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It is shown that the existence of static, cylindrically symmetric wormholes does not require violation of

the weak or null energy conditions near the throat, and cylindrically symmetric wormhole geometries can

appear with less exotic sources than wormholes whose throats have a spherical topology. Examples of

exact wormhole solutions are given with scalar, spinor and electromagnetic fields as sources, and these

fields are not necessarily phantom. In particular, there are wormhole solutions for a massless, minimally

coupled scalar field in the presence of a negative cosmological constant, and for an azimuthal Maxwell

electromagnetic field. All these solutions are not asymptotically flat. A no-go theorem is proved,

according to which a flat (or string) asymptotic behavior on both sides of a cylindrical wormhole throat

is impossible if the energy density of matter is everywhere nonnegative.
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I. INTRODUCTION

Lorentzian traversable wormholes as smooth bridges
between different universes, or smooth shortcuts between
remote parts of a single universe, have been widely dis-
cussed from different theoretical standpoints for many
years; see [1–4] for reviews. It is well known that a worm-
hole geometry can only appear as a solution to the Einstein
equations if the stress-energy tensor (SET) of matter vio-
lates the null energy condition (NEC) at least in a neigh-
borhood of the wormhole throat [2]. This conclusion,
however, has been proved under the assumption that the
throat is a compact 2D surface, having a finite (minimum)
area (at least in the static case, since for dynamic worm-
holes it has proved to be necessary to generalize the notion
of a throat [5]; see, however [6] for other definitions of a
throat). In other words, it was implied that, as seen from
outside, a wormhole entrance is a local object like a star or
a black hole.

But, in addition to such objects, the Universe may con-
tain structures which are infinitely extended along a certain
direction, like cosmic strings. And, while starlike struc-
tures are, in the simplest case, described in the framework
of spherical symmetry, the simplest stringlike configura-
tions are cylindrically symmetric. Their possible wormhole
properties will be the subject of the present paper. For
simplicity, we here consider only static configurations. It
should be stressed that we will deal with genuine cylindri-
cal symmetry, unlike Kuhfittig [7] who considered cylin-
drical configurations of finite length, which are actually

axially symmetric due to z dependence. A special case of
wormholes related to the present setting (with a cosmic
string metric and thin shells of negative density) has been
considered in [8].
For static, spherically symmetric space-times with the

metric

ds2 ¼ AðuÞdt2 � BðuÞdu2 � r2ðuÞðd�2 þ sin2�d�2Þ (1)

(where u is an arbitrary admissible spherical radial coor-
dinate), we say that there is a wormhole geometry if at
some u ¼ u0 the function rðuÞ has a regular minimum
rðu0Þ> 0 (which is then called a throat) and, on both sides
of this minimum, rðuÞ grows to much larger values than
rðu0Þ. It is supposed that, at least in some range of u
containing u0, the functions AðuÞ and BðuÞ are also smooth,
finite and positive, which guarantees regularity and ab-
sence of horizons.1

Likewise, consider static, cylindrically symmetric
space-times with the general metric taken in the form

ds2 ¼ e2�ðuÞdt2 � e2�ðuÞdu2 � e2�ðuÞdz2 � e2�ðuÞd�2;

(2)

where u is an arbitrary admissible cylindrical radial coor-
dinate, z 2 R is the longitudinal coordinate, and � 2
½0; 2�� is the angular one. The main global features of
such space-times are defined in terms of the behavior of the

circular radius rðuÞ ¼ e�ðuÞ: namely, a spatial asymptotic
(if any) corresponds to rðuÞ ! 1, and a symmetry axis (if
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1We thus do not restrict ourselves to asymptotically flat worm-
holes and, moreover, admit that a horizon may occur somewhere
far from the throat, as it happens, e.g., if a wormhole is
asymptotically de Sitter due to a small cosmological constant.
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any) is defined by vanishing rðuÞ, which means that the
coordinate circles shrink to points. It therefore seems
reasonable to accept the following definition of a cylindri-
cal wormhole:
Definition 1. We say that the metric (2) describes a worm-
hole geometry if the circular radius rðuÞ has a minimum
rðu0Þ> 0 at some u ¼ u0, if, on both sides of this mini-
mum, rðuÞ grows to much larger values than rðu0Þ, and, in
some range of u containing u0, all four metric functions in
(2) are smooth and finite (which guarantees regularity and
absence of horizons). The cylinder u ¼ u0 is then called a
throat.

The notion of a wormhole is, as in other similar cases,
not rigorous because of the words ‘‘much larger,’’ but the
notion of a throat as a minimum of rðuÞ is exact.
Asymptotically regular wormholes, to be discussed below,
are also defined exactly.

