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General very special relativity (GVSR) is the curved space-time of very special relativity (VSR)

proposed by Cohen and Glashow. The geometry of general very special relativity possesses a line element

of Finsler geometry introduced by Bogoslovsky. We calculate the Einstein field equations and derive a

modified Friedmann-Robertson-Walker cosmology for an osculating Riemannian space. The Friedmann

equation of motion leads to an explanation of the cosmological acceleration in terms of an alternative non-

Lorentz invariant theory. A first order approach for a primordial-spurionic vector field introduced into the

metric gives back an estimation of the energy evolution and inflation.
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I. INTRODUCTION

It is widely known that relativity violations are arising
from breaking the Lorentz symmetry. Lorentz violations
are a very wide research area traced back to Dirac in the
early 1950s and applied in many aspects of modern physics
since the question of Lorentz symmetry invariance was
incorporated into the foundations of both general relativity
and quantum field theory [1]. Plenty of different high
energy theories face the challenge of Lorentz symmetry
breaking; therefore the proposal of a different geometrical
point of view from general relativity makes sense. The
consideration of such a scenario implies a class of modified
dispersion relations for elementary particles depending on
both coordinates and momenta. In this case the geometry
of space-time may be direction dependent generating a
local anisotropy [2–4]. A possible candidate for a geometry
which incorporates the anisotropies directly to the metric is
Finsler geometry. A typical example of studying Lorentz
violations within the framework of Finsler geometry is
presented in [5].

An interesting case of Lorentz violation where the
Finsler geometry turns up is the model of very special
relativity (VSR) characterized by a reduced Lorentz sym-
metry [6]. The Lorentz violations are generated by a sub-
group of the full Lorentz group, called ISIMð2Þ. The
adoption of this theory is not in contrast to experimental
constraints since it appears to be compatible with all cur-
rent limits of local Lorentz and CPT invariance, confirm-
ing some new physics [6–8]. Some experimental analysis

on the upper bounds of the Lorentz violation are described
in [9].
The combination of Lorentz violations to gravitational

phenomena is not compatible with the geometrical frame-
work of Riemann geometry since general relativity is
applicable only to low-energy descriptions of nature. The
study of relativity violations together with gravitational
phenomena requires a type of space-time geometry which
allows local non-Lorentz invariance while preserving gen-
eral coordinate invariance. A direct consequence of
Lorentz violations is the production of local anisotropies
and we expect any gravitational phenomenon to be affected
by the breaking of classical local flatness (see, for example,
[10,11]). In Finsler geometry all geometrical objects are
direction dependent while preserving the general coordi-
nate invariance [12]. Thus this special type of geometry is a
possible choice for the investigation of geometrodynamics
allowing Lorentz violations [13–17].
The deformation of the group ISIMð2Þ leads to the

construction of a Finslerian line element proposed by
Bogoslovsky (see [18], and references therein). The whole
set of Lorentz transformations are replaced by the de-
formed group of transformations DISIMbð2Þ which is a
subgroup of the Weyl group. The line element ds2 ¼
�ijdx

idxj is no longer preserved under the DISIMbð2Þ
transformations. The line element that is preserved under
these transformations is the non-Riemannian [19]

ds ¼ ð�ijdx
idxjÞð1�bÞ=2ðnkdxkÞb: (1.1)

The vector field n� is interpreted as a ‘‘spurion vector
field’’ and it defines the direction of the ‘‘aetheral’’ mo-
tion’s 4-velocity. The dependence of the metric function on
the vector n� indicates the anisotropic character of space-
time. The parameter b is dimensionless and is restricted by
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various experiments [19,20]. It is inserted into the mass
tensor

mij ¼ ð1� bÞmð�ij þ bninjÞ (1.2)

of every particle coming from a Lagrangian constructed in
[18]. The canonical momenta satisfies the mass-shell con-
dition [�ij ¼ diagðþ1;�1;�1;�1Þ]

�ijpipj ¼ m2ð1� b2Þ
�

nkpk

mð1� bÞ
�
2b=ð1þbÞ

; (1.3)

which upon quantization leads to the Klein-Gordon equa-
tion

h�þm2ð1� b2Þ
� �in�

mð1� bÞ@�
�
2b=ð1þbÞ

� ¼ 0: (1.4)

The dispersion relation (1.3) implies that the relationship
of energy and momentum is affected by the type of the
metric geometry. The aether-drift experiments restrict b
within the very tight limits jbj< 10�10 [19] and the an-
isotropy of inertia implies jbj< 10�26 [20]. The modified
dispersion relation constructed by Gibbons et al. in [18]
has also been reproduced in a Randers-type Finsler space
[21].

