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Alternative theories of gravity predict the presence of massive scalar, vector, and tensor gravitational

wave modes in addition to the standard massless spin 2 graviton of general relativity. The deflection and

frequency shift effects on light from distant sources propagating through a stochastic background of

gravitational waves, containing such modes, differ from their counterparts in general relativity. Such

effects are considered as a possible signature for alternative gravity in attempts to detect deviations from

Einstein’s gravity by astrophysical means.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) has been
tested in its weak-field approximation and found to pass
all the available experiments at terrestrial and Solar System
scales [1]. Outside the Solar System, the binary pulsar
1913þ 16 [2] provides indirect evidence for gravitational
waves with an energy loss consistent with GR. However,
other theories may produce the same change of orbital
parameters: for example, the emission of scalar radiation
from this binary within the context of scalar-tensor gravity
is necessarily small because, due to the high symmetry of
this system, the dipole moment is small. As a consequence,
the constraints on scalar-tensor gravity imposed by the
binary pulsar are not competitive with those from Solar
System tests (however, the binary pulsar data are sufficient
to rule out Rosen’s bimetric theory) [1].

Gravitational lensing has provided evidence for light
deflection on galactic and cluster scales but, due to our
ignorance of the detailed mass distribution of the lens,
gravitational lens systems constitute poor tests for the
theory of gravity (even assuming the validity of GR, the
lens model is not unique). Instead, one tries to obtain
information about the mass distribution in the lens by
assuming the validity of GR and, in this context, obtains
evidence for dark matter.

No deviations from Einstein’s gravity have been de-
tected so far in the Solar System or binary pulsar and
therefore, from the experimental point of view, there is
no compelling reason to study alternative gravity theories.
On the other hand, high energy theories that incorporate
gravity, such as superstring theory, supergravity, and brane-

world models, predict deviations from GR in the form of
extra scalar, vector, or tensor fields of gravitational origin,
massive gravitons, large extra dimensions, higher order
corrections to the Einstein equations, or violations of the
equivalence principle. The low energy limit of these theo-
ries resembles more scalar-tensor or fðRÞ gravity than GR
[3,4]. This fact, in itself, constitutes a motivation to explore
astrophysical and other effects in gravitational theories
beyond GR. Further, the 1998 discovery [5] that, if GR is
correct, 75% of the energy content of the Universe is in a
mysterious and exotic form called dark energy, which
propels the accelerated expansion of the Universe in the
present era [6], leads one to be more inclined towards
exploring alternative theories of gravity rather than rein-
forcing one’s faith in Einstein’s theory which, after all, has
been tested only at the post-Newtonian level and mostly at
Solar System scales. It is true that the backreaction of local
inhomogeneities in an otherwise Friedmann-Lemaitre-
Robertson-Walker universe certainly affects its dynamics,
and that this effect is obtained in pure GR without advocat-
ing dark energy or modified gravity [7]. However interest-
ing this possibility may be, it has not been possible to
produce evidence that the magnitude of this backreaction
effect is such that it can explain the cosmic acceleration
observed. Backreaction, dark energy, and modified gravity
are still open possibilities, each scenario has its own diffi-
culties and, at present, no choice between them is compel-
ling and can be motivated other than by aesthetic
considerations or taste. Of course, a conservative relativist
could argue that since no deviation from GR has ever been
detected, it is pointless to actively pursue competing theo-
ries of gravity. On the other hand, proponents of the high
energy physics point of view would be justified in replying
that we may actually be detecting the first (large scale)
deviations from Einstein’s theory in the cosmic accelera-
tion, and that it would be foolish to ignore them.
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We remind the reader that the need to postulate dark
matter in order to explain the rotation curves, at galactic
and cluster scales, has led people to doubt not only general
relativity, but even Newtonian gravity, and has produced
modified Newtonian dynamics (MOND) and tensor-vec-
tor-scalar (TeVeS) theories [8,9], and fðRÞ gravity with
anomalous couplings to matter [10]. Therefore, it seems
reasonable to try to identify possible ways to test gravity
beyond the Solar System. There seem to be two conflicting
points of view, corresponding to two different commun-
ities: deviations from Einstein’s gravity are regarded as
unavoidable by high energy physicists, their detection
being only a matter of technological limits. On the other
hand, classical relativists may regard the theories produc-
ing such deviations as exotica, and it is certainly true that
the latter do not have experimental support so far. While
theories of gravity alternative to general relativity are
purely hypothetical so far, they are theoretically well-
motivated and there is scope to try to detect deviations
from Einstein’s gravity. It is interesting to point out that
preliminary results in positive energy theorems exist for
such theories as discussed in details in [11]. Besides, in the
light of developments in high energy physics, such possi-
bilities should not be discarded a priori. Eventually, ex-
periment is the judge and the failure to detect deviations
from GR further constrains alternative theories and wor-
sens the fine-tuning problems that they may have.