We will give some examples of wormhole solutions
whose sources are scalar, nonlinear spinor and electromag-
netic fields. It is important that these fields need not be
phantom, and, in particular, there are Einstein-Maxwell
wormhole solutions with azimuthal electric or magnetic
fields.

It is also possible to define a cylindrical wormhole by
analogy with spherically symmetric or other starlike con-
figurations, using, instead of rðuÞ, the area function aðuÞ ¼
e�þ� of 2D cylindrical surfaces t ¼ const, u ¼ const.
(Their area is certainly infinite but becomes finite if we
identify some points on the z axis, thus converting cylin-
drical symmetry to toroidal.) We still believe that
Definition 1 is more appropriate for cylindrical symmetry,
although it is useful to compare the properties of different
notions of a throat.

The paper is organized as follows. In Sec. II, we present
necessary conditions for the existence of a cylindrically
symmetric wormhole throat and formulate some further
observations. We also discuss an alternative definition of a
throat in terms of the area function aðuÞ. Comparing the
consequences of different definitions, we arrive at an im-
portant no-go theorem for wormholes with flat or string
asymptotic behavior at both sides of the throat: it turns out
that, in order to make such a wormhole, it is necessary to
have matter with negative energy density. Section III con-
siders a few examples of matter sources of cylindrically
symmetric geometries and the corresponding wormhole
solutions. Two no-go theorems of more specific nature
are presented there. Section IV contains some concluding
remarks.

II. CYLINDRICALWORMHOLES: GEOMETRY
AND MATTER CONTENT

A. Basic equations

Let us begin with presenting the nonzero components of
the Ricci tensor for the metric (2) in its general form,
without specifying the choice of the radial coordinate u:

R0
0 ¼ �e�2�½�00 þ �0ð�0 � �0 þ �0 þ �0Þ�;

R1
1 ¼ �e�2�½�00 þ �00 þ �00 þ �02 þ �02

þ �02 � �0ð�0 þ �0 þ �0Þ�;
R2
2 ¼ �e�2�½�00 þ �0ð�0 � �0 þ �0 þ �0Þ�;

R3
3 ¼ �e�2�½�00 þ �0ð�0 � �0 þ �0 þ �0Þ�; (3)

where the prime denotes d=du and the coordinates are
numbered according to the scheme ð0; 1; 2; 3Þ ¼
ðt; u; z; �Þ. It is also helpful to present the component G1

1

of the Einstein tensor G�
	 ¼ R�

	 � 1
2


�
	R which does not

contain any second-order derivatives:

G1
1 ¼ e�2�ð�0�0 þ �0�0 þ �0�0Þ: (4)

The Einstein equations are written as

G�
	 ¼ �ßT�

	; ß ¼ 8�G; (5)

where G is Newton’s constant of gravity, or equivalently,

R�
	 ¼ �ß ~T�

	; ~T�
	 ¼ T�

	 � 1

2

�
	T

�
�; (6)

The above relations were written with an arbitrary u
coordinate. In many cases it is helpful to use this coordi-
nate freedom and to choose u as a harmonic radial coor-
dinate, which is defined by the condition [9]

� ¼ �þ �þ �: (7)

In particular, with this choice, the expressions for R0
0, R

2
2

and R3
3 do not contain first-order derivatives.

B. Conditions on the throat

Now, let us take the SET T�
	 in the most general form

admitted by the space-time symmetry:

T�
	 ¼ diagð�;�pr;�pz;�p�Þ; (8)

where � is the density and pi are pressures of any physical
origin in the respective directions.
It is straightforward to find out how the SET components

should behave on a wormhole throat. At a minimum of
rðuÞ, due to �0 ¼ 0 and �00 > 0,2 we have R3

3 < 0, and
from the corresponding component of (6) it follows that

T� :¼ T0
0 þ T1

1 þ T2
2 � T3

3 ¼ �� pr � pz þ p� < 0:

(9)

If T2
2 ¼ T3

3 , which means pz ¼ p�, the condition (9)

leads to �� pr < 0, or pr > �, which violates the domi-
nant energy condition if we assume, as usual, � � 0. (This
is true, in particular, for Pascal isotropic fluids, in which all

2Here and henceforth we restrict ourselves for convenience to
generic minima, at which �00 > 0. If there is a special minimum
at which �00 ¼ 0, we still have �00 > 0 in its vicinity, along with
all consequences of this inequality. The same concerns minima
of aðuÞ discussed below.
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pi are equal to each other.) In the general case of aniso-
tropic pressures, (9) does not necessarily violate any of the
standard energy conditions.