We proceed by constructing the geometrical machinery
of space-time using the Finslerian connection and curva-
ture coming from an osculating Riemann metric [12]. The
metric function of the Finsler space is the one prescribed
by Bogoslovsky where the Minkowski metric tensor is
substituted by the Friedmann-Robertson-Walker (FRW)
metric defined in standard cosmology. The derivation of
the gravitational field equations is similar to the one that
appeared in [13]. The Friedmann equation of motion for a
linearized spurion vector field parallel to the fluid flow
lines leads us to a self-accelerated cosmological model.
The kinematical equations of a scalar field are also con-
sidered providing an inflationary solution for the scale
factor.

II. BOGOSLOVSKY’S METRIC APPLIED
TO COSMOLOGY

The effects of local Lorentz violation are likely appli-
cable on cosmological contexts, such as those involving the
cosmological constant, dark matter, and dark energy. The
homogeneous FRW cosmological solutions may acquire
anisotropic corrections, leading to a realistic anisotropic
cosmology complied to the observational data [10].

Bogoslovsky’s metric may shed light on some problems
of modern cosmology which are compatible to local an-
isotropies of the geometrical structures of space-time. We
can construct a geometrical machinery of cosmology by
introducing comoving coordinates to the metric function

Fðx; yÞ ¼ ð�ijy
iyjÞð1�bÞ=2ðnkykÞb: (2.1)

We replace the Minkowskian metric with the Robertson-

Walker one

a�� ¼ diag

�
1;� a2ðtÞ

1� kr2
;�a2ðtÞr2;�a2ðtÞr2sin2�

�
;

(2.2)

where t is the cosmic proper time, r, �, and� the comoving
spherical coordinates, k ¼ 0, �1, and aðtÞ the scale factor
of the expanding volume. The new metric function

Fðx; yÞ ¼ ða��y
�y�Þð1�bÞ=2ðn�y�Þb (2.3)

is a direct result of a coordinate linear transformation [22]

B� ¼ @xi

@x�
Bi (2.4)

and it directly determines the metric of the Finslerian
space-time

f��ðx; yÞ ¼ 1

2

@F2

@y�@y�
ðx; yÞ: (2.5)

This straightforward generalization for curved space-times
and Machian gravitational theories is used [5] to give an
explanation of local anisotropies in terms of geometrical
phase transitions. The consideration of such a metric func-
tion embodies two types of geometries: the dynamics is
described by the Finslerian metric produced by Fðx; yÞ
while all the information about gravity is encoded to the
FRW metric a��. A similar formulation is deduced by

Bekenstein in [23] contemplating a different approach for
Finsler geometry. The variables y� ¼ dx�

dt represent the 4-

velocity components of the fluid flow lines, hence y� ¼
ð1; 0; 0; 0Þ.
A null or timelike spurionic vector field?—The study of

general very special relativity (GVSR) requires the exis-
tence of a null spurionic vector field. However, this pref-
erential direction of ether is most naturally expected to be
tangent to the flow lines of the cosmological fluid like
every primordial vector field [24]. Thus, n� must be par-
allel to the velocity of the comoving observer, i.e.,

n� ¼ �y�: (2.6)

Hence, the spurion vector field becomes of timelike char-
acter at a late time period of the universe with jn�j � 1.
Therefore, it is written in coordinate form

n� ¼ ðnðtÞ; 0; 0; 0Þ (2.7)

with the time component very small. The timelike spur-
ionic vector field does not essentially affect the mass-shell
condition (1.3) since only quadratic terms of n� turn up at
the contractions of canonical momentum p� ¼ m @F

@y� .