Here we do not want to argue in favor of GR or its
competitors: rather, we try to bridge the two points of view
and we study possible deviations from GR predicted by
high energy theories. We focus on a possible astrophysical
effect that was studied in the past in the context of GR, and
found to be negligible, but is potentially interesting in
alternative theories of gravity. This effect consists of the
deflection and frequency shift of a light beam due to its
propagation through a stochastic background of gravita-
tional waves. In many theories of gravity, extra gravita-
tional fields (scalar, vector, and tensor) appear in addition
to the usual massless spin 2 graviton familiar from GR.
These modes, massless or massive, correspond to extra
degrees of freedom contained in the metric tensor g��

and show up as gravitational waves emitted by early as-
trophysical sources or excited by cosmological processes,
superposing to form a stochastic background. Such a back-
ground, analogous to the cosmic microwave background of
electromagnetic waves, is well-known in GR, and the
propagation of light rays through it has been studied in
detail [12–17]. Consider a pencil of light rays propagating
from a distant light source (possibly at a cosmological
distance) to an observer. Since gravitational waves deflect
light rays and perturb their frequency, naively one expects
a photon undergoingN scatterings in this background to be
described by a random walk and its deflections, or fre-

quency shifts, to add stochastically as
ffiffiffiffi
N

p
. Even though the

deflection is at most of linear order in the gravitational

wave amplitudes which are very small, since the traveled
distance can be large, such a cumulative (or ‘‘L-’’) effect

that grows as
ffiffiffiffi
L

p
could compensate for it, and it has indeed

been claimed in the past [13,18]. Intuition fails, however,
because it is based on familiarity with random walk pro-
cesses in which the scatterers are static or nearly static,
while the massless gravitons of GR, responsible for photon
scattering, propagate at the speed of light. The size of the
deflection (or frequency shift) effect is a matter of relative
velocities, i.e., of the difference between the speed of the
propagating signal and that of the perturbations from a
uniform background through which the signal propagates.
When this fact is taken into account, the cumulative
L-effect disappears [14–17,19]. The quantitative descrip-
tion of the deflection (or frequency shift) effect depends
not only on the relative speed, but also on the spin s of the
field responsible for the nonstationary perturbations in the
otherwise homogeneous medium. A comprehensive quan-
titative treatment is given in [19]. The analogous situation
for massless scalar modes in scalar-tensor gravity was
briefly considered in [20] and it was found that, in spite
of a logarithmic dependence of the rms deflection on L, the
effect is numerically comparable to the one in GR and,
therefore, completely negligible for practical purposes.
However, the spectrum of gravitational theories now avail-
able is considerably larger and the consideration of astro-
physical effects due to massive fields of various spins
forming a stochastic background can potentially be of
interest, since massive fields can allow for a cumulative
L-effect, which will be explored in the following sections.
The plan of this paper is as follows. In Sec. II we briefly

recall the physics of the deflection and frequency shift
effects for nonstationary perturbations of different spins.
In Sec. III this analysis is applied to gravitational theories
that predict deviations from GR. In Sec. IV the case of
modified [or fðRÞ] gravity is studied in detail, while Sec. V
contains a discussion and the conclusions.

II. DEFLECTIONS AND FREQUENCY SHIFTS
CAUSED BY PROPAGATION IN A

GRAVITATIONALWAVE BACKGROUND

To realize how gravitational waves induce deflections
and frequency shifts in a light ray with tangent p� that
traverses them, it is sufficient to consider the null geodesic
equation

dp�

d�
þ ��

��p
�p� ¼ 0: (1)

By locally expanding the metric as g�� ¼ ��� þ h�� in an

asymptotically Cartesian coordinate system, where the
perturbations h�� (with jh��j � 1) describe gravitational

waves, computing the Christoffel symbols �
�
�� to first

order, and using the fact that p� ¼ p�
ð0Þ þ �p� ¼

ð1; 0; 0; 1Þ þ �p� with �p� ¼ OðhÞ for a photon with
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unperturbed path along the z axis, one obtains