Let us discuss what changes if we define a throat using
the area function aðuÞ instead of rðuÞ. We will call it an a-
throat for clarity.
Definition 2. In a space-time with the metric (2), an
a-throat is a cylinder u ¼ u1 where the function aðuÞ ¼
e�þ� has a regular minimum.

By Definition 2, at u ¼ u1 we have �0 þ �0 ¼ 0 and
�00 þ �00 > 0. The minimum occurs in terms of any admis-
sible coordinate u, in particular, in terms of the harmonic
coordinate (7). Using it in Eqs. (3) and (6), we find that the
condition �00 þ �00 > 000 implies

R2
2 þ R3

3 < 0 ) T0
0 þ T1

1 ¼ �� pr < 0: (10)

In addition, substituting �0 þ �0 ¼ 0 into the Einstein
equation G1

1 ¼ �ßT1
1 , we find

G1
1 ¼ e�2��0�0 ¼ �e�2��02 � 0 ) �T1

1 ¼ pr � 0:

(11)

Combining (10) and (11), we obtain

� < pr � 0 at u ¼ u1: (12)

Thus at and near an a-throat there is necessarily a region
with negative energy density �.

Let us recall for comparison the wormhole throat con-
ditions in static spherical symmetry. There, the Einstein
equation ð00Þ � ð11Þ leads to the well-known inequality �þ
pr < 0, which violates the null energy condition. The
equation G1

1 ¼ �ßT1
1 leads to pr < 0 on the throat.

Meanwhile, the density � can have any sign.
We conclude that both conditions (9) and (12) radically

differ from their counterpart in spherical symmetry.
Moreover, these two conditions themselves are drastically
different: while (9) admits quite usual kinds of matter (as
will be seen from the examples below), (12) definitely
requires � < 0, i.e., even more exotic matter than in spheri-
cal symmetry.

C. Asymptotic conditions; a no-go theorem

So far we discussed the local conditions that must hold
on the throat. To describe a wormhole as a global entity, it
is mandatory to consider the geometry far from the throat,
on both sides from it. We will consider a situation that
seems the most natural, in which the wormhole is observed
as a stringlike source of gravity from an otherwise very
weakly curved or even flat environment.

So we require the existence of a spatial infinity, i.e., a
value u ¼ u1 such that r ¼ e� ! 1, where the metric is
either flat or corresponds to the gravitational field of a
cosmic string.

First, as u ! u1, a correct behavior of clocks and rulers
requires j�j<1 and j�j<1, i.e.,

� ! const; � ! const as u ! u1: (13)

Choosing proper scales along the t and z axes, one can turn
these constants to zero; but if a wormhole has two such
asymptotics, this operation, in general, can be done only at
one of them.
Second, at large r we require

j�0je��� ! 1�	; 	 ¼ const< 1 as u ! u1;
(14)

so that the circumference-to-radius ratio for the circles u ¼
const, z ¼ const tends to 2�ð1�	Þ instead of 2� which
should be the case if the space-time is asymptotically flat.
So the parameter 	 is an angular defect. Under the asymp-
totic conditions (13) and (14), 	> 0, the solution can
simulate a cosmic string. A flat spatial asymptotic takes
place if 	 ¼ 0. Negative values of 	 are also not a priori
excluded, they correspond to an angular excess. In what
follows we will use the words ‘‘regular asymptotic’’ in the
sense ‘‘flat or string asymptotic.’’
Third, the Riemann curvature tensor, hence the Ricci

tensor, should vanish at large r, and, due to the Einstein
equations, all SET components must decay quickly
enough.3

It is easy to verify that in the coordinates (7) a regular
asymptotic can only occur as u ! �1. Indeed, due to (13)
at such an asymptotic we have

�� � ! 1 ) j�0j ! const: (15)

So (14) and the two conditions (15) are compatible with
each other only if u ! �1. If we deal with a wormhole
with two regular asymptotics, one of them occurs at u ¼
þ1, the other at u ¼ �1.
Evidently, at a regular asymptotic, both rðuÞ and aðuÞ

tend to infinity. If there are two such asymptotics, both
functions have minima at some finite u, i.e., there occur
both a throat as a minimum of rðuÞ and an a-throat (they do
not necessarily coincide if there is no symmetry with
respect to u ¼ u1). This leads to the following result:
Proposition 1. In general relativity, any static, cylindri-
cally symmetric wormhole with two regular asymptotics
contains a region where the energy density is negative.
This conclusion can be equivalently formulated as a no-go
theorem:
Proposition 1a. In general relativity, a static, cylindrically
symmetric, twice asymptotically regular wormhole cannot
exist if the energy density T0

0 is everywhere nonnegative.