The osculating space and the gravitational field equa-
tions.—All the geometrical quantities of Finsler geometry
depend both on coordinates and velocity. However, we can
study the geometrical properties of a Finsler space by
restricting the vector field y� to belong to an individual
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tangent space for a given position coordinate. In such a
case the velocity coordinates are functions of the position;
therefore we can measure distances by using the metric
[12]

g��ðxÞ ¼ f��ðx; yðxÞÞ: (2.8)

This method, known as the osculating Riemannian ap-
proach (for details see [12]), can be specialized for the
tangent vector field yðxÞ of the cosmological fluid flow
lines.

We are interested in producing the Einstein field equa-
tions as in [13]. After calculating the connection and the
curvature for the Riemannian osculating metric g��ðxÞ we
are led to [17]

L�� � 1

2
Lg�� ¼ � 8	G

c4
T��; (2.9)

where all the quantities in (2.9) are functions of ðx; yÞ; y �
yðxÞ. The energy-momentum tensor for the signature
ðþ;�;�;�Þ is defined to be

T�� ¼ �Pg�� þ ð�þ PÞy�y�; (2.10)

where P is the pressure and � is the energy density of an
ideal cosmic fluid.

The dispersion relation (1.3) is also modified after plug-
ging the FRW metric and the vector n� into (1.1).

III. THE FRIEDMAN EQUATION FOR A
LINEARIZED VECTOR FIELD

The calculation of the curvature and the Ricci tensor
leads to the construction of the Friedmann equation of
motion for a locally anisotropic universe. We can approxi-
mate the 0-component of the primordial-spurionic vector
field n� at first order approach

nðtÞ � Atþ B: (3.1)

The special form (3.1) is a Taylor type approximation

nðtÞ ¼ nðt0Þ þ _nðt0Þðt� t0Þ þOððt� t0Þ2Þ; (3.2)

where

A ¼ _nðt0Þ; B ¼ nðt0Þ � t0 _nðt0Þ: (3.3)

Since all of the other components of the spurionic vector
field vanish, only the diagonal elements of the metric and
the Ricci tensor survive. Under the assumption of a weak
Lorentz violation we can restrict our parameter A to be
small enough

A ¼ _nðt0Þ ! 0 (3.4)

considering an almost constant value of the field.
Connection and curvature.—By virtue of the metric

(2.8), we are able to calculate the Christoffel symbols
and the curvature (see Appendix A). The Ricci tensors
L�� can be approximated for b ! 0, A ! 0, and this

implies the following components:

L00 ¼ 3
€a

a
þ 3

Ab

B

_a

a
þOðA2Þ;

L11 ¼ �a _aþ 2 _a2 þ 2k

1� kr2
þ 5A

B
b

a _a

1� kr2
þOðA2Þ;

L22 ¼ �r2ða €aþ 2 _a2 þ 2kÞ � 5A

B
br2a €aþOðA2Þ;

L33 ¼ �r2ða €aþ 2 _a2 þ 2kÞsin2�� 5A

B
br2a €asin2�

þOðA2Þ: (3.5)

The extra terms appearing at the Ricci components are the
dominant ones since they are multiplied by the parameter
Ab=B, where B is necessarily small to enable the curvature
additional terms to be measurable (jn�j � 1). Following
the usual procedure we can construct the equation of
motion for the scale factor aðtÞ [25]
�
_a

a

�
2 þ k

a2
þ 2

A

B
b
_a

a
¼ 8	G

3

�
�� 2

A

B
bP

�
tþ B

A
lnB

��
:

(3.6)

The (3.6) form of the Friedmann equation may not be well
suited for late time acceleration since the pressure term is a
sign of an early universe regime, where the linearization
approach possibly breaks down. As the universe evolves
we expect the anisotropic nature of space-time to be con-
verted to a smoother structure. Therefore the linearized
approach of the present model is more convenient for a
matter-dominated phase.
The equation of motion for a matter-dominated uni-

verse.—Taking into account that there is no pressure in a
matter-dominated universe we can obtain the following
equation of motion:

