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The Penrose inequality has so far been proven in cases of spherical symmetry and in cases of zero

extrinsic curvature. The next simplest case worth exploring would be nonspherical, nonrotating black

holes with nonzero extrinsic curvature. Following Karkowski et al.’s construction of prolate black holes,

we define initial data on an asymptotically flat spacelike 3-surface with nonzero extrinsic curvature that

may be chosen freely. This gives us the freedom to define the location of the apparent horizon such that the

Penrose inequality is violated. We show that the dominant energy condition is violated at the poles for all

cases considered.
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I. INTRODUCTION

The Penrose inequality is a conjectured upper bound
relating the area of a black hole to the total mass of the
spacetime. Should it ever be generally proven, wewould be
able to make stronger assumptions when studying the
general properties of classical black holes and modelling
gravitational collapse. Conversely, a carefully constructed
counterexample could serve to invalidate the Cosmic
Censorship Conjecture [1,2]. Either way, a deeper under-
standing of the Penrose inequality will prove fruitful.

In studying the evolution of a black hole, the object of
interest is frequently the trapping horizon. This is a 3-
surface consisting of the outermost, continuously evolving
trapped surface. As matter falls through and becomes
trapped inside the black hole, the trapping horizon will
expand until the black hole runs out of food and the trapped
surface becomes an event horizon. The area of a trapped
surface at any time is therefore smaller than the area of the
event horizon [3].

It is handy to discuss the properties of trapped surfaces
rather than event horizons, since the trapped surfaces are
locally defined and can be calculated at any time during the
evolution, while defining event horizons requires informa-
tion about the global causal structure of the spacetime.
Since a host of different initial configurations of matter
might eventually evolve into the same black hole, it is the
trapping horizon which contains all the interesting infor-
mation concerning the process of collapse.

The Penrose inequality provides an upper bound on the
area of an evolving apparent horizon AH, given the total
mass MADM of the spacetime [1–7]:

MADM �
ffiffiffiffiffiffiffiffiffi
AH

16�

s
:

This inequality is useful since both AH and MADM can be
calculated using only the given initial information on a

spacelike hypersurface. Alternatively, generating counter-
examples to this potential physical ‘‘law’’ does not require
extensive numerical simulation.
This inequality has been proven in a couple of special

circumstances: in the case where the spacetime is spheri-
cally symmetric [4–6], and in the time symmetric (zero
extrinsic curvature) case [8–10]. The search for violations
of the Penrose inequality must therefore focus on space-
times that are neither. The simplest compact, nonspherical
horizon we could consider would be a prolate spheroid.
The idea that prolate collapse could be the key to violating
the Penrose inequality or cosmic censorship is commonly
attributed to Thorne [11] (as a violation of the Hoop
Conjecture) and has been gaining popularity [12].
Barrabès, et al. [7] explored the subject by building

models consisting of cylindrical or prolate null shells
collapsing onto a Minkowski vacuum; and then determin-
ing the conditions in which the outer surface of the shell
would become a marginally trapped surface. In this way,
they constructed prolate, rectangular, and ‘‘puck’’ shaped
apparent horizons. All of their models satisfied the Penrose
inequality. Gibbons [13] later showed that their results
were generally true for this type of setup (see also [14]).
Jaramillo, Vasset and Ansorg [15] perturbed the Kerr

solution and examined the effects upon the ratio between
the mass and the area of the apparent horizon. Karkowski
and Malec [16] examined prolate and oblate black holes on
conformally flat hypersurfaces. The Penrose inequality
was consistently satisfied by all models investigated.
Finally, Karkowski, Malec and Świerczyński [17]

looked at conformally and asymptotically flat prolate or
oblate metrics on the spacelike hypersurface �. They then
constrained their hypersurface to have zero extrinsic cur-
vature, and examined the resulting apparent horizons. The
Penrose inequality was satisfied for all of their models, a
finding consistent with the proof of the Penrose inequality
for time symmetric initial data [8].
In this paper, we attempt to find counterexamples to the

Penrose inequality by supposing first that the apparent
horizon of a black hole has a prolate spheroidal shape;*v5pv3@unb.ca
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and then, that our initial geometry has a nonzero extrinsic
curvature. Once we have constructed a solution which
violates the Penrose inequality, we show that while the
dominant energy condition is satisfied about the equator, it
is violated at the poles.