3In general, this requirement should be formulated in terms of
Lorentz tetrad components of all tensors. However, for our
diagonal metric (2) these tetrad components coincide with co-
ordinate components written with mixed indices, such as R	�

��
for the Riemann tensor, R�

	 for the Ricci tensor and T�
	 for the

SET. They behave as scalars at reparametrizations of the radial
coordinate u, which makes a transition to tetrad components
redundant.
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It should be stressed that this conclusion holds with any of
the two definitions of a throat.

III. EXAMPLES OF CYLINDRICALWORMHOLES

In what follows, we will everywhere adhere to
Definition 1 of a cylindrical wormhole. A few examples
of wormhole space-times will be presented with different
matter sources. None of them have two regular asymp-
totics, even though in some cases the energy density is
(partly) negative.

A. Vacuum

Vacuum space-time (T�
	 ¼ 0) cannot contain a worm-

hole since the condition (9) does not hold anywhere. Let us
still consider it for comparison. The easiest way to solve
the equations R�

	 ¼ 0 is to choose u as a harmonic radial

coordinate; see (7). Then the equations R�
	 ¼ 0 lead to

�00 ¼ �00 ¼ �00 ¼ 0, so that

�ðuÞ ¼ auþ a0; �ðuÞ ¼ buþ b0;

�ðuÞ ¼ cuþ c0;
(16)

with six integration constants, among which a0, b0, c0 may
be turned to zero by changing scales along the t and z axes
and choosing the zero point of the u coordinate. Moreover,
the first-order equation G1

1 ¼ 0 leads to a relation between
the remaining constants a, b, c:

abþ acþ bc ¼ 0; (17)

hence there are two essential constants. The metric takes
the form

ds2 ¼ e2audt2 � e2ðaþbþcÞudu2 � e2cudz2 � e2bud�2:

(18)

It is the well-known Levi-Civita solution whose more usual
form (see, e.g., [10])

ds2 ¼ �r2mdt2 � �r2mðm�1Þðd�r2 þ dz2Þ � C �r2ð1�mÞd�2

(19)

is obtained from (18) using the relations and notations

e ðaþbÞu ¼ k�r; k ¼ ðaþ bÞ�ðaþbÞ=c;

m ¼ a

aþ b
; C ¼ ðaþ bÞ2b=c (20)

valid for aþ b � 0, c � 0. [Note that aþ b ¼ 0 leads to
a ¼ b ¼ 0 while c ¼ 0 leads to ab ¼ 0 due to (17).] The
two parameters in (19) arem called the mass parameter and
C called the conicity parameter.

In the special case m ¼ 0 in (19), or a ¼ c ¼ 0 in (17)
[in this case the two metrics are not related by (20) but the
result is the same] we obtain the flat metric in which 1� C
or 1� b2 is the angular defect.

For our treatment it is important that even the vacuum
solution is in general not asymptotically flat, and only for

m ¼ 0 or a ¼ c ¼ 0 one obtains a flat (for b2 ¼ 1) or
string (for b2 � 1) asymptotic behavior. This means that
in the general case, when T�

	 vanishes asymptotically and

the metric approaches the Levi-Civita solution, the con-
ditions (13) and (14) make a very strong restriction. Recall
for comparison that in spherically symmetric systems the
vacuum (Schwarzschild) solution is asymptotically flat,
and the same is true for a wealth of nonvacuum solutions,
certainly, in the absence of a cosmological constant.

B. Scalar fields; two more no-go theorems

Consider a scalar field with the Lagrangian

Ls ¼ 1

2
"’;�’;� � Vð’Þ; (21)

where Vð’Þ is an arbitrary function, and " ¼ �1 distin-
guishes normal (" ¼ þ1) and phantom (" ¼ �1) scalar
fields. For the metric (2) and ’ ¼ ’ðuÞ, the SET has the
form

T�
	 ¼ "’;	’

;� � 
�
	Ls

¼ 1

2
"’02e�2� diagð1;�1; 1; 1Þ þ Vð’Þ
�

	; (22)

so that

T0
0 ¼ T2

2 ¼ T3
3 : (23)

Therefore, in the coordinates (7), three second-order equa-
tions (6) combine to give

�00 ¼ �00 ¼ �00 ¼ 1

3
�00; (24)

where the last equality is due to (7), whence

� ¼ 1

3
ð�� AuÞ; � ¼ 1

3
ð�� BuÞ;

� ¼ 1

3
ð�þ Auþ BuÞ;

