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A theorem related to the Newman-Penrose constants is proven. The theorem states that all the Newman-

Penrose constants of asymptotically flat, stationary, asymptotically algebraically special electrovacuum

space-times are zero. Straightforward application of this theorem shows that all the Newman-Penrose

constants of the Kerr-Newman space-time must vanish.
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I. INTRODUCTION

Newmen-Penrose (NP) constants are very interesting
and useful quantities in the study of asymptotic flat
space-times. They were first found by E. T. Newman and
R. Penrose in 1968 [1] and then discussed by many other
authors [2–7]. Although the NP constants have been found
for 40 years, their physical interpretation remains an open
question. One reason is that the computation of these
constants for a general asymptotically flat space-time is
not easy. In stationary vacuum cases, these constants can
be viewed as a combination of multipole moments of
space-times [8–11]. Calculations of the NP constants for
vacuum solutions have been made by many authors [12–
17]. People used to conjecture that the algebraically special
condition (ASC) leads to the vanishing of NP constants.
However, Kinnersly and Walker [12] provided a counter-
example. Recently, some authors [15] proposed the asymp-
totically algebraically special condition (AASC), and
proved that the NP constants vanish for vacuum, stationary,
asymptotic algebraically special space-times. In fact, the
two conditions are closely related. It is well known that the
ASC implies that the Weyl curvature possesses a multiple
principle null direction. This condition can be expressed
in terms of two geometric invariants I and J, defined by
I ¼ �0�4 � 4�1�3 þ 3ð�2Þ2 and J ¼ �4�2�0 þ
2�3�2�1 � ð�2Þ3 � ð�3Þ2�0 � ð�1Þ2�4 [18,19]. A
space-time is said to be algebraically special if I3 �
27J2 ¼ 0. It has been shown that a general asymptotically
flat, stationary space-time satisfies I3 � 27J2 �Oðr�21Þ
near future null infinity [15]. Thus, I3 � 27J2 will peel
off very quickly for a general stationary vacuum asymp-
totically flat space-time although the space-time may not
be algebraically special. A space-time is said to be
‘‘asymptotically algebraically special’’ if I3 � 27J2 �
Oðr�22Þ [15], i.e., one order faster than general cases.
From the geometric point of view, this indicates that one

pair of principle null directions coincides near null infinity.
By imposing this condition, the authors of [15] showed that
the NP constants vanish for vacuum, stationary space-
times. Based on the result of [15], NP constants can be
seen as a combination of Janis-Newman multipoles of
gravitational field [20]. An intriguing question is whether
the Janis-Newman multipoles of matter field will contrib-
ute to the NP constants. In this paper, we extend the
discussion to the electrovacuum case. By imposing the
AASC, we show that the NP constants still vanish in the
presence of a stationary Maxwell field. If the Maxwell field
is not stationary, the multipole moments of the Maxwell
field will contribute to the NP constants.
This paper is organized as follows: In Sec. II, we apply

the method of Taylor expansion to a stationary electro-
vacuum space-time. With the help of the Killing equation,
we reduce the dynamical freedom of gravitational field into
a set of arbitrary constants. Detailed expressions are given
up to orderOðr�6Þ. We then prove that all the NP constants
of a stationary asymptotically algebraically special electro-
vacuum space-time are zero. Finally, we make some con-
cluding remarks in Sec. III.

II. THE NEWMAN-PENROSE CONSTANTS OF
STATIONARYASYMPTOTICALLY

ALGEBRAICALLY SPECIAL ELECTROVACUUM
SPACE-TIMES

In an asymptotically flat space-time, the Newman-
Penrose constants are defined by [18]

Gm ¼
Z
S1

2Y2;m�
1
0dS;

where 2Y2;m is a spin-weight harmonic function and�1
0 is a

component of the Weyl tensor. Since the integral is per-
formed on a two-sphere at infinity, we only need the
asymptotic form of the Weyl tensor in the calculation.
According to the peeling off theorem given by Sachs
[18], we may express the Weyl tensor and Maxwell field as
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�n �Oðrn�5Þ n ¼ 0; 1; 2; 3; 4;

�m �Oðrm�3Þ m ¼ 0; 1; 2:
(1)

The vacuum case has been studied previously [7,13–15].
An interesting issue is to consider the effect of matter fields
on NP constants. In this paper, we shall concentrate on the
electromagnetic field. Like in the vacuum case, we require
the space-time to be stationary. Obviously, there is no
Bondi energy flux in such a space-time, i.e., _�0 ¼ 0. In
this case, we can choose some suitable coordinates, such
that the asymptotic shear �0 is zero. Similarly, the sta-
tionary condition has eliminated the freedom of the news
function. We also demand the Weyl tensor satisfy the
asymptotically algebraically special condition, which has
been discussed above. The main purpose of this paper is to
prove the following theorem:

Theorem 1. All the NP constants of an asymptotically
flat, stationary, asymptotically algebraically special elec-
trovacuum space-time are zero.