�p� ¼ �
Z O

S
d���

��p
�
ð0Þp

�
ð0Þ

¼ 1

2

Z O

S
dzðh00 � 2h03 þ h33Þ;� þOðh2Þ; (2)

where the integral is computed along the unperturbed path
from the source S to the observer O. This shows that, in
GR, a gravitational wave propagating (anti)parallel to the
light ray has no effect on it, to first order.1 If the h��

describe a superposition of many waves with random
phases, directions of propagation, and polarizations, one
will obtain deflections such that h�p�i ¼ 0 but hð�p�Þ2i �
0. Therefore the problem is whether these random deflec-
tions (for � ¼ 1; 2; 3) or frequency shifts (for � ¼ 0) add
stochastically. This problem has been solved by Linder
[19] in a more general context by considering random
fluctuations due to inhomogeneities propagating with ar-
bitrary speed v between the light source (at z ¼ 0) and an
observer (at z ¼ L) and due to a superposition of fields of
spin s ¼ 0, 1, or 2. By writing the deflection due to a single
mode as

�� ¼
Z L

0
dz	;� (3)

and 	ðt; ~xÞ ¼ Reð	0eik�x�Þ, Linder obtains the mean
square deflection

h�2�i ¼ 1

2
�2

s¼0hRe2	si
X2s

n¼�2

anJn; (4)

where s is the spin of the field responsible for the inhomo-
geneities, an are constants, and Jn are the integrals

Jn ¼ 1

ðkLÞnþ1

Z kLð1�vÞ=2

�kLð1þvÞ=2
dyynsin2y: (5)

One is interested in the limit for wave numbers k and
lengths L such that kL � 1; in this limit the integrals Jn
for n � 0 cannot cause an L-effect and we focus on the
integrals for n ¼ �2;�1, given by [19]

J�1 ¼ �4ð1þ sÞvð1� v2Þs
Z kLð1�vÞ=2

�kLð1þvÞ=2
dy

sin2y

y
; (6)

J�2 ¼ kLð1� v2Þ1þs
Z kLð1�vÞ=2

�kLð1þvÞ=2
dy

sin2y

y2
: (7)

While Linder, in the context of GR, focused on massless

spin 2 gravitons and the limit v ! 1, here we are interested
in the opposite limit for massive modes. As shown in the
next section, some of these modes can become very mas-
sive, corresponding to v ! 0. In this case J�1 becomes
negligible and we are left with the J�2 contribution.

III. APPLICATION TO ALTERNATIVE THEORIES
OF GRAVITY

In several alternative theories of gravity, massive gravi-
tational fields appear which can potentially give rise to an
L-effect. Some of them are inspected in the following.

A. Scenarios with large extra dimensions

It has been suggested [21] that the hierarchy problem
could be solved in theories with large (submillimeter size)
extra spatial dimensions, in which gravitons propagate
through ð3þ nÞ-dimensional space while nongravitational
physics is confined to the ordinary three spatial dimensions
(see [22] for a review). The n extra dimensions are com-
pactified, e.g., on a torus with a radius Rn and gravity can
be strong already at the TeV scale. The gravitons propagat-
ing in the extra dimensions acquire a mass given by

m2
n ¼ 4
n2

R2
n

; (8)

where

Rn ¼ 2 � 10ð32�17nÞ=n cm: (9)

The model is ruled out for n ¼ 1 and marginally ruled out
for n ¼ 2 (for which R2 � 2 mm), but is viable for n > 2,
corresponding to Rn < 10�6 cm. The dispersion relation
k�k

� ¼ �m2
n for the massive gravitons yields the group

velocity vg ¼ ckffiffiffiffiffiffiffiffiffiffiffi
m2

nþk2
p . If mn is sufficiently large, many

(most) modes composing the gravitational wave back-
ground will have k � mn and vg � ck=mn � c. For ex-

ample, for n ¼ 3, one obtains m3 � 3 � 10�19=3 cm�1; for
waves of wavelength �g � 103 km it is vg � 10�2c, while

longer waves with �g � 3 � 108 km ¼ 2 AU yield vg �
10�7c. For n ¼ 4 and �g � 103 km, it is vg � 10�17c.

B. fðR;R��R
��; R����R

����;hR;h2R; . . .Þ theories
In general, in theories described by a Lagrangian density

of the type fðR; R��R
��; R����R

����;hR;h2R; . . .Þ,
there are scalar, vector, and tensor modes, massive or
massless, and these can, in principle, contribute to the
gravitational wave background and produce an L-effect.
However, some of these massive modes are ghosts, which
precludes further consideration of these theories. An ex-
ception are theories with Lagrangian of the form fðR;GÞ,
where G ¼ R2 � 4R��R

�� þ R����R
���� is the Gauss-

1This can be seen by adopting the transverse-traceless gauge in
which h00 ¼ h03 ¼ h33 ¼ 0 for a gravitational wave propagating
in the �z direction.
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Bonnet combination. At least if certain conditions are
satisfied, ghosts are avoided in these theories [23].