(25)

where A and B are integration constants and two more
constants are ruled out by moving the origin of u and
rescaling the z axis. The remaining unknowns � and ’
obey the equations [the scalar field equation and combina-
tions of (5)]

�00 þ 3ßVð’Þe2� ¼ 0; (26)

"’00 � ðdV=d’Þe2� ¼ 0; (27)

�02 � N2 ¼ 3

2
"ß’02 � 3ßVe2�;

N2 :¼ 1

3
ðA2 þ ABþ B2Þ;

(28)

where (28), following from the ð11Þ component of (5), is a

first integral of (26) and (27).
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For a SET satisfying (23), the condition (9) leads to V <
0 for both normal and phantom fields. Thus wormholes
solutions are not excluded but require a negative potential,
at least on and near the throat.

Suppose now that there is a regular spatial asymptotic.
Without loss of generality it can be placed at u ! þ1,
where due to (15) � � � and due to (25) we have

A ¼ B ¼ N > 0; � � � � Nu:

Another regular asymptotic might occur at u ! �1; how-
ever, since the relation for the integration constants A ¼
B ¼ N still holds, if we assume that � and � are finite
there, we arrive again at �� �� Nu, but now it means
that � ! �1, that is, an axis (which can in principle be
regular); another regular spatial infinity cannot exist. We
arrive at the following result (see also [11]):
Proposition 2. Static, cylindrically symmetric wormholes
with two regular asymptotics do not exist in general rela-
tivity with matter whose SET satisfies Eq. (23).

If we deny the asymptotic regularity condition but re-
quire symmetry of the wormhole with respect to its throat,
then at such a throat (u ¼ u0) �0 ¼ �0 ¼ �0 ¼ 0, and
Eqs. (5) may be combined to give

2�00 ¼ �ße2�ðT0
0 þ T2

2 � T3
3Þ (29)

at u ¼ u0. Since it is a minimum of �, we have there �00 >
0. Assuming T2

2 ¼ T3
3 (which is true for scalar fields),

Eq. (29) means T0
0 < 0. The result is (see also [11]):

Proposition 3. A static, cylindrically symmetric worm-
hole, symmetric with respect to its throat, cannot exist in
general relativity with matter whose SET satisfies the
conditions T2

2 ¼ T3
3 and T0

0 � 0.
Propositions 2 and 3 not only apply to scalar fields with

the Lagrangian (21) but to any matter whose SET satisfies
the corresponding condition, for instance, scalar fields with
more general Lagrangians like Fð�;XÞ, X ¼ g	��;	�;�

frequently used to model dark energy (k-essence, general-
ized Chaplygin gas models etc.) as well as spinor fields to
be briefly discussed further in this section. Proposition 3
also applies to any Pascal (not necessarily perfect) fluids
with isotropic pressure.

C. Scalar fields: Some wormhole solutions

Consider a solution to Eqs. (26)–(28) in a special case of
negative potential, putting

3ßV ¼ 3� ¼ �2 < 0;  > 0; (30)

where �< 0 is a cosmological constant. Thus we are
dealing with a self-gravitating massless scalar field in the
presence of a cosmological constant. We can expect worm-
hole solutions but certainly without regular asymptotics,
not only due to Proposition 2 but simply because the
curvature must be nonzero at an asymptotic if � � 0.

From Eqs. (26) and (27) we get

’0 ¼ C ¼ const; �00 ¼ 2e2�: (31)

The latter is a Liouville equation whose solution may be
written as

e�� ¼
8<
:
ð=hÞ sinh½hðu� u1Þ�; h > 0;
ðu� u1Þ; h ¼ 0;
ð=hÞ sin½hðu� u1Þ�; h < 0;

(32)

where h and u1 are integration constants. Equation (28)
leads to a relation among the constants:

h2 signh ¼ N2 þ 3

2
"ßC2: (33)

This, together with (25), completes the solution.
Within this general solution, let us now single out worm-

hole solutions, i.e., those in which �ðuÞ tends to infinity at
both ends of the range of u. For convenience and without
loss of generality we put u1 ¼ 0 and assume u > 0. It is
then easy to see that in the limit u ! 0we have � ! 1 for
any values of h since � � � lnu ! 1. Let us look when
� ! 1 at large u.
If h > 0 [by (33), it is always the case if there is a normal

scalar field, " ¼ þ1, C � 0, but is also possible with a
phantom scalar, " ¼ �1, C � 0, and in the absence of a
scalar, C ¼ 0], then � � �hu as u ! 1, hence 3� �
ðAþ B� hÞu, and we obtain a wormhole if Aþ B> h.
The value h ¼ 0 may appear without a scalar field (C ¼