�
_a

a

�
2 þ k

a2
þ 2

A

B
b
_a

a
¼ 8	G�

3
: (3.7)

We emphasize the extra contribution generated by the
geometrodynamical term 2 A

B b
_a
a . If the sign of the parame-

ter Ab=B is fixed up to be negative, the extra term at the
equation of motion (3.7) will create a self-accelerating
cosmology. Despite the fact that the additional term creates
acceleration and might replace dark energy contributions,
it cannot give an answer to the question why the vacuum
does not gravitate? This difficulty gives rise to the compli-
cated task of distinguishing modifications of curvature
from dark energy [26]. However, the extra accelerating
term can be contemplated as a relic left back by an earlier
phase where the Finslerian geometrodynamics was char-
acterized by a nonlinear nature [nðtÞ, bðtÞ relatively large].
The same Friedmann equation is also produced for the
DGP cosmology for a spatially flat space-time with a
different continuity equation [27]. We also remark that
the substitution zt ¼ 2 A

B b reveals a correspondence of

the present model to the FRW cosmological model de-
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scribed in [13] constructed by a Randers-Finsler–type met-
ric function.

Matter density and continuity equation.—The continuity
equation for the cosmological fluid of the universe can be
directly produced by the conservation law of the energy-
momentum tensorr�T

�� ¼ 0, where the covariant deriva-
tive comes from the connection of the osculating Riemann
space-time. The zero component of the conservation law
r�T

0� ¼ 0 implies

_�þ
�
2A0

00 þ
X3
i¼1

Ai
0i

�
�þ _Pð1�g00Þ

þP

�
ð1� g00Þ

�
2A0

00 þ
X3
i¼1

Ai
0i

�
þX3

i¼1

giiA0
ii � _g00

�
¼ 0:

(3.8)

If we make use of the equation of state w ¼ P=� and the
connection components calculated in Appendix B, the
approximation for A ! 0 leads to

_�þ 3
_a

a
�þ 5

Ab

B
�þ w

wþ 2Ab=B � tþ 2b lnB

��½t; a; _a;b; A; B�� ¼ 0; (3.9)

where � is a function of time, the parameters, and the
unknowns a, _a. In the case of a matter-dominated universe,
where w ¼ 0, the differential equation can be integrated
and gives back the solution

�ðtÞ / a�3ðtÞ exp
��5Ab

B
t

�
(3.10)

which is in alliance to the one found in [13].
The Friedman equation in terms of � ’s.—The whole

picture of the cosmological model can be effectively de-
picted by exploring the relation of the� parameters. Using
the usual definitions of the Hubble parameter and the �
parameters, we can rewrite (3.7) to the form

H2 þ k

a2
þ 2

Ab

B
H ¼ 8	G�

3
(3.11)

which implies the equation

�M þ�K þ�X ¼ 1; (3.12)

where

�X ¼ �2
A

BH
b (3.13)

is the density parameter produced by the extra term of the
Friedmann equation. The term�X might give a significant
contribution to the acceleration compared to the dark en-
ergy parameter �� ’ 0:7.

Order of magnitude of unknown parameters.—Since the
rhs of (3.11) is positive, we restrict H2 > j2 Ab

B Hj. We can

estimate the order of magnitude of the quantity Ab
B in case it

dominates the expansion over �, where

Ab

B
��c2

6H
: (3.14)

Given a typical value of the Hubble parameter H0 ’
71 km=s=Mpc� 10�18 sec�1 and the cosmological con-
stant �� 10�57 cm�2 [24] we deduce��������

Ab

B

���������10�19 sec�1 (3.15)

measured in Hubble units.