C. N ¼ 2; 8 extended supergravity

The supergravity multiplet in N ¼ 2; 8 extended super-
gravity contains a graviton, a gravivector field, two
Majorana gravitinos for N ¼ 2, and a graviscalar field
for N ¼ 8. The graviscalar violates the weak equivalence
principle [24], and both graviscalar and gravivector are
short-ranged. The available experiments set the limits on
their ranges Rl and R�, respectively, [24,25]

Rl � 0:6 cm; Rl � 13 cm ðN ¼ 2Þ; (10)

Rl � 0:4 cm; Rl � 40 m ðN ¼ 8Þ; (11)

R� � 0:15 cm; 60 m � R� � 100 m: (12)

If these fields are truly short-ranged, they can also contrib-
ute as massive modes to the gravitational wave background
and the analysis of the previous section applies.

There is scope, therefore, to consider the limit v ! 0 for
massive gravitons in these scenarios in the discussion of
the previous section.

D. Root-mean-square deflections and frequency shifts
due to massive modes

Since J�1 ! 0 in the limit of heavy modes v ! 0, we
are left with the contribution of

J�2 ! kL
Z þkL=2

�kL=2
dy

sin2y

y2
(13)

in Eq. (4). By using

Z
dy

sin2y

y2
¼ cosð2yÞ

2y
þ 2ySið2yÞ � 1

2y
; (14)

where SiðzÞ 	 R
z
0 dt

sint
t ¼ 


2 �
Rþ1
z dt sintt is the sine inte-

gral, one obtains

J�2 ¼ 2½cosðkLÞ þ kLSiðkLÞ � 1
 (15)

in the v ! 0 limit. The term 2½cosðkLÞ � 1
 assumes
values in the interval ½�4; 0
 and oscillates as kL becomes
large, while the second term kLSiðkLÞ dominates. Since
Siðþ1Þ ¼ 
=2, the limit kL � 1 yields the rms deflection

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð��Þ2i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�2
kL

2

X2
s¼0

hRe2	si
vuut (16)

for these modes, where an L-effect is indeed present and
can, in principle, compensate for small values of the gravi-
tational wave amplitudes 	2 to produce a non-negligible
effect. This is not surprising since in the limit v ! 0 the
propagation of the photon reduces to a random walk.

More precisely, keeping the dependence of J�2 on v
yields

J�2 ’ 2ð1� v2ÞkL½SiðkLÞ þ vSiðkLvÞ
 (17)

and

ffiffiffiffiffiffiffiffiffiffi
h�2�i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
s¼0

2a�2kLð1�v2Þ½SiðkLÞþvSiðkLvÞ
hRe2	si
vuut :

(18)

In all the scenarios listed above one can expect very
massive modes for which an L-effect exists and the rms
deflection or frequency shift is given, in order of magni-
tude, by ffiffiffiffiffiffiffiffiffiffi

h�2�i
q

’ ffiffiffiffiffiffi
kL

p
	; (19)

where 	 is the magnitude of the wave amplitude for the
massive mode considered. The estimation of this quantity
is difficult because it depends on the processes generating
the cosmological background, which are subject to much
speculation and large uncertainties even in GR. The calcu-
lation of precise spectra of gravitational modes in specific
processes is beyond the purpose of this work. We assume
that detailed studies can provide, in principle, estimates of
	 in various frequency bands following assumptions about
specific generating processes. In this paper we study in
more detail the case of fðRÞ gravity.

IV. MASSIVE MODES IN fðRÞ GRAVITY

Modified or fðRÞ gravity has been proposed recently in
order to explain the current acceleration of the Universe
without resorting to dark energy [26–28]. fðRÞ gravity
comes in three versions: the metric [26,27], Palatini [28],
and metric-affine [29] formalisms. In the metric formalism,
in which the metric tensor is the only independent variable
and the connection is the metric connection, the action is

A ¼ 1

2k

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðRÞ þ SðmatterÞ; (20)

where fðRÞ is a nonlinear function of its argument replac-
ing the usual Einstein-Hilbert Lagrangian R� 2�
([26,27]—see [30–32] for reviews). Corrections to this
Lagrangian that become important as R ! 0 can explain
the current acceleration of the Universe without resorting
to dark energy, while early Universe physics in a strong
curvature regime is instead affected by corrections de-
scribed by positive powers of R. Indeed, the renormaliza-
tion of GR introduces quadratic corrections [33], a fact that
was exploited in Starobinsky’s scenario of inflation without
scalar fields [34]. The condition f00ðRÞ> 0 is required in
the metric (but not in the Palatini) formalism for the
absence of tachyons [35,36] and for nonlinear stability
[37].
Metric fðRÞ gravity is dynamically equivalent to an! ¼