0, a pure vacuum solution with negative �), it corresponds
to A ¼ B ¼ 0, and one can verify that this is a cylindrically
symmetric version of the anti-de Sitter metric which is not
wormhole. However, by (33), we may have h ¼ 0 with
nonzero A or B (or both) if there is a phantom scalar (" ¼
�1, C � 0). Then, as u ! 1, ��� lnu ! �1, but its
contribution is inessential in the expressions (25), and we
have � ! 1, hence a wormhole, if Aþ B> 0.
Lastly, if h < 0, which can only happen in the presence

of a phantom field, the other end of u range is u ! �=jhj,
and it is quite similar to u ¼ 0. Thus all solutions with h <
0 are wormhole.
So, we have a large family of wormhole solutions with a

negative cosmological constant, with or without massless
scalar fields, both normal and phantom. However, none of
these solutions are asymptotically regular.
Among these solutions, there is a symmetric subfamily:

it corresponds to " ¼ �1, C � 0, A ¼ B ¼ 0, h < 0. In
accord with Proposition 2, it has a negative energy density,
T0
0 ¼ � 1

2�
02e�2� þ�=ß. In terms of the Gaussian coor-

dinate l ¼ ð1=Þ log tanðhu=2Þ (l 2 R is a length in the
radial direction), the metric in this case can be written in
the simple-looking form

ds2 ¼ �dl2 þ
�jhj


cosh
l



�
2=3ðdt2 � dz2 � d’2Þ: (34)
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D. Spinor fields: General considerations

Spinor fields of sufficiently general nature in static,
cylindrically symmetric configurations have been consid-
ered in Ref. [12], and we here follow this paper. The
Lagrangian

Lsp ¼ i

2
ð �c�	r	c � ðr	

�c Þ�	c Þ �m �c c � FðSÞ;
(35)

where FðSÞ is an arbitrary function of the invariant S ¼
�c c , describes as a special case the Dirac spinor field c of
arbitrary mass m as well as a general class of nonlineari-
ties. The equations for c and �c and the spinor field SET
are [13]

i�	r	c �mc � @F=@ �c ¼ 0; (36)

ir	
�c�	 þm �c þ @F=@c ¼ 0; (37)

T�
	 sp ¼ i

4
g��ð �c�	r�c þ �c��r	c �r	

�c��c

�r�
�c�	c Þ � 


�
	Lsp; (38)

where r	c is the covariant derivative of the spinor field

r	c ¼ @c =@x	 � �	c ; (39)

with �	ðxÞ being the Fock-Ivanenko spinor affine connec-

tion matrices. The �	 matrices are related to the flat-space
Dirac matrices ~�	 by �	ðuÞ ¼ ea	 ~�a, where ea	 are the

tetrad vectors, so that g	� ¼ ea	e
b
��ab, where �ab ¼

diagð1;�1;�1;�1Þ.
In our static, cylindrically symmetric case, with the

metric (2) and c ¼ c ðuÞ, we have [12] Lsp ¼
SFS � FðSÞ, FS :¼ dF=dS. The SET components of the
spinor field are

T0
0 ¼ T2

2 ¼ T3
3 ¼ FðSÞ � SFS; (40)

T1
1 ¼ i

2
ð �c�1r1c �r1

�c�1c Þ þ SFS � FðSÞ; (41)

so that Eq. (23) holds, along with its consequences such as
the expressions (25) for the metric functions and
Propositions 2 and 3 which restrict the possible wormhole
existence.

Equation (36) may be written in the form [12]

ie�� ~�1

�
@u þ 1

2
�0
�
c �mc � FSc ¼ 0: (42)

Combining it with its conjugate, we arrive at the equation
S0 þ �0S ¼ 0, giving

SðuÞ ¼ c0e
��ðuÞ; c0 ¼ const: (43)

Then F and FS are expressed in terms of e��ðuÞ. Moreover,
Eq. (42) and its conjugate allow one to reexpress T1

1 as

T1
1 ¼ mSþ FðSÞ ¼: MðSÞ: (44)

The only remaining Einstein equation to be solved is

�02 � N2 ¼ �3ße2�MðSÞ; N2 :¼ 1

3
ðA2 þ ABþ B2Þ;

(45)

Since by (43) �0 ¼ �S0=S, Eq. (45) is rewritten as

�
dS

du

�
2 ¼ N2S2 � 3ßc20

MðSÞ ; (46)

which is easily solved by quadratures. Thus, given FðSÞ,
the Einstein equations are solved in a general form even
without entirely integrating the nonlinear spinor equations
[12].
With (40) and (44), the condition (9) implies

2M� SMS < 0 (47)

at a wormhole throat. This condition is similar to the V < 0
condition for scalar fields.