IV. ENERGY EVOLUTION

The calculation of the connection components coming
from the osculating metric (2.8) can give us a picture of
how the energy of a particle is affected by the universe
expansion and the extra parameters introduced into the
metric function (2.1).
Energy of a massless particle.—The 4-momentum of a

massless particle is defined by P� ¼ dx�

d� , where P0 ¼ E is

the energy of the particle. The parameter � is the evolution
parameter of the particle’s path described by the geodesic
equation

d2x�

d�2
þ A�


�

dx


d�

dx�

d�
¼ 0; (4.1)

and the zero component of the geodesic equation yields
[28]

E
dE

dt
¼ �A0


�P

P�

¼ �Ab

B
ðE2 � aijP

iPjÞ þ ð1� bÞ _a

a
aijP

iPj: (4.2)

The particle is massless, m ¼ 0, and thus the dispersion
relation (1.3) is simplified to the usual form E2 ¼
�aijP

iPj; hence (4.2) implies

1

E

dE

dt
� ðb� 1Þ _a

a
¼ � 2Ab

B
þOðA2Þ (4.3)

which can be integrated directly and gives back

EðtÞ / ab�1ðtÞ exp
�
� 2Ab

B
t

�
: (4.4)

The solution (4.4) possesses an additional redshift effect
due to the Lorentz violations inherited by the parameter b
and the spurion vector field. The solution behaves as EðtÞ /
1=aðtÞ if the extra terms at the equation of motion (3.7) are
negligible.
Energy of a massive nonrelativistic particle.—We con-

sider a massive nonrelativistic particle of mass m traveling
on a geodesic of the space-time

d2x�

d�2
þ A�


�

dx


d�

dx�

d�
¼ 0: (4.5)

The 4-momentum of the particle is defined in natural units
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(c ¼ 1) as P� ¼ mdx�

d� , where � is the particle’s proper

time. The chain rule applied to the derivative d
d� implies

d

d�
¼ E

m
� d
dt

: (4.6)

In virtue of (1.3) the zero component of (4.5) leads to the
differential equation for the energy

E � dE
dt

¼ �Ab

B
E2 (4.7)

since aijP
iPj=m2 ! 0 for a massive nonrelativistic parti-

cle. The integration of the differential equation implies

E ¼ E0 exp

�
� 2Ab

B
t

�
: (4.8)

We can calculate the effect of geometrodynamics by mea-
suring the amount of time for a variation of energy 0:1%E0

and find t� 1015 sec , where we used the Ab
B estimation

from (3.15).

V. THE GENERALIZATION OF THE
KLEIN-GORDON EQUATION

Since the geometry of space-time is determined by the
process of osculating a Finslerian space to a Riemannian
one, the metric is only position dependent. As long as the
velocity is fixed up to be y � yðxÞ, a Riemannian metric is
defined. Therefore we can apply the general covariance
principle and construct a curved version of the Klein-
Gordon equation (1.4)

h�þm2ð1� b2Þ
� �in�

mð1� bÞ r�

�
2b=ð1þbÞ

� ¼ 0: (5.1)

The r� operator is the covariant derivative coming from

the A
�
�� connection (see Appendix B), and the box operator

is

h� ¼ g��r�r�� ¼ g00 €�� g��A0
��

_� (5.2)

and n� is the spurion defined in (2.7) and (3.1). We impose
the scalar field � � �ðtÞ due to the assumption of homo-
geneity with respect to weak Lorentz violations. After
expanding for small values of b, we end up with the
following approximation:

h� ¼
�
1� 2Ab

B
t

�
€�þ 3H _�

�
1� 2Ab

B
tþ 2Ab

3BH

�

þOðA2Þ: (5.3)

A small A and b approximation for the m2ð1� b2Þ�
ð �in�

mð1�bÞ r�Þ2b=ð1þbÞ operator

m2ð1� b2Þ
� �in�

mð1� bÞ r�

�
2b=ð1þbÞ

�

¼ m2�þ 2m2bðD̂�Þ þ 2bA

B
t �m2�

þ 2b lnB �m2�þOðA2Þ (5.4)

leads to the kinematical equation of the scalar field

€�þ 3

�
H þ 2Ab

3B

�
_�þm2�

�
1þ 4Ab

B
tþ 2b lnB

�

þOðA2Þ ¼ 0; (5.5)

where 2m2bD̂� ! 0 since b ! 0 is faster than the loga-

rithmic term D̂�. The time derivatives of the scalar field
come from the covariant version of the box operator;
therefore the potential of the scalar field is

