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We investigate the black hole thermodynamics in a ‘‘deformed’’ relativity framework where the energy-

momentum dispersion law is Lorentz-violating and the Schwarzchild-like metric is momentum-dependent

with a Planckian cutoff. We obtain net deviations of the basic thermodynamical quantities from the

Hawking-Bekenstein predictions: actually, the black hole evaporation is expected to quit at a nonzero

critical mass value (of the order of the Planck mass), leaving a zero temperature remnant, and avoiding a

spacetime singularity. Quite surprisingly, the present semiclassical corrections to black hole temperature,

entropy, and heat capacity turn out to be identical to the ones obtained within some quantum approaches.
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I. INTRODUCTION

Black holes are very peculiar physical systems since
they are fully described only by classical theories, namely,
general relativity and thermodynamics, as well as quantum
gravity theories. The merging between the above theories
is required, in particular, for primordial and for micro-
scopic (‘‘mini’’) black holes rather than for stellar or
galactic supermassive ones: this because of the extreme
smallness of the Planck scale at which classical and quan-
tum approaches appear to carry quite different predictions.

According to semiclassical Hawking-Bekenstein theory
(HB) [1], which takes into account the quantum effects due
to the very strong gravitational field on the black hole
surface, we have emission of radiation out from the black
hole as it becomes a black body at a given temperature,
besides a negative-energy flux from the surface towards the
interior of the black hole. As a consequence the total
energy decreases in time, while the temperature increases
more and more. This can be inferred from the following
qualitative argument based on the Heisenberg indetermi-
nation relation. The energy of a photon [2] with a wave-
length equal to the black hole radius can be assumed of the
order of 1=RS, RS being the Schwarzchild radius: we then
expect a temperature of the order of 1=GM (hereafter @ ¼
c ¼ kB ¼ 1). Actually, the HB calculations lead to the
following relation between black hole mass and tempera-
ture:

T ¼ �

2�
¼ 1

8�GM
� 10�7

�
M�
M

�
½K�; (1)

where � is the ‘‘surface gravitation’’ and M� � 1054 TeV
is the solar mass. In the HB picture the evaporation goes on
until the initial mass of the black hole is converted into
radiation, and the process ends with an explosion since, as
the temperature, also the mass loss rate dM=dt goes to

infinity. Besides the unphysical loss rate divergence, the
total evaporation predicted by the HB theory entails other
serious problems and inconsistencies such as the baryon
and lepton number nonconservation, the ‘‘information par-
adox,’’ and the microscopic origin of the entropy [3,4].
A complete understanding of those problems is only

possible within the framework of a quantum theory of
gravity. However we think that the effective quantum
behavior can be (at least qualitatively) predicted as well
within a semiclassical theory such as the one we are going
to propose in the next sections.

II. SPACETIME ENDOWED WITH A
MOMENTUM-DEPENDENT METRIC

In recent times ultrahigh energy Lorentz symmetry vio-
lations have been investigated, both theoretically and ex-
perimentally, by means of quite different approaches,
sometimes extending, sometimes abandoning the formal
and conceptual framework of Einstein’s special relativity.
Hereafter, for simplicity, we shall use the term ‘‘violation’’
of the Lorentz symmetry, but in some of the theories
mentioned below—e.g., in the so-called ‘‘deformed’’ or
‘‘doubly’’ special relativity (DSR), where deformed 4-
rotation generators are considered—although special rela-
tivity does not hold anymore; an underlying extended
Lorentz invariance does exist. The most important conse-
quence of a Lorentz violation is the modification of the
ordinary momentum-energy dispersion law E2 ¼
p2 þm2, at energy scales usually assumed of the order

of the Planck energy EP ¼ MPc
2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@c5=G
p