0 Brans-Dicke theory [31,38] with a nontrivial potential. In
fact, by setting 
 	 f0ðRÞ, an equivalent action is [31,38]
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S ¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi�g
p ½
R� Vð
Þ
 þ SðmatterÞ; (21)

where

Vð
Þ ¼ 
Rð
Þ � fðRð
ÞÞ: (22)

The scalar degree of freedom f0ðRÞ satisfies the equation

3h
þ 2Vð
Þ �

dV

d

¼ �T; (23)

from which one obtains the effective mass [31]

meff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rf00ðRÞ � f0ðRÞ

3f00ðRÞ

s
(24)

with R ¼ Rð
Þ.
In metric fðRÞ cosmology, the dependence of the effec-

tive mass of 
 on the curvature and, therefore, on the
environmental density is exploited in the chameleon
mechanism in order to make these theories viable. At
Solar System densities, the scalar has a very short range,
thus evading the constraints imposed by Solar System and
terrestrial experiments on the equivalent Brans-Dicke the-
ory, while at cosmological densities this range becomes
very long and can affect cosmology. This chameleon
mechanism (well-known in quintessence models [39])
makes these theories viable, but at the same time it renders
the long wavelength scalar modes forming the stochastic
background effectively massless. Therefore, the analysis of
massless Brans-Dicke scalar modes of Ref. [20] applies
and no L-effect is present.

It is more interesting, from this point of view, to consider
fðRÞ theories relevant for early Universe physics. For

example, in the model fðRÞ ¼ Rþ aR2, it is m
 ¼
1=

ffiffiffiffiffiffi
6a

p
. One expects the parameter a weighting quantum

corrections to the Einstein-Hilbert action to be small and,
hence, a large mass for the scalar degree of freedom 
,

which propagates with group velocity vg ’ ck=m
 ¼ffiffiffiffiffiffi
6a

p
ck.

Assuming the conformal transformation

~g�� ¼ e2�g�� with e2� ¼ f0ðRÞ; (25)

where the prime indicates differentiation with respect to
the Ricci scalar R and � is the ‘‘conformal scalar field,’’
we obtain the conformally equivalent Einstein-Hilbert ac-
tion

A ¼ 1

2k

Z
d4x

ffiffiffiffiffiffiffi�~g
p ½ ~RþLð�;�;�Þ
; (26)

whereLð�;�;�Þ is the conformal scalar field contribution

derived from

~R�� ¼ R�� þ 2

�
�;��;� � g���;��

;� ��;��

� 1

2
g���

;�
;�

�
(27)

and

~R ¼ e�2�ðR� 6h�� 6�;��
;�Þ: (28)

In any case, as we will see, the Lð�;�;�Þ term does not

affect the gravitational wave tensor equations so it will not
be considered further.2

Beginning with the action (26) and deriving the
Einstein-like conformal equations, the gravitational wave
equations expressed in the conformal metric ~g�� are

~h~hji ¼ 0: (29)

Since no scalar perturbation couples to the tensor part of
the gravitational waves, we have �� ¼ 0 and then

~h
j
i ¼ ~glj�~gil ¼ e�2�glje2��gil ¼ hji ; (30)

which means that hji is a conformal invariant. As a con-

sequence, the plane-wave amplitude defined by hji ðt; xÞ ¼
hðtÞeji expðiklxlÞ;where eji is the polarization tensor, are the
same in both metrics. In any case, the d’Alembert operator
transforms as

~~h ¼ e�2�ðhþ 2�;�r�Þ (31)

and this means that the background is changing while the
tensor wave amplitude is not.
In order to study the cosmological stochastic back-

ground, the operator (31) can be specified for a
Friedmann-Robertson-Walker (FRW) metric given by

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; (32)

and then Eq. (29) becomes

€hþ ð3H þ 2 _�Þ _hþ k2a�2h ¼ 0; (33)

where h ¼ @2

@t2
þ 3H @

@t and k is the wave number.