Vð�; tÞ ¼ 1

2
m2�2

�
1þ 2

A

B
btþOðA2Þ

�
: (5.6)

We can eliminate H if we combine the Klein-Gordon
equation with the Friedmann equation of motion producing
a differential equation for the scalar field �.
The energy-momentum tensor is expressed by [29]

T

� ¼ g

�;
�;� � ð12g���;��;� � Vð�; tÞÞ�


� (5.7)

and determines directly the energy density and the pressure

� ¼ 1
2g

00 _�2 þ V; P ¼ 1
2g

00 _�2 � V: (5.8)

Thus we can insert (5.8) into (3.6) and find the Friedmann
equation of motion

H2 þ 2Ab

B
H¼ 8

3
	G

�
1

2
_�2ð1� 2b lnBÞ

þ 1

2
m2�2

�
1þ 2b lnBþ 4

Ab

B
t

�
þOðA2Þ

�
:

(5.9)

The elimination of H from (5.5) and (5.9) yields

€�þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
12	G

p ð _�2 þm2�2Þ1=2 _�þm2�þ Ab

B
� fðt; �; _�Þ

þ 2b lnB � gðt; �; _�Þ þOðA2Þ ¼ 0; (5.10)

where

fðt; �; _�Þ ¼ � _�þ 4m2t�

þ 2m2t�2 _�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12	G

p ð _�2 þm2�2Þ�1=2

(5.11)

and

gðt; �; _�Þ ¼ m2�� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12	G

p ð _�2 þm2�2Þ�1=2

� ð _�2 �m2�2Þ _� (5.12)

GENERAL VERY SPECIAL RELATIVITY IN FINSLER . . . PHYSICAL REVIEW D 79, 104011 (2009)

104011-5



are functions of � and its first derivative (for details, see,
e.g.,[29]).

The limit j _�j � m�.—In this special case the potential
is much larger compared to the kinetic energy; thus we can
derive the simplified differential equation

€�þm2

�
1þ 4

Ab

B
tþ 2b lnB

�
� ¼ 0: (5.13)

The solution of (5.13) is expressed with the aid of Airy
functions [30]

�ðtÞ ¼ C1Aið�Þ þ C2Bið�Þ; (5.14)

where

� ¼
�
�2m

B

Ab

�
2=3

�
� 1

4
� Ab

B
t� b

2
lnB

�
: (5.15)

The argument of the Airy function is fixed up as � �� 1
4 �

ð�2m B
AbÞ2=3, given the small values of the parameter Ab

B ;

hence we can regard � to be independent of time. We can
approximate the function�ðtÞ using the asymptotics of the
Airy function after taking into consideration the negative
sign of argument � [30]. The substitution of (5.14) to the
Friedmann equation (5.9) yields

aðtÞ ¼ exp

�
�Ab

B
t

�
exp½hðtÞ�; (5.16)

where

hðtÞ ¼ 2

3
C3ð�Þ1=2

�
1þ Ab

B
tþ 2b lnB

�
3=2

: (5.17)

Given the positive sign of €aðtÞ in (5.16), the solution
secures an inflationary phase for a time interval where
the high potential takes over the expansion.

VI. DISCUSSION

The essential result of our approach is the adoption of a
Finslerian metric function applied to cosmology, coming
from Cohen and Glashow’s very special relativity [6]. The
calculation of Einstein’s field equations for an osculating
Riemannian space-time gives back a Friedmann equation
for a self-accelerating universe under the assumption that
the sign of the extra parameter is negative. The estimation
of the energy evolution implied by the modified geodesic
equations may lead to experimental constraints for the
VSR theory using observational data from the large scale
structure. The specific limit for a massive nonrelativistic
object implies a small variation of energy within a period
of time close to the age of the universe restricting our
calculations within the acceptable observational limits
even in the case where the model wins totally over the
dark energy.