II. BACKGROUND

A. Hamiltonian formalism

General relativity can be rewritten in the Hamiltonian
formalism in terms of a spacelike 3-surface�with a metric
gij, a second fundamental form Kij, an initial energy

density � and a momentum flux Ji. These four objects
are then evolved in time, resulting in a 4-dimensional
spacetime. The initial data is constrained by the Einstein
Constraint Equations:

R3 ¼ 16��þ KijKij � ðKi
iÞ2 (1)

� 8�Jk ¼ Kik
;i � Ki

i;jg
jk: (2)

Though we are concerned with black holes and their
event horizons, event horizons are inconvenient objects to
work with. This is because event horizons are defined as
the boundary between asymptotic future null infinity ‘þ
and the interior of the black hole [2]. As a result of their
definition in terms of the global causal properties of a
solution, locating them can require laborious numerical
simulations. For convenience, we instead consider locally
defined structures which can be located from the data on a
3-surface, namely: trapped surfaces, marginally trapped
surfaces, and apparent horizons.

Upon our 3-surface �, a compact 2-surface St is said to
be a trapped surface if the expansion � of both the ingoing
and outgoing null geodesics normal to St are negative:
�� < 0. That is to say, the light cones of all points upon
St will end up converging. Since not all compact 2-surfaces
on � will be trapped, there must be a surface So upon
which the expansion of the congruence of outgoing null
geodesic normal to So has zero outward expansion �þ ¼ 0.
We call surface So marginally (outer) trapped. Finally, we
describe the part of the spacetime which is trapped as being
the interior of the black hole, and call the outermost
marginally trapped surface the apparent horizon—see for
example [18].

Since the apparent horizon can only expand, it will
eventually become the event horizon of the black hole.
Alternatively, the size of the apparent horizon can act as a
lower bound to the size of the eventual event horizon.

Usually, we define the expansion of the null congruence
emerging from a 2-surface S in terms of the tangents to the
null congruence na. The condition for a marginally outer
trapped surface is then that �þ ¼ na;a ¼ 0. In terms of the

spatial 3-metric gij and the second fundamental formKij of

our initial 3-surface, this can be written [19]:

�þ ¼ ðgij � ninjÞðKij þ nj;iÞ ¼ 0: (3)

Finally we are interested in the satisfaction of the
Dominant Energy Condition (DEC). Usually the DEC is
defined [20] as the requirement that the energy density be
positive and that nothing is travelling superluminally as
seen by any observer. In terms of the stress energy tensor
Tab this can be rewritten: Tabn

aTbcnc � 0, Tabn
anb � 0

for all timelike na. In the Hamiltonian formulation, the
DEC can be rewritten in terms of energy density � and the
energy flux vector Ji as seen by an observer on the initial
surface:

�� jJj � 0: (4)

B. Asymptotic flatness and the ADM mass

We say that the spacelike 3-surface � is asymptotically
flat if: i. � is the disjoint union of a compact set, and a set
diffeomorphic to R3 n B where B is a closed ball [9]; and
ii. the spatial metric gij on � and the second fundamental

form Kij fall off in the radial coordinate r as

gij ¼ �ij þO

�
1

r

�
Kij ¼ O

�
1

r2

�
:

The first constraint (i) is a statement concerning the
global structure of the spacetime: there exists a ‘‘spacelike
infinity’’ (the compact set) and a spacelike manifold which
can contain a black hole (the set diffeomorphic to R3 n B).
The second constraint (ii) ensures that the Ricci Scalar
decays as R ¼ Oð 1

r4
Þ, which is sufficient to ensure that

the Arnowitt-Deser-Misner (ADM) mass is a geometric
quantity.
The ADM mass is a equivalent to the total rest-mass of

the energy in the spacetime [21]. For instance, it matches
up with the black hole mass in the Schwarzchild spacetime.
It is evaluated by taking the limit of the following

integral over the area of a sphere S� of constant radius �
with area element d� and normal vector vj defined on a

spacelike hypersurface � [10]:

MADM ¼ 1

16�
lim
�!1

Z
S�

�i;jðgij;ivj � gii;jvjÞd�:

If the spacetime is asymptotically flat, the ADM mass
will be invariant in time and under different hypersurface
slicings.

III. THE PENROSE INEQUALITY

A. Cosmic censorship

The Cosmic Censorship Conjecture (CCC) [22] says,
simply, that the causal past of future null infinity J�½‘þ�
must be geodesically complete. Alternatively put, any
singularities in the spacetime must be surrounded by event
horizons.
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Numerical relativity has sought to test this conjecture by
constructing models which collapse into singularities in
some ‘‘realistic’’ way that might then serve as counter-
examples [23–26]. While this procedure for exploring (or
disproving) the CCC is interesting, it is intricate and diffi-
cult. One could alternatively test the CCC by trying to find
physically realizable counterexamples to the Penrose in-
equality [1].

B. The Penrose inequality

Consider an asymptotically flat spacelike 3-surface �
upon which some matter is in the process of collapsing into
a black hole, and suppose additionally that the matter is
physically reasonable (the DEC is satisfied throughout).

For Schwarzchild data, the area of the event horizon AEH

can be related to the Schwarzchild mass MBH:

AEH ¼ 4�ð2MBHÞ2:
If� is an asymptotically flat slice with matter, thenMBH <
MADM (MBH ¼ MADM exclusively in the static
Schwarzchild case). (Note: This assumption uses the
Positive Mass Theorem, which relies on the CCC.)

An evolving black hole can be described in terms of an
expanding apparent horizon with area AH. As the black
hole accretes the matter around it, its apparent horizon will
grow until there is no longer any mass for the black hole to
accrete and it becomes an event horizon AEH. Therefore:
AH � AEH.

Combining these, we end up with the inequality [1]:

M2
ADM � AH

16�
:

Let us define the surface of smallest area So which
contains the apparent horizon AH. Unless � has been
endowed with a strange geometry, So and AH will be the
same surface.

If ASo is the area of So, then our inequality takes on its

most general form: the Penrose inequality

MADM �
ffiffiffiffiffiffiffiffiffi
ASo

16�

s
: (5)

The Penrose inequality additionally specifies that the
equality only holds in the case of the Schwarzchild
solution.

Recall that this inequality depended upon three postu-
lates: asymptotic flatness, the satisfaction of the DEC, and
the CCC. Consequently, if one could find an asymptotically
flat solution which satisfies the DEC but violates the in-
equality (5), one would have found a counterexample the
CCC [2].

The Penrose inequality has already been proven for
certain specific circumstances without requiring the CCC.
The first proofs, by Malec, Iriondo and Murchadha [4,5]
and by Hayward [6], assume that the shape of the horizon,

the first and the second fundamental form are all spheri-
cally symmetric. The second proofs, by Huisken and
Ilmanen [8] (see also reviews [9,10]), assume that the
initial hypersurface has zero extrinsic curvature (this is
frequently called the time symmetric case). Consequently,
if a physically realizable counterexample to the Penrose
inequality even exists, it must not be spherically symmetric
and its second fundamental form must be nonzero.

IV. CONSTRUCTING A PROLATE APPARENT
HORIZON VIOLATING THE PENROSE

INEQUALITY

Our work follows a reverse approach to the problem than
those reviewed in Sec. I: we first construct initial data with
prolate apparent horizons that violate the Penrose inequal-
ity, and then we determine whether or not our solution
satisfies the DEC.
We begin our construction by defining an orientable

spacelike hypersurface that will have an asymptotically
flat prolate geometry, and a second fundamental form
Kij, which dies off appropriately.