, by means of
additional terms which vanish in the low momentum limit.
Lorentz-breaking observable effects appear in grand uni-
fication theories [5], in string theories [6], in quantum
gravity [7], in foamlike quantum spacetimes [8]; in space-
times endowed with a nontrivial topology or with a discrete
structure at the Planck length [9,10], or with a (canonical or
noncanonical) noncommutative geometry [11–13]; in the
so-called ‘‘extensions’’ of the standard model incorporat-
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ing breaking of Lorentz and CPT symmetries [14]; in
theories with a variable speed of light or variable physical
constants. In particular, the M-theory [6], the loop quantum
gravity [9,10,15] and the causal dynamical triangulation
[16] lead one to postulate an essentially discrete and quan-
tized spacetime, where a fundamental mass-energy scale
naturally arises, in addition to @ and c. An intrinsic length
is directly correlated to the existence of a cutoff in the
transferred momentum necessary to avoid the occurrence
of ‘‘UV catastrophes’’ in quantum field theories. Moreover,
some authors suspect that the Lorentz symmetry breaking
may play a role in extreme astrophysical phenomena as,
e.g., the observation of ultrahigh energy cosmic rays with
energies [17] beyond the Greisen-Zatsepin-Kuzmin [18]
cutoff, and of gamma ray bursts with energies beyond
20 TeV originated in distant galactic sources [19].

A natural extension of the standard dispersion law can
be put in most cases under the general form

E2 ¼ p2 þm2 þ p2fðp=MÞ; (2)

where M indicates a (large) mass scale characterizing the
Lorentz violation. By using a series expansion for f, under
the assumption that M is a very large quantity, we can
consider only the lower order nonzero term in the expan-
sion:

E2 ¼ p2 þm2 þ �p2

�
p

M

�
n
: (3)

The most recurring exponent in the literature on Lorentz
violation is the lowest one, i.e. n ¼ 1 [20]:

E2 ¼ p2 þm2 þ �
p3

M
: (4)

An interesting theoretical approach to Lorentz symme-
try violation is found in DSR [12,13,21] working in
k-deformed Lie-algebra noncommutative (k-Minkowski)
spacetimes, in which both the Planck scale and the speed
of light act as characteristic scales of a 6-parameter group
of spacetime 4-rotations with deformed but preserved
Lorentz symmetries. In place of the ordinary constraint

E2 � p2 ¼ m2

in such theories the Lorentz-violating (LV) modified dis-
persion law can be put in the form

E2f2ðEÞ � p2g2ðEÞ ¼ m2: (5)

For example in Ref. [12], where the Lie algebra is given by
½xi; x0� ¼ i�xi, ½xi; xk� ¼ 0 (� being a very small length of
the order of M�1

P ), the dispersion relation

E2 ¼ p2 þm2 þ �Ep2 (6)

can be recovered taking

f2ðEÞ ¼ 1 g2ðEÞ ¼ 1þ �E: (7)

In some DSR theories [22–25] a modified set of special

relativity principles is assumed: (a) the Galilean relativity
principle; (b) the speed of light is energy-dependent, but in
the small energy limit goes to the universal constant c for
all inertial observers; (c) also the Planck energy-
momentum is an absolute quantity, independent of the
given inertial frame where it is measured. Let us quote
some typical metric form factors appearing in the litera-
ture: in [26] it is assumed f ¼ 1, g ¼ ½1� að�EÞn��1; in
[27] f ¼ 1, g ¼ ½1� að�EÞn�; in [22–24] f ¼ 1, g ¼
ð1þ �EÞ�, and in [25] f ¼ 1, g ¼ 1þ ð�EÞ�, with � 2
<. The above DSR theories have been generalized to
curved spacetimes: this is the case of the so-called ‘‘doubly
general relativity,’’ also called ‘‘rainbow’s gravity’’ [28].
The resulting metric depends on both probe energy and
gravity field, with straightforward modifications to
Einstein equations for field and matter.
Let us now propose a more symmetric form of constraint

(5):

E2f2ðEÞ � p2g2ðpÞ ¼ m2: (8)