Note that Kerr-Newman solution satisfies all the con-
ditions in the theorem. It follows immediately that all the
NP constants in a Kerr-Newman space-time must vanish.

Proof of the theorem. We choose the standard Bondi-
Sachs’s coordinates and construct the standard Bondi null
tetrad [15,21]. With the gauge choice in [18,22], we can
write down the NP coefficients and null tetrad of the sta-
tionary electrovacuum space-time. Some low order terms
have been calculated and can be found in [18]. Calculation
of the NP constants requires higher order terms in the
expansions. Consider the following NP equations:

��� ��� ¼ ���þ ð ��� 3�Þ���3 þ�21; (2)

��� ��	 ¼ 2�	þ ð �
� 3
��� ��Þ���4; (3)

where �ij ¼ 8��i
��j is the Maxwell stress tensor. The

coefficient of r�2 in Eq. (2) yields �0
3 ¼ 0. Expanding

Eq. (3) up to Oðr�3Þ, we obtain �0
4 ¼ �1

4 ¼ �2
4 ¼ 0.

Now we shall use the Killing equation to reduce other
dynamical freedoms and get a general asymptotic expan-
sion of the stationary electrovacuum space-time. We write
down the timelike Killing vector as

ta ¼ Tla þ na þ �Ama þ A �ma:

The Killing equations are given by

�DT þ ð
þ �
Þ þ ��Aþ � �A ¼ 0; (4)

DAþ �þ ��Aþ � �A ¼ 0; (5)

�D0T � ð
þ �
ÞT � 	A� �	 �A ¼ 0; (6)

��T þ �	þD0Aþ ð �
� 
ÞA� �T � �T ��A

� �� �A ¼ 0; (7)

� �T þ ��þ �Aþ ð ��� �ÞA ¼ 0; (8)

��T þ�þ � �A� ð ��� �Þ �A� ��T þ ��þ ��A

� ð�� ��ÞA ¼ 0: (9)

Similar to the analysis in [15], assuming the asymptotic
behaviors of T and A as

T ¼ T0 þ T1

r
þ � � � ; A ¼ A0 þ A1

r
þ � � � ; (10)

we can solve the Killing equations order by order. The
stationary condition implies _�0 ¼ 0. It has been found that
the Maxwell field does not change the lowest two powers
of 1=r in the Killing equations. So the constant terms in
the Killing equations yield the same result as in the
vacuum case, i.e., T0 ¼ 1

2 ,
_T1 ¼ 0, _A1 ¼ 0. The coeffi-

cients of r�1 in the Killing equations give rise to �0 ¼ 0,

A1 ¼ 0, _T2 ¼ 0, �0
2 ¼ ��0

2, T1 ¼ 1
2 ð�0

2 þ ��0
2Þ, _A2 ¼

� 1
2 ð�

0
2 þ 1

2�0ð�0
2 þ ��0

2Þ, and
_� 0
2 ¼ 0: (11)

From the r�2 terms in the NP equation

�	� �� ¼ 
�� 2	�þ �
�þ�2 þ j�j2 þ�22;

(12)

we find 8�j�0
2j2 ¼ _�0

2 ¼ 0. Hence �0
2 ¼ 0. From the r�5

terms in the NP equation

��� ��� ¼ ��þ ð ��� 3�Þ�þ ð�� ��Þ���1 þ�01;

(13)

we have

1
6 ð�ð�0

0 � 40��0
0
��0
1Þ þ 1

2
�ð�0

0

¼ �1
3ð�ð�0

0 � 40��0
0
��0
1Þ þ �ð�0

0 � 16��0
0
��0
1 (14)

which implies

�0
0
��0
1 ¼ 0: (15)

This equation will play an important role in our proof,
which gives �0

0 ¼ 0 or �0
1 ¼ 0. Now we discuss the two

cases, respectively.
(1) �0

0 ¼ 0. Consider the Maxwell equations

D�1 � ���0 ¼ �2��0 þ 2��1; (16)