(1) We fix a prolate metric with massM and a surface S

such that its area AS satisfies M ¼
ffiffiffiffiffiffiffi
As

16�

q
. This will

violate the Penrose inequality, since the geometry is
not spherically symmetric.

(2) We require that the surface S be an apparent horizon
by forcing �þ ¼ 0, �� < 0 for the null geodesics
emerging from it. We do so by fixing the freedom
available in Kij.

(3) We check to see whether our solution satisfies the
DEC upon the apparent horizon. This is a necessary
but not sufficient condition for physicality.

Following Karkowski [17], we define our asymptotically
(and conformally) flat metric, in prolate spheroidal coor-
dinates.

ds2 ¼
�
1þ M

2�

�
4
�
�2 � �2

�2 � 1
d�2 þ �2 � �2

1� �2
d�2

þ ð�2 � 1Þð1� �2Þd�2

�
: (6)

A. Defining the apparent horizon on �

We define the apparent horizon on � to be a 2-surface of
constant coordinate radius: � ¼ �̂. Because of the way
prolate spheroidal coordinates are defined, as �̂ ! 1, the
degree to which our horizon is distended will increase.
Given the metric, the area of such a surface is

A ¼
Z 1

�1

Z 2�

0

�
1þ M

2�̂

�
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�̂2 � �2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�̂2 � 1
p

d�d� (7)

¼ 2�

�
1þ M

2�̂

�
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�̂2 � 1
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�̂2 � 1
p

þ �̂2sin�1 1

�̂

�
: (8)
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Given an apparent horizon of radius �̂, we can fix the
ADM mass in order to violate the Penrose inequality using

8M2 ¼
�
1þ M

2�̂

�
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�̂2 � 1
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�̂2 � 1
p

þ �̂2sin�1 1

�̂

�
:

(9)

For a surface of constant � ¼ �̂ to be an apparent
horizon, its second fundamental form must be constrained
so that none of the families of null geodesics emerging
from it have positive expansion.

The unit normal of our 2-surface of constant radius will
be

ni ¼
�

4�̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�̂þMÞ4ð�̂2��2Þ

�̂2�1

q ; 0; 0

�
: (10)

Additionally, we note that the Penrose inequality re-
quires that our hypersurface be asymptotically flat. Thus
we will assume that the extrinsic curvature is defined using
parameters a, b, c and has the form:

Kij ¼
a
�2

b

�2
ffiffiffiffiffiffiffiffiffi
1��2

p 0
b

�2
ffiffiffiffiffiffiffiffiffi
1��2

p ; c
�2ð�2�1ÞÞ ; 0

0 0 0

2
64

3
75: (11)

The parameters a and c are related to the invariants:

a ¼ � 1

16
Kabn

anb
ð2�þMÞ4ð�2 � �2Þ

�2ð�2 � 1Þ

c ¼ 1

16
ðKabg

ab � Kabn
anbÞ ð2�þMÞ4ð�2 � �2Þ

�2

Thus, if a and c remain finite, so will the invariants
Kabnanb and Kabg

ab (b can be related in a similar way
to KabKab).

To make our prolate surface marginally trapped (�þ ¼
0) (3), we constrain one of the terms in our second funda-
mental form:

c ¼
�

2�̂þM

4�̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�̂2 � �2Þð�̂2 � 1Þp

�
� ð2M�̂4 � 4�̂5 þ 4M�2

þ ð2�̂3 � 3M�̂2Þð1þ �2ÞÞ: (12)

The other set of null geodesics emerging from the mar-
ginally trapped surface � ¼ �̂must converge (�� < 0) for
our data to represent a black hole. We therefore require that

�� ¼ ðgij � ninjÞðKij � nj;iÞ< 0: (13)

We plot ��, as a function of the radius of the marginally
trapped surface � ¼ �̂ in Fig. (1): when it is negative, the
surface will be outer-trapped, and our data will represent a
black hole. From the graph, we conclude that we should
only consider trapped surfaces with 1< �̂ < 1:45.