We can easily see that if we make the most simple choice

f2ðEÞ ¼ 1 g2ðpÞ ¼ 1� �p; (9)

where � ’ M�1
P is the fundamental length scale of an

underlying LV theory, we do recover the first order (n ¼
1) LV dispersion law (4). Notice that, because of the
negative term ��p, the energy vanishes when p ¼ 1

� ’
MP. Hence quantity 1=�, in a sense, plays the role of the
‘‘maximal momentum’’ corresponding to the ‘‘granular’’
nature of space predicted in many of the models quoted in
the beginning of this section. Equation (8) can be equiv-
alently written as

���p
�p� ¼ m2 (10)

with ��� diagonal in flat spacetime and [29]

�00 ¼ fðEÞ ¼ 1 �ik ¼ �gðpÞ	ik ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �p

p
	ik:

(11)

Let us stress that, at variance with other metrics adopted in
the literature (such as the ones previously quoted), metric
(11) becomes singular at the Planck momentum. As we
shall show, the presence of a very Planckian cutoff in the
theory can overcome some of the above-mentioned prob-
lems when applying general relativity at the Planck scale.
Just as the properties of a crystal can depend on the

energy of phonons propagating in it, analogously our
spacetime geometry can depend on the moving particle
energy. At low energies the phonons cannot see the discrete
structure of crystals and behave like ordinary photons. At
high energies, on the contrary, they become highly sensi-
tive to the medium properties and exhibit a rather exotic
behavior. We therefore expect that, like phonons, the
Hawking radiation high energy photons should behave
differently from the photons of the ordinary black body
radiation. In the next section we shall study some conse-
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quences of metric (11) on the thermodynamical evolution
of a black hole.

III. MODIFIED BLACK HOLE
THERMODYNAMICS

In general relativity the metric for a nonrotating, un-
charged, spherical black hole, endowed with a mass M, is
the Schwarzchild one:

ds2 ¼ �
�
1� 2GM

r

�
dt2 þ

�
1� 2GM

r

��1
dr2 þ r2d�;

(12)

while applying Eq. (11) we have the following modified
metric [28]

ds2 ¼� 1

f2ðEÞ
�
1� 2GM

r

�
dt2 þ 1

g2ðpÞ
��

1� 2GM

r

��1
dr2

þ r2d�

�
: (13)

As said above, according to the HB theory the black hole
temperature can be taken equal to �

2� , where � is the

surface gravity. Because of the chosen metric, the black
hole surface gravity and temperature do depend on the
probe energy:

� ¼ � lim
r!RS

ffiffiffiffiffiffiffiffiffiffiffi
�grr

gtt

s
ðgttÞ0
grr

¼ gðpÞ
fðEÞ

1

4GM
; (14)

T ¼ �

2�
¼ gðpÞ

fðEÞ
1

8�GM
: (15)

Hence, with our choice for fðEÞ and gðpÞ, we get

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �p

p
8�GM

: (16)

Let us apply the ordinary uncertainty relation to photons
near the event horizon:

p ’ 	p� 1

	x
� 1

4�Rs

¼ 1

8�GM
: (17)

By inserting the previous equation in (16) we find

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �p

p
8�GM

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

8�GM

q
8�GM

: (18)

Being p � 1=� we shall consider only M � Mcr � �
8�G .

For M � Mcr we can approximate the black hole tem-
perature as follows:

T � 1

8�GM

�
1� 1

2

Mcr

M
� 1

8

�
Mcr

M

�
2 þ O

�
M3

cr

M3

��
; (19)

while, when M approaches Mcr, we can assume

T � 1

8�GM3=2
cr

½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�Mcr

p þM�ð1=2Þ
cr OðM�McrÞ�: (20)

Therefore the black hole temperature, by contrast with the
HB theory, does not diverge at M ¼ 0, but has a finite
maximum at M ¼ 3

2Mcr (Fig. 1).