D�2 � ���1 ¼ ���0 þ ��2: (17)

The coefficients of r�4 in these equations yield �1
1 ¼

�2
2 ¼ 0.
Consider the other two Maxwell equations

��1 ���0 ¼ ð�� 2�Þ�0 þ 2��1 � ��2; (18)

��2 ���1 ¼ �	�0 þ 2��1 þ ð�� 2�Þ�2: (19)
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The r�2 terms in Eq. (18) and the r�3 terms in Eq. (19)
yield

_� 0
1 ¼ 0 (20)

_� 0
0 ¼ ð�0

1 ¼ 0 (21)

where ‘‘_’’ denotes @
@u . Combining these two equations, we

have �0
1 ¼ const. So from the r�3 terms of Eq. (17), we

obtain �1
2 ¼ ��ð�0

1 ¼ 0.

(2) �0
1 ¼ 0. Again, from the r�3 terms of Eq. (17), we

have �1
2 ¼ ��ð�0

1 ¼ 0.
Thus, in both cases we have �1

2 ¼ 0. Note that it is �ij

instead of �i that appear in the NP equations. The fact that
�i ¼ Oðr�3Þ [except �1 �Oðr�2Þ in case (1)] shows that
the presence of the electromagnetic field does not contrib-
ute to r�1 and r�2 terms. The electromagnetic field makes
contribution only to order r�3 and higher orders in the
expansions. Combining these results, we obtain the re-
duced N-P coefficients

� ¼ � 1

r
þ 8��0

0
��0
0

3r5
þOðr�6Þ;

� ¼ ��0
0

2r4
� �1

0

3r5
þOðr�6Þ;

� ¼ �0

r
� ��0 ��0

0

6r4
þ �08��0

0
��0
0 � ��0 ��1

0 � 24�ð�0
1
��1
0 þ�1

1
��0
0Þ

12r5
þOðr�6Þ;

� ¼ � ��0

r
� �0

1

2r3
þ �0�0

0 þ 2�ð�0
0

6r4
� 3�2

1 þ 8� ��0�0
0
��0
0 � �0�1

0

12r5
þOðr�6Þ;

� ¼ ��0
1

2r3
þ

�ð�0
0

3r4
þ

�ð�1
0 � 8�ðð�0

0
��0
0Þ � 48�ð�1

0
��0
1 þ�0

0
��1
1Þ

8r5
þOðr�6Þ;

� ¼ �
��0
0

12r4
� 3 ��0

0�
0
2 þ ��1

0 þ 48��2
2
��0
0

24r5
þOðr�6Þ;

� ¼ � 1

2r
��0

2

r2
þ

�ð�0
1 � 16��0

1
��0
1

2r3
�

�ð2�0
0

6r4
� 6�3

2 þ 8��0
0
��0
0

24r5
þOðr�6Þ;


 ¼ ��0
2

2r2
þ 2�ð�0

1 � 48��0
1
��0
1 þ �0�0

1 � ��0 ��0
1

6r3
� 1

24
½2ð�0 �ð�0

0 � ��0ð ��0
0Þ þ 3�ð2�0

0�r�4

þ 1

20
½�08�ð�0

0
��1
1 þ�1

0
��0
1Þ þ �0�2

1 � ��08�ð�0
1
��1
0 þ�1

1
��0
0Þ � ��0 ��2

1 � j�0
1j2 � 4�3

2

� 32�ð�0
1
��2
1 þ�1

1
��1
1 þ�2

1
��0
1Þ�r�5 þOðr�6Þ;

	 ¼ � 1

12
½ ��0

1 þ 2�ð2�0
1�r�3 þ 1

24
½ð ��0

0 þ �ð3�0
0�r�4 � 1

120
½6�1

2
��0
1 � 8�0

2ð
��0
0 þ 24�ð�0

1
��1
0 þ�1

1
��0
0Þ þ 3 ��2

1

þ 24�4
3 þ 192��2

2
��1
1�r�5 þOðr�6Þ;