The construction of the kinematical equation of a scalar
field [18] with the aid of the Finslerian metric (2.8) and the
Friedmann equation (3.7) can lead to a better understand-
ing of the nature of the Finslerian gravitational field.
Indeed, the Lorentz violations provide a modified potential
for the curved Klein-Gordon equation (5.5) affecting the
validity of the strong energy conditions. Given a large
potential compared to the kinetic energy, the solution of
the scale factor implies an inflating phase of the expansion
depending on the GVSR assumptions inherited by the
metric function (2.1). An interesting task for future work
is the study of the model’s early time behavior producing
an inflationary solution without the aid of a scalar field,
considering stronger effects of Lorentz symmetry break-
ing. A similar inflationary scenario has also been produced
by gravitational mechanisms, as a direct result of Lorentz
violations not depending on the vacuum’s fluctuations and
grand unified theories [31].
An explanation of acceleration lies on the fact that dark

energy acts as a repulsive force introducing a cosmological
constant at the Einstein field equations. In such a case the
cosmological constant is a finely tuned ground state of a
potential implying negative pressure at the equations of
motion. A universe with pressure free matter can be self-
accelerating under the restriction of a modified Ricci cur-
vature which imposes an asymptotically de Sitter geometry
of space-time. The machinery of osculating a Finslerian
space to a Riemannian one leads at first order approach
directly to an asymptotically de Sitter universe. However,
the classification of the present model as a low curvature
modification (e.g., �CDM, DGP) needs to be proven. This
is a vital task since all such cosmological models reproduce
Newtonian gravity locally [32].
A possible estimation of the spurionic vector field (from

high energy physics or other methods), within the limits of
the present cosmological model, can set forth an answer to
the vital question about the small value of b posed by
Gibbons et al. [18], connecting Lorentz violations to the
dark energy problem. A further investigation of the present
model taking into account the calculation of cosmological
perturbations and the cosmic microwave background data
may relate Lorentz violations to the problem of large angle
anisotropies and inhomogeneities.
The introduction of Finsler geometry as a geometry of

space-time opens up a new direction toward the study of
geometric phase transitions. The concept of geometric
phase transitions generated by Bogoslovsky’s line element
(1.1) has already been studied in [5] for the special case of
a flat Finslerian space-time. An interesting generalization
can be applied to a curved Finsler space for a better under-
standing of how Lorentz violations, with a varying b �
bðtÞ, may evolve as the universe expands. Since Lorentz
violations produce anisotropies, it is natural for them to
‘‘dilute’’ to thermal energy and a large amount of entropy
[24]; therefore the special limit of the present model will be
asymptotically recovered.
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APPENDIX A: THE METRIC g��

The definition of the Finsler metric function (2.1) im-
plies the calculation of the space-time’s metric. Assuming
the comoving character of the spatial coordinates and the
vector field tangent to the cosmic flow lines, the computa-
tion of the metric components of the osculating Riemann
space-time are simplified to the form [i, j ¼ 1, 2, 3 and a��

is the Robertson-Walker metric (2.2)]

g00 ¼ 1þ 2 lnðAtþ BÞbþOðb2Þ;
gij ¼ aij þ aij½2 lnðAtþ BÞ � 1�bþOðb2Þ;

(A1)

which implies the connection A
�
�� ¼ g�� 1

2 �ðg��;� þ g��;� � g��;�Þ and the curvature L�
�
� ¼

A
�
��;
 � A

�
�
;� þ A

�
�
A�

�� � A
�
��A

�
�
. The Ricci tensor

components (3.5) are calculated for the limit A ! 0.

APPENDIX B: THE CONNECTION
COMPONENTS A�

��

A0
00 ¼

Ab

B
þOðA2Þ;

A1
01 ¼ A2

02 ¼ A3
03 ¼

_a

a
þ Ab

B
þOðA2Þ;

A0
ij ¼ �ð1� bÞ _a

a
aij � Ab

B
aij þOðA2Þ;

A1
11 ¼

kr

1� kr2
; A1

22 ¼ �rð1� kr2Þ;

A1
33 ¼ �rsin2�ð1� kr2Þ; A2

12 ¼ A3
13 ¼

1

r
;

A2
33 ¼ � sin� cos�; A3

23 ¼ cot�:

(B1)
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