Assuming that the first principle of thermodynamics is
still valid, namely dQ ¼ dM ¼ TdS, we can obtain the
intrinsic entropy by inserting the temperature (15) into this
relation, and then integrating

S ¼
Z dM

T
�

Z 8�GMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Mcr

M

q dM

¼ 2�Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Mcr

M

q �
2M2 þMMcr � 3M2

cr

þ 3M2
cr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Mcr

M

s
arcsinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

Mcr

� 1

s �
: (21)

Of course, for � ! 0 we recover the classical HB result

lim
�!0

S ¼ 1

4
A; (22)

where A indicates the horizon area 16�GM2. The same
classical behavior (quadratic in M), is obtained for very
heavy black holes, i.e. for M � Mcr. Expanding Eq. (21)
for M�Mcr we obtain (see Fig. 2)

S� 4�GM3=2
cr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�Mcr

p
: (23)

Then the black hole entropy reaches its minimum (zero)
together with the black hole mass, i.e., for the critical value
Mcr.
For the sake of comparison let us recall that, still starting

from modified dispersion laws and generalized Heisenberg
uncertainty relations, some authors [30] obtain in the en-
tropy formula a term logarithmically dependent on the

FIG. 1. Temperature as a function of the mass (compared with
the standard HB plot).
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black hole mass, a result found also in some string theory
and loop quantum gravity computations.

Finally, let us calculate the black hole heat capacity. For
M�Mcr we get

C ¼ T
@S

@T
¼

�
@T

@M

��1 � 16�G
M5=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�Mcr

p
3Mcr � 2M

: (24)

Notice (Fig. 3) that the heat capacity diverges at M ¼
3
2Mcr, corresponding to the maximum black hole tempera-

ture, and vanishes at the minimum mass M ¼ Mcr.

IV. CONCLUSIONS

We have studied the black hole evaporation applying a
momentum-dependent metric, corresponding to the
lowest-order (� p3) extension of the ordinary energy-
momentum law dispersion. The HB inverse proportionality
relation between mass and temperature is recovered only
for early stages of the evaporation process; while in the
final stage mass and temperature decrease together so that
at the end we have a cold ‘‘extremal’’ black hole endowed
with a critical mass M ¼ Mcr of the order of the Planck
mass. Correspondingly the black hole entropy reaches its
minimum. At variance with the standard predictions, we
also find that atM ¼ 3

2Mcr the temperature reaches a finite

maximum (of the order of the Planck temperature) and the
heat capacity diverges.

Some recent theoretical [31–33] pictures of the black
hole thermodynamics and evaporation, which take into

account quantum effects expected when the energy scale
approaches the Planck energy (that is, soon before the total
collapse), result in avoiding undesired divergences and
spacetime singularities. In [32] Bonanno and Reuter study
the quantum gravity effects for a spherical black hole
assuming a ‘‘running’’ Newton constant G ¼ GðkðrÞÞ ob-
tained from the evolution for the effective scale-dependent
gravitational action, by means of exact renormalization
group equations. Using the ‘‘Einstein-Hilbert truncation
method’’ they find an exact, nonperturbative solution to
the evolution equation for GðkÞ. Actually, the quantum
computations performed by those authors and the present
semiclassical analysis lead to the same physical predic-
tions. As a matter of fact, the behaviors of temperature,
entropy, and heat capacity as functions of the mass ob-
tained in Ref. [32] result to be (also analytically) identical
to the ones found in this paper, then entailing a nonzero-
mass zero-entropy T ¼ 0 remnant as well. From direct
comparison between Ref. [32] and the present theory we
derive, as expected, that our mass scale � is just of the
order of the Planck mass.
We can conclude that, inside a classical noncommutative

spacetime scenario which, as discussed in Sec. II, appears
physically plausible on the grounds of various theoretical
and experimental arguments, we have obtained a reliable
picture of the black hole thermodynamics which over-
comes some unphysical features of the HB theory: thus
encouraging further theoretical studies in this direction.
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Kostelecký, and C. Lane, Phys. Rev. Lett. 84, 1098
(2000); 84, 1381 (2000); D. Bear, R. E. Stoner, R. L.
Walsworth, V.A. Kostelecký, and C. Lane, Phys. Rev.
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