(22)

and the null tetrad

la ¼ @

@r
;

na ¼ @

@u
þ

�
�1

2
��0

2

r
þ

�ð�0
1 þ ð ��0

1 þ 64��0
1
��0
1

6r2
�

�ð2�0
0 þ ð2 ��0

0

24r3
� 1

20
ð3j�0

1j2 þ�3
2 þ ��3

2

þ 16�ð�0
1
��2
1 þ�1

1
��1
1 þ�2

1
��0
1Þr�4 þOðr�5Þ

�
@

@r
þ
�
1þ  �

6
ffiffiffi
2

p
r3

�0
1 �

1þ  �

12
ffiffiffi
2

p
r4

�ð�0
0 þOðr�5Þ

�
@

@

þ
�
1þ  �

6
ffiffiffi
2

p
r3

��0
1 �

1þ  �

12
ffiffiffi
2

p
r4
ð ��0

0 þOðr�5Þ
�
@

@ �
;

ma ¼
�
��0

1

2r2
þ

�ð�0
0

6r3
��2

1 þ 8�ð�1
0
��0
1 þ�0

0
��1
1Þ

12r4
þOðr�5Þ

�
@

@r
þ
�
1þ  �

6
ffiffiffi
2

p
r4

�0
0 þOðr�5Þ

�
@

@
þ

�
1þ  �ffiffiffi

2
p

r
þOðr�5Þ

�
@

@ �
;

(23)
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where �0 ¼ ð1þ �Þffiffi
2

p @
@ �
,  ¼ ei� cot�2 , ðf ¼ ð�0 þ 2s ��0Þf

(s is the spin weight of f). The differential operators ð
and �ð are defined in [18,23].

Then the components of the Weyl curvature and the
electromagnetic tensor reduce to

�0 ¼ �0
0

r5
þ�1

0

r6
þOðr�7Þ;

�1 ¼ �0
1

r4
þ�1

1

r5
þ�2

1

r6
þOðr�7Þ;

�2 ¼ �0
2

r3
þ�1

2

r4
þ�2

2

r5
þ�3

2

r6
þOðr�7Þ;

�3 ¼ �2
3

r4
þ�3

3

r5
þ�4

3

r6
þOðr�7Þ;

�4 ¼ �3
4

r4
þ�4

4

r5
þ�5

4

r6
þOðr�7Þ;

�0 ¼ �0
0

r3
þ�1

0

r4
þ�2

0

r5
þOðr�6Þ;

�1 ¼ �0
1

r2
þ�1

1

r3
þ�2

1

r4
þ�3

1

r5
þOðr�6Þ;

�2 ¼ �2
2

r3
þ�3

2

r4
þ�4

2

r5
þOðr�6Þ:

(24)

The Bianchi identity takes the form

���0 �D�1 þD�01 � ��00

¼ 4��0 � 4��1 � 2��00 þ 2��01 þ 2��10: (25)

The coefficient of r�6 in Eq. (25) yields �1
1 ¼ ��ð�0

0.

Similarly, the other components of the Bianchi identity
and the Maxwell equations lead to

�1
1 ¼ ��ð�0

0; �2
1 ¼ � 1

2
�ð�1

0;

�3
1 ¼ � 1

3
�ð�2

0 �
1

2
��0
1�

0
0: �2

2 ¼
1

2
�ð2�0

0;

�3
2 ¼

1

6
�ð2�1

0; �4
2 ¼

1

12
�ð2�2

0 þ
1

12
ð ��0

0 þ
1

2
��0
1
�ð�0

0

�1
1 ¼ ��ð�0

0; �2
1 ¼ � 1

2
�ð�1

0 þ 16�ð�0
0
��1
1 þ�1

0
��0
1Þ þ 4�ðð�0

0
��0
0Þ;

�1
2 ¼ ��ð�0

1 þ 16��0
1
��0
1; �2

2 ¼
1

2
�ð2�0

0;

�3
2 ¼ � 2

3
j�0

1j2 �
1

3
�ð�2

1 þ
16

9
�ðð�0

1
��1
0 þ�1

1
��0
0Þ �

8

9
��ðð�0

0
��1
1 þ�1

0
��0
1Þ �

20

9
��0

0
��0
0

þ 80

9
�ð�0

1
��2
1 þ�1

1
��1
1 þ�2

1
��0
1Þ þ

8

9
�

@

@u
ð�0

0
��1
0 þ�1

0
��0
0Þ;

�2
3 ¼

1

2
�ð2�0

1; �3
3 ¼ � 1

2
��0
1�

0
2 �

1

6
�ð3�0

0;