E. Spinor field: Example of a wormhole solution

A simple example of a wormhole solution can be ob-
tained using the inverse problem method: choosing the
form of �ðuÞ, we easily find both SðuÞ and MðuÞ, hence
MðSÞ. So, let us put

e � ¼ A0 coshku; A0; k ¼ const> 0; (48)

to obtain, according to (43) and (45),

SðuÞ ¼ c0=ðA0 coshkuÞ; (49)

3ßA2
0MðSÞ ¼ N2 � k2

cosh2ku
þ k2

cosh4ku

¼ ðN2 � k2Þ
�
A0

c0

�
2
S2 þ k2

�
A0

c0

�
4
S4: (50)

The solution as a whole is determined by Eqs. (25), (48),
and (49). It is regular at all u 2 R and, since the asymp-
totics of �ðuÞ are

� �
� ðkþ Aþ BÞu; u ! þ1;
ðk� A� BÞjuj; u ! �1;

(51)

it describes a wormhole if jAþ Bj< k. The wormhole is
symmetric if A ¼ B ¼ 0, which corresponds to a nonlinear
spinor field with

MðSÞ ¼ � k2S2

3ßc20

�
1�

�
A0S

c0

�
2
�
:

Its metric can be written in terms of the Gaussian coordi-
nate l ¼ ðA0=kÞ sinhku 2 R) as

ds2 ¼ �dl2 þ ðA2
0 þ k2l2Þ1=3ðdt2 � dz2 � d�2Þ: (52)

It is easy to verify that, as in the scalar case, the density T0
0

is negative near the throat u ¼ 0, l ¼ 0.
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F. Einstein-Maxwell fields and nonlinear
electrodynamics (NED)

Electromagnetic fields F	�, compatible with the geome-

try (2), can have three different directions:
Radial (R): electric, F01ðuÞ (E2 ¼ F01F

10), and magnetic,
F23ðuÞ (B2¼F23F

23).
Azimuthal (A): electric, F03ðuÞ (E2¼F03F

30), and mag-
netic, F12ðuÞ (B2¼F12F

12).
Longitudinal (L): electric, F02ðuÞ (E2 ¼ F02F

20), and
magnetic, F13ðuÞ (B2 ¼ F13F

13).
Here E and B are the absolute values of the electric field

strength and magnetic induction, respectively. Self-
gravitating static, cylindrically symmetric configurations
of such electromagnetic fields have been considered in the
framework of the Einstein-Maxwell theory in [14] and in
the Einstein-NED theory with gauge-invariant NED
Lagrangians of the form

Le ¼ ��ðFÞ=ð16�Þ; F :¼ F	�F	� (53)

in [15]. The Maxwell Lagrangian is recovered by putting
�ðFÞ 	 F. The Lagrangian (53) leads to the SET

T�
	 ¼ 1

16�
½�4F��F	��F þ 
�

	��; (54)

where �F ¼ d�=dF. For a radial electromagnetic field in
the geometry (2) this gives

T0
0 ¼ T1

1 ¼ 1

16�
ð4E2�F þ�Þ; (55)

T2
2 ¼ T3

3 ¼ 1

16�
ð�4B2�F þ�Þ: (56)

Similar relations for a longitudinal field are obtained by
replacing 1 $ 2 in the indices and for an azimuthal field by
replacing 1 $ 3.

Now, let us find out which kind of electromagnetic field
is suitable for obtaining wormholes. It is easy to verify that
the expression (9), which should be negative at and near a
wormhole throat, has the form

T� ¼ ð4E2�F þ�Þ=ð8�Þ ðR and L fieldsÞ; (57)

T� ¼ ð�4B2�F þ�Þ=ð8�Þ ðA fieldsÞ: (58)

In Maxwell electrodynamics this gives T� ¼
ðE2 þ B2Þ=ð4�Þ for L and R fields and T� ¼ �ðE2 þ
B2Þ=ð4�Þ for A fields. Thus wormholes are only possible
with azimuthal fields. Indeed, the corresponding exact
solution to the Einstein-Maxwell equations has the form
[14]

ds2 ¼ cosh2ðhuÞ
Kh2

½e2audt2 � e2ðaþbÞudu2 � e2bud’2�

� Kh2

cosh2ðhuÞdz
2; (59)

where K ¼ ½Gði2e þ i2mÞ��1, h2 ¼ ab, a, b ¼ const, a > 0,
b > 0, and the electromagnetic field is given by

F03 ¼ im ¼ const; F12 ¼ iee
�2�; ie ¼ const;

(60)

where ie and im are the effective currents of electric and
magnetic charges along the z axis, respectively. This solu-
tion is written under the coordinate condition (7), and

evidently, r ¼ e� � eðh�bÞjuj as u ! �1. Thus it is a
wormhole solution if b < h. It is easy to see that such a
wormhole is neither symmetric nor asymptotically regular.
Let us now turn to NED; see Eq. (53). It is clear that

�ðFÞmay be chosen so that the expression (57) for R and L
fields will be negative at some F, but this will simulta-
neously mean that the energy density T0

0 will be negative.