It is worth stressing that Eq. (33) applies to any fðRÞ
theory whose conformal transformation can be defined as
e2� ¼ f0ðRÞ: The solution, i.e., the gravitational wave
amplitude, depends on the specific cosmological back-
ground (i.e., aðtÞ) and the specific theory of gravity (i.e.,
�ðtÞ) [42]. Considering also the conformal time d� ¼
dt=a, Eq. (33) reads

d2h

d�2
þ 2

�

d�

d�

dh

d�
þ k2h ¼ 0; (34)

where � 	 ae�. Inflation means that aðtÞ ¼ a0 expðHtÞ

2Actually, a scalar component of gravitational radiation is
often considered [40,41], but here we are taking into account
only the genuine tensor part of the stochastic background.
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and then � ¼ R
dt=a ¼ ðaHÞ�1 and d�

�d� ¼ ���1. The

exact solution of (34) is

hð�Þ ¼ ffiffiffi
2

p
k�2½C1 sink�þ C2 cosk�
: (35)

Inside the H�1 radius we have k� � 1: Furthermore,
considering the absence of gravitons in the initial vacuum
state, we have only negative-frequency modes and then the
adiabatic behavior is

h ¼
ffiffiffiffi
2




s
k1=2

1

aH
C expð�ik�Þ: (36)

At the first horizon crossing (aH ¼ k), the averaged

amplitude of the perturbation Ah ¼ ðk=2
Þ3=2jhj is

Ah ¼ C

2
2
: (37)

When the scale a=k grows larger than the Hubble radius
H�1, the growing mode of evolution is frozen, that is, it is
constant. This situation corresponds to the limit k� � 1 in
Eq. (35). Since � acts as the inflaton field, it is �� 0 at
reentry after the end of inflation. Then the amplitude Ah of
the wave is preserved until the second horizon crossing
after which it can be observed, in principle, as an anisot-
ropy perturbation in the cosmic microwave background. It
can be shown that 4T=T & Ah as an upper limit to Ah

since other effects can contribute to the background an-
isotropy [43]. From these considerations, it is clear that the
only relevant quantity is the initial amplitude C in Eq. (36),
which is conserved until reentry into the horizon. Such an
amplitude directly depends on the fundamental mechanism
generating the perturbations. Inflation gives rise to pro-
cesses capable of producing perturbations as zero-point
energy fluctuations. Such a mechanism depends on the
theory of gravitation adopted and then (4 T=T) could
constitute a further constraint to select a suitable fðRÞ
theory. Considering a single graviton in the form of a
monochromatic wave, its zero-point amplitude is derived
through the equal time commutation relations

½hðt; xÞ; 
hðt; yÞ
 ¼ i�3ðx� yÞ; (38)

where the amplitude h is the field and 
h is the conjugate
momentum operator. Writing the Lagrangian for h

~L ¼ 1

2

ffiffiffiffiffiffiffi�~g
p

~g��h;�h;� (39)

in the conformal FRW metric ~g�� (h is conformally in-

variant), we obtain


h ¼ @ ~L

@ _h
¼ e2�a3 _h: (40)

Then, Eq. (38) becomes

½hðt; xÞ; _hðt; yÞ
 ¼ i
�3ðx� yÞ
a3e2�

(41)

and the fields h and _h can be expanded in terms of creation
and annihilation operators

hðt; xÞ ¼ 1

ð2
Þ3=2
Z

d3k½hðtÞe�ikx þ h�ðtÞeþikx
; (42)

_hðt; xÞ ¼ 1

ð2
Þ3=2
Z

d3k½ _hðtÞe�ikx þ _h�ðtÞeþikx
: (43)

The commutation relations in conformal time are then

½hh0� � h�h0
 ¼ ið2
Þ3
a3e2�

: (44)

The substitution of Eqs. (36) and (37) yields C ¼ffiffiffi
2

p

2He��, where H and � are calculated at the first

horizon crossing and then

Ah ¼ 1ffiffiffi
2

p He��; (45)

which means that the amplitude of gravitational waves
produced during inflation directly depends on the given
fðRÞ theory since � ¼ 1

2 lnf
0ðRÞ. Explicitly, it is [42]

Ah ¼ Hffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f0ðRÞp ; (46)

where f0ðRÞ> 0 is necessary in order for the graviton to
carry positive kinetic energy [31]. The representation of
fðRÞ gravity as a Brans-Dicke theory is particularly useful
when dealing with the scalar component of gravitational
waves, ruled by the equation [44]

h� ¼ m2�; (47)

where � 	 ��
=
0. The scalar field generates a third
component for the tensor polarization of gravitational
waves and the total perturbation describing a gravitational
wave propagating in the positive z direction is

h��ðt� zÞ ¼ Aþðt� zÞeðþÞ
�� þ A
ðt� zÞeð
Þ

��

þ�ðt� zÞeðsÞ��: (48)

The term Aþðt� zÞeðþÞ
�� þ A
ðt� zÞeð
Þ

�� describes the two
standard (i.e., tensorial) polarizations of a gravitational
wave arising from GR in the transverse-traceless (TT)

gauge [45], while the term �ðt� zÞeðsÞ�� is the extension
of the TT gauge mode to the scalar case. Three different
degrees of freedom are present (see Eq. (32) of [41]), while
only two are present in standard GR. Then, for a purely
scalar gravitational wave, the metric perturbation is [44]

h�� ¼ �eðsÞ��: (49)