�4
3 ¼ � 1

4
�ð�3

2 þ
1

8
�0

2ð�
0
0 þ

1

2
��0
1
�ð�0

1 þ
1

12
kðð�2

2
��0
0Þ �

4

3
��ðð�0

1
��2
1 þ�1

1
��1
1�

2
1
��0
1Þ þ 4�ð�2

2
��1
1 þ�3

2
��0
1Þ

þ 4�ð�0
1
��1
0 þ�1

1
��0
0Þ þ 4� ��0

1�
0
1
��0
1 þ

4

3
�

@

@u
ð�1

1
��1
0 þ�2

1
��0
0Þ;

�3
4 ¼ � 1

6
�ð3�0

1; �4
4 ¼ � 1

24
�ð4�0

0;

�5
4 ¼ � 1

5
�ð�4

3 �
8

5
��ðð�2

2
��1
1 þ�3

2
��0
1Þ �

1

5
��0
1
�ð2�0

1 �
1

20
�0

2
��0
0 þ 4�ð�2

2
��0
0Þ þ

8

5
�

@

@u
ð�2

2
��1
0 þ�3

2
��0
0Þ:

(26)
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Similarly to the treatment in [15], the r�3 terms in the
Killing equations lead to ð�0

1 ¼ 0. Thus, we have

�0
1 ¼

X1
m¼�1

Bm1Y1;m; �0
2 ¼ C: (27)

The coefficient of r�3 in Eq. (2) gives �1
3 ¼ ���0

2 ¼ 0.
In order to find more restrictions on �0, we need to

compute higher order terms of the Killing equations. The
terms of order r�4 of the Killing equations yield

3T3 þ ð
4 þ �
4Þ ¼ 0; (28)

4A3 ¼ 1
3
�ð�0

0; (29)

_T 4 þ 8
3��

0
1
��0
1 ¼ 0; (30)

1
2�

0
1T

1 � �4 þ �	4 þ _A4 þ ð�0
2 þ ��0

2ÞA2 þ 2A3 � �0T
3

þ�0
2A

2 ¼ 0; (31)

1
6�

0
0 þ ðA3 ¼ 0; (32)

2T3 þ�4 þ ��4 þ ð �A3 þ �ðA3 ¼ 0: (33)

Equations (29) and (32) imply

�0
0 ¼

X2
m¼�2

AmðuÞ2Y2;m: (34)

Equation (27) and _T3 ¼ 0 (which comes from the r�3

terms in the Killing equations) imply that �0
0 is indepen-

dent of u.
Combining Eqs. (24), (26), (27), and (34), one finds

I3 � 27J2 �Oðr�21Þ: (35)

This result holds for a general asymptotically flat station-
ary space-time. As mentioned in the Introduction, the
AASC requires

I3 � 27J2 �Oðr�22Þ; (36)

which is just one order faster than the falloff rate of a
general asymptotically flat space-time. This means that the
AASC is a weak requirement and as demonstrated at the
end of this section, there exist many asymptotic flat space-
times which satisfy this condition.

Our purpose is to calculate the Newman-Penrose con-
stants, which are contained in the coefficients of�1

0. From

the r�5 terms in the Killing equations, we have

4T4 þ ð
5 þ �
5Þ � 1
2
��0
1A

2 � 1
2�

0
1
�A2 ¼ 0; (37)

A4 ¼ 1
5�

5

¼ 1
40½�ð�1

0 � 48�ð�0
0
��1
1 þ�1

0
��0
1Þ � 8�ðð�0

0
��0
0Þ�;
(38)

1
8�

1
0 þ 3

8�
0
0�

0
2 � 2��0

0
��2
2 � 1

4ð�0
1Þ2 þ ðA4 ¼ 0; (39)

��5 þ 2T4 þ ð�5 þ ��5Þ þ 3
2�

0
1
�A2 þ 3

2
��0
1A

2

þ ð �A4 þ �ðA4 ¼ 0: (40)

Equations (38) and (39) yield:

ð�ð�1
0 þ 5�1

0 ¼ 10ð�0
1Þ2 � 15�0

0�
0
2 þ 80��0

0
��2
2

þ 48�ðð�0
0
��1
1 þ�1

0
��0
1Þ þ 8�ð2ð�0

0
��0
0Þ:

(41)

The terms of �i
j on the right-hand side of Eq. (41) are the

contribution from the Maxwell field [15]. To simplify this
equation, we need to investigate the electromagnetic field
in more detail.
Since the electromagnetic field is stationary, we have

LtFab ¼ 0, where tc is the Killing vector. Noting that
�0 ¼ Flm and using the expansion of tc, we have