B. The dominant energy condition

Since R and Kij have now been defined, � and J will be
defined through Eq. (1), and we can now determine

whether the DEC is satisfied. We calculate jJj ¼ ffiffiffiffiffiffiffiffi
JiJi

p
,

and plot �� jJj and � across the surface � ¼ �̂.
In addition to the radius �̂, and the angle �, � and ��

jJj will depend on the undefined parameters in Kij: a, b,

which we will assume are constant on surface � ¼ �̂. Let
us consider what values of a and b are most likely to satisfy
the DEC.

FIG. 1 (color online). �� is plotted as a function of the radius
of the marginally trapped surface �̂. The surface will be outer-
trapped and our data will represent a black hole when �� < 0.

FIG. 2 (color online). In this diagram we look at �� jJj on the
equator of an radius �̂ ¼ 1:4 black hole, as a function of the
parameters a and b from Kij. From this we set a � 0 and b

small.
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The graph (2) shows how �� jJj depends on a and b on
the equator of a radius �̂ ¼ 1:4 black hole slice. We see
that �� jJj increases and becomes positive as a is increas-
ingly negative, while b should be set to nearly zero. We set
a ¼ �100, and b ¼ 2.

Let us now look at whether the DEC is satisfied upon the
apparent horizon, and whether changing the size of the
horizon has any effect on its satisfaction.

In plot (3) we show that the energy density � is positive
everywhere upon the horizon (� 1 � � � 1), for a variety
of horizon radii �̂.

The plot (4) of �� jJj as a function of � and �̂ dem-
onstrates that the DEC can be satisfied around the equator
of the horizon, but that it will always be violated at the
poles (� ! �1) where �� jJj becomes negative and di-
verges. This violation occurs regardless of the radii �̂ of
the apparent horizon.
Consider as a specific model: A low-mass, highly prolate

apparent horizon (�̂ ¼ 1:4), which satisfies the DEC in the
tropics, and violates it near the poles (Fig. (5)).

V. DISCUSSION

Our results rule out this class of nonsymmetric data as
potential counterexamples of the Penrose inequality, due to
the violation of the DEC. The violations will occur at the
north and south pole of the apparent horizon, and will
occur regardless of how severe or how slight the prolate
warping of the spheroid is (since it occurs for the range
of �̂).
It should be noted that while the specific violations of

the DEC around the poles are due to the way we specified
the second fundamental form Kab, similar violations of the
DEC occurred when we specify Kab in different ways.
Note that since our construction is coordinate-dependent,
we needed to be wary of the coordinate singularities at � ¼
�1. We tried a variety of approaches to resolve this issue.
An alternate (but more cumbersome) approach is to define
the individual components of Kab directly in terms of
geometric invariants, which we would like to remain finite.
In every other method we explored in defining Kab, how-

FIG. 3 (color online). � for all values of angle � on the surface
of the horizon where a ¼ �100, b ¼ 2 for a variety of radii �̂.
This plot shows that the energy density on the horizon is
generally positive for the solutions we are considering.

FIG. 4 (color online). �� jJj for all values of angle � on the
surface of the horizon where a ¼ �100, b ¼ 2 for a variety of
possible radii �̂. This plot shows that the DEC violations will
remain near the poles.

FIG. 5 (color online). �� jJj for all values of angle � on the
surface of the horizon, for horizon at �̂ ¼ 1:4, a ¼ �100, b ¼
2. The negative divergence at the poles indicate that the DEC has
been violated.
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ever, the DEC was violated somewhere. We chose (11)
because it is algebraically the simplest and required dra-
matically fewer computational resources, and also because
there will remain large regions of the horizon where the
DEC is satisfied.
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