The stochastic background of scalar gravitational waves
[‘‘sgw’’ in Eq. (50) and elsewhere] can be described in
terms of the scalar field � and characterized by a dimen-
sionless spectrum (see the analogous definition for tensor
modes in [40,46–48])
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�sgwðfÞ ¼ 1

�c

d�sgw

d lnf
; (50)

where

�c 	 3H2
0

8
G
(51)

is the (present) critical energy density of the Universe, H0

is the Hubble parameter today, and d�sgw is the energy

density of the scalar gravitational radiation in the fre-
quency interval (f, fþ df) We are now using standard
units. Now it is possible to write an expression for the
energy density of the stochastic scalar relic gravitons back-
ground in the angular frequency interval (!, !þ d!) as

d�sgw ¼ 2@!

�
!2d!

2
2c3

�
N! ¼ @H2

dSH
2
0

4
2c3
d!

!
¼ @H2

dSH
2
0

4
2c3
df

f
;

(52)

where f, as above, is the frequency in standard comoving
time. Equation (52) can be rewritten in terms of the critical
and de Sitter energy densities

H2
0 ¼

8
G�c

3c2
; HdS ¼ 8
G�dS

3c2
: (53)

Introducing the Planck density �Planck ¼ c5

@G2 , the spectrum

is given by

�sgwðfÞ ¼ 1

�c

d�sgw

d lnf
¼ f

�c

d�sgw

df
¼ 16

9

�dS

�Planck

: (54)

At this point, some comments are in order. First, the
calculation works for a simplified model that does not
include the matter-dominated era. If the latter is included,
the redshift at the equivalence epoch [‘‘eq’’ in Eq. (55) and
elsewhere] has to be considered. Taking into account
Ref. [49], one gets

�sgwðfÞ ¼ 16

9

�dS

�Planck

ð1þ zeqÞ�1 (55)

for the waves which, at the epoch in which the Universe
becomes matter-dominated, have a frequency higher than
Heq, the Hubble parameter at equivalence. This situation

corresponds to frequencies f > ð1þ zeqÞ1=2H0 today. The

redshift correction in Eq. (55) is needed since the present
value of the Hubble parameter H0 would be different
without a matter-dominated contribution. At lower fre-
quencies, the spectrum is given by [46,48]

�sgwðfÞ / f�2: (56)

As a further consideration, let us note that the results (54)
and (55), which are frequency-independent, do not hold in
the entire range of physical frequencies. For waves with
frequencies less than the present Hubble parameter H0, the
notion of energy density is not defined because the wave-
length becomes longer than the Hubble scale. Similarly, at

high frequencies, there is a maximal frequency above
which the spectrum rapidly drops to zero. In the above
calculation, the simplifying assumption that the phase
transition from the inflationary to the radiation dominated
epoch is instantaneous has been made. In the physical
Universe, this process occurs over some time scale ��,
with

fmax ¼ aðt1Þ
aðt0Þ

1

��
; (57)

which is the redshifted rate of the transition. In any case,
�sgw drops rapidly. The two cutoffs at low and high

frequencies for the spectrum guarantee that the total energy
density of the relic scalar gravitons is finite. For grand
unified theory-scale inflation, it is of the order [46]

�ds

�Planck
� 10�12: (58)

These results can be quantitatively constrained considering
the recent Wilkinson Microwave Anisotropy Probe
(WMAP) release. In fact, it is well-known that WMAP
observations put severe restrictions on the spectrum. In
Fig. 1 the spectrum �sgw is mapped: considering the ratio

�ds=�Planck, the relic scalar gravitational wave spectrum
seems consistent with the WMAP constraints on scalar
perturbations. Nevertheless, since the spectrum falls off
as f�2 at low frequencies, today at LIGO/Virgo and
Laser Interferometer Space Antenna (LISA) frequencies
(indicated in Fig. 1), one gets

-15 -10 -5 5 10
Hz Graphics

-18

-16

-14

-12

-10

-6

Energy

LISA LIGO

FIG. 1. The spectrum of relic scalar gravitational waves in
inflationary models is flat over a wide range of frequencies.
The horizontal axis is log10 of frequency, in Hz. The vertical axis
is log10�gsw. The inflationary spectrum rises quickly at low

frequencies (wave which reentered the Hubble sphere after the
Universe became matter-dominated) and falls off above the
(appropriately redshifted) frequency scale fmax associated with
the fastest characteristic time of the phase transition at the end of
inflation. The amplitude of the flat region depends only on the
energy density during the inflationary stage; we have chosen the
largest amplitude consistent with the WMAP constraints on
scalar perturbations. This means that, at LIGO and LISA fre-
quencies, �sgw < 2:3 � 10�12.
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�sgwðfÞh2100 < 2:3
 10�12; (59)

where h100 ¼ H0=ð100 km � s�1 �Mpc�1Þ. It is interesting
to calculate the corresponding strain at f� 100 Hz, where
interferometers such as Virgo and the Laser Interferometer
Gravitational-Wave Observatory (LIGO) achieve maxi-
mum sensitivity. The well-known equation for the charac-
teristic amplitude [46,48] adapted to the scalar component
of gravitational waves