Such cases are yet to be studied. On the other hand, with A
fields it is easy to obtain wormhole solutions like (59) and
(60), and moreover one can show that no such solutions
have two regular asymptotics. Indeed, since in this case
T0
0 ¼ T3

3 , the corresponding component of the Einstein

equations in the coordinates (7) gives �00 ¼ �00, whence
� ¼ �þ buþ b0 with b, b0 ¼ const. A regular asymp-
totic at u ¼ 1 requires � ! const and b > 0 whereas a
regular asymptotic at u ¼ 1 requires � ! const and b <
0. Thus a regular asymptotic can appear only at one ‘‘end,’’
and, moreover, it can be only achieved at the expense of a
non-Maxwell behavior of �ðFÞ at small F [15].

IV. CONCLUDING REMARKS

We have seen that the existence conditions for cylindri-
cally symmetric wormholes can be satisfied without vio-
lating the weak or null energy conditions near the throat.
We have presented a number of explicit examples of worm-
hole solutions with nonphantom sources.
However, as is always the case when dealing with cylin-

drically symmetric systems, it is rather hard to obtain
solutions with regular (i.e., flat or string) asymptotics: in-
deed, even the Levi-Civita vacuum solution has such an
asymptotic only in a special case. Of course, such asymp-
totic behaviors are necessary if we wish to describe a
wormhole in a flat or weakly curved background universe.
We have proved that if one wishes to have this behavior at
both sides of the throat, it is necessary to invoke matter
with negative energy density.
This problem is still more important if we try to apply

cylindrically symmetric solutions as an approximate de-
scription of toroidal systems, e.g., like those discussed by
Gonzalez-Diaz [16]. This approximation must work well if
a torus containing matter and significant curvature is thin,
like a circular string, i.e., its larger radius is much greater
than the smaller radius. In this case, small segments along
such a ‘‘string’’ are approximately cylindrically symmet-
ric. But this means that sufficiently far from the thin ring, in
any direction (to or from the center of the ring or in any
other), the space-time should be almost flat.
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Thus, in future studies, it is desirable either to find
asymptotically regular cylindrically symmetric geometries
with more or less realistic material sources or to consider
configurations consisting of at least three layers: one re-
sponsible for the wormhole throat and its neighborhood
and two others (on each side of the throat) providing
regular asymptotics. One can note that the required nega-
tive energy densities may appear due to quantum effects,
such as vacuum polarization and the Casimir effect.

A challenging problem is to clear up a relationship
between the throat topology and the energy conditions. A
point of interest is that in cylindrically symmetric space-
times there can be at least two different definitions of a
wormhole throat: the one we have been using, in terms of
the radius rðuÞ, and the alternative one, in terms of the area
function aðrÞ; moreover, they lead to different wormhole
existence conditions in terms of the SET, but both of them
differ from the conditions for spherically symmetric worm-
holes or those with a spherical topology of throats. Thus
the topological issue is probably crucial for formulating the
general properties of matter sources for wormhole geome-
tries. And it is yet to be ascertained what are the similar
conditions at throats of toroidal and more complex top-
ologies. It seems plausible that a toroidal throat should
behave like a cylindrical one since the condition sought for
should be of local nature, but a rigorous proof is so far
lacking.

There are quite a number of results indicating wormhole
properties of many stringlike configurations. One can men-

tion, in particular, Clement’s ‘‘flat wormholes’’ obtained
from properly moving straight cosmic strings, the worm-
hole nature of Kerr and Kerr-Newman space-times with
large charges and/or angular momenta, where naked ring
singularities have certain string properties (see [17,18] and
references therein), and their static counterparts [19,20].4

Rotating cylindrically symmetric configurations also tend
to show wormhole properties [21]. There are also toroidal
wormhole solutions in anti-de Sitter space-times built us-
ing the cut and paste technique [22]. So one can be rather
optimistic about the existence of realistic cylindrical or
toroidal wormhole models.
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