ensure each harmonic ends at its proper frequency. We derive

O = L [—(1+ Q)F, - 2ic,F1OCF — 1), (1)
NG
2
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