�cðfÞ ’ 1:26
 10�18

�
1 Hz

f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2100�sgwðfÞ

q
(60)

can be used to obtain

�cð100 HzÞ< 2 � 10�26: (61)

Then, since we expect a sensitivity of the order of 10�22

for the above interferometers at f� 100 Hz, we need to
gain 4 orders of magnitude. Let us analyze the situation
also at lower frequencies. The sensitivity of the Virgo
interferometer is of the order of 10�21 at f� 10 Hz and
in that case it is

�cð10 HzÞ< 2 � 10�25: (62)

The sensitivity of the LISA interferometer will be of the
order of 10�22 at f� 10�3 Hz and in this case it is

�cð10�3 HzÞ< 2 � 10�21: (63)

This means that a stochastic background of relic scalar
gravitational waves could, in principle, be detected by the
LISA interferometer.

To estimate the rms deflection effect frommassive scalar
modes in the gravitational wave background, we restrict to
periods that are of the order of hours or days. A longer
period would result in a ‘‘frozen’’ effect which is much less
likely to be detected, while a much shorter period would
probably render the deflections unobservable because only
an averaged position shift would be recorded during ob-
servation times longer than the period itself and a slightly
blurred image would be the outcome (although fast photo-
metry might allow one to push the limits). Assuming a
frequency �10�3 Hz at a distance L� 500 kpc and using

the upper limit (63), one obtains a rms deflection �rms �ffiffiffiffiffiffi
kL

p
	� 10�10. The maximum resolution expected with

high precision astrometry is of the order of microarcsec-
onds (� 10�7 radians), 3 orders of magnitude above the
required sensitivity for detection. For galactic sources at
L� 5 kpc, to which high precision astrometry is more
likely to apply, �rms drops by another order of magnitude.
One can, of course, consider different sources of electro-
magnetic radiation with slightly higher frequency, at more
promising distances L, and perhaps find mechanisms
which produce higher scalar amplitudes �: at a first
look, however, it is unlikely that the 4 orders of magnitude

necessary for detection can be bridged in the foreseeable
future.

V. OUTLOOKS

All modern theories of high energy physics unifying
gravity with the other interactions predict departures
from GR; however, no such deviation has been observed
so far in Solar System experiments, and practically all the
experimental constraints on such deviations are obtained
within the Solar System (the binary pulsar and gravita-
tional lensing provide constraints that are not competitive
with those obtained from Solar System experiments).
Therefore, it is interesting to explore astrophysical effects
outside of this narrow region of the Universe that could
potentially exhibit deviations from Einstein’s theory. The
cumulative deflections, or frequency shifts due to propa-
gation of light from distant sources through random mas-
sive modes of the gravitational wave background, could
constitute such an effect. There is now a wide range of
theories predicting massive scalar, vector, and tensor
modes that can lead to such an effect. However, the astro-
physical and cosmological processes generating cosmo-
logical gravitational wave backgrounds in these theories
are still unexplored. Here we do not attempt to estimate the
average strength 	 of the various modes appearing in these
theories of gravity, in different ranges of wavelengths, and
under various assumptions. We limit ourselves to outline
an estimate for a particular case: massive scalar modes in
fðRÞ gravity. This class of theories has been the subject of
much recent attention in order to explain the observed
acceleration of the Universe without resorting to dark
energy. For the situation considered here, the deflections
seem to be a few orders of magnitude too small for detec-
tion; on the other hand, we find that these scalar modes are
certainly of interest for direct attempts at detection with the
LISA experiment. According to our preliminary discus-
sion, the indirect detection with the position and frequency
shift effect does not seem to be feasible with current
technology; however, a more detailed analysis is necessary
before definitive conclusions can be drawn. It is, in prin-
ciple, possible that massive gravitational wave modes
could be produced in more significant quantities in cosmo-
logical or early astrophysical processes in alternative theo-
ries of gravity—the latter are still unexplored. This
possibility should be kept in mind when looking for a
signature distinguishing these theories fromGR, and seems
to deserve further investigation.
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