Lt�0 ¼ LtFabl
amb ¼ ðTlc þ nc þ �Amc þ A �mcÞ�0

¼ Fabl
a½t; m�b þ Fabm

b½t; l�a
¼ ð
þ �
þ �A ��þA�Þ�0

� ð�þ �A�þ A�Þð�1 � ��1Þ
þ ½T �%��þ 
þ �
� Að ��� �Þ��0

þ ½T�� ��� Að ��� �Þ� ��0 (42)

where ½t; m�b denotes the commutator of tc and mb. So we
obtain

ðTlc þ nc þ �Amc þ A �mcÞ�0

¼ ð
þ �
þ �A ��þA�Þ�0 � ð�þ �A�þ A�Þð�1 � ��1Þ
þ ½T �%��þ 
þ �
� Að ��� �Þ��0

þ ½T�� ��� Að ��� �Þ� ��0: (43)

Substituting (23) into (43) yields:

NEWMAN-PENROSE CONSTANTS OF STATIONARY . . . PHYSICAL REVIEW D 79, 104001 (2009)

104001-5



@

@u
�0 þ

�
� 1

2
��0

2

r
þOðr�2Þ

�
@

@r
�0 þ

�
1þ  �

6
ffiffiffi
2

p
r3

�0
1 þOðr�4Þ

�
@

@
�0 þ

�
1þ  �

6
ffiffiffi
2

p
r3

��0
1 þOðr�4Þ

�
@

@ �
�0 þ T

@

@r
�0

� �A

�
�0

1

2r2
þOðr�3Þ

�
@

@r
�0 þ �A

�
1þ  �

6
ffiffiffi
2

p
r4

�0
0 þOðr�5Þ

�
@

@
�0 þ �A

�
1þ  �ffiffiffi

2
p

r
þOðr�5Þ

�
@

@ �
�0

� A

� ��0
1

2r2
þOðr�3Þ

�
@

@r
�0 þ A

�
1þ  �

6
ffiffiffi
2

p
r4

��0
0 þOðr�5Þ

�
@

@ �
�0 þ A

�
1þ  �ffiffiffi

2
p

r
þOðr�5Þ

�
@

@
�0

¼ ð
þ �
þ �A ��þA�Þ�0 � ð�þ �A�þ A�Þð�1 � ��1Þ þ ½T �%��þ 
þ �
� Að ��� �Þ��0

þ ½T�� ��� Að ��� �Þ� ��0: (44)

Again, we compute the �i
j terms in Eq. (41) in the two

cases.
For case (1) �0

0 ¼ 0, computing the coefficient of r�5 in

Eq. (44), we obtain

_� 2
0 ¼ �3�0

2�
0
0 ¼ 0: (45)

The coefficient of r�5 of Eq. (18) gives

ð�1
1 � _�2

0 � 2�1
0 � 3�0

2�
0
0 ¼ �1

2�
1
0 ��0

1�
0
1: (46)

Using �0
0 ¼ 0 and _�2

0 ¼ 0, we get

�1
0 ¼ 2

3�
0
1�

0
1: (47)

By taking ð on both sides and using ð�0
1 ¼ 0, we have

immediately

ð�1
0 ¼ 2

3�
0
1ð�

0
1 ¼ 0: (48)

Then the �i
j terms in Eq. (41) become

80��0
0
��2
2 þ 48�ðð�0

0
��1
1 þ�1

0
��0
1Þ þ 8�ð2ð�0

0
��0
0Þ

¼ 48�ðð�1
0
��0
1Þ ¼ ð48�ð�1

0Þ ��0
1 þ�1

0ð48�ð ��0
1Þ ¼ 0;

(49)

where Eqs. (21) and (48) have been used in the last step.
For case (2) �0

1 ¼ 0, the coefficient of r�4 in Eq. (44)

leads to

0 ¼ _�1
0 � 3T0�0

0 þ 3
2�

0
0 ¼ _�1

0: (50)

Because the spin weight of�0 is 1, we can expand�
0
0 as

�0
0 ¼

P1
l¼1

P
l
m¼�l dl;m1Yl;m, where dl;m are some con-

stants. The r�4 terms in (18) yield

_� 1
0 ¼ ��ðð�0

0 ¼
1

2

X1
l¼1

ðlþ 2Þðl� 1Þ Xl
m¼�l

dl;m1Yl;m:

(51)

Combining (50) and (51) and using the fact that spin-
weight harmonic function components are linearly inde-
pendent, we obtain l ¼ 1. Consequently,

�0
0 ¼

X1
m¼�1

dm1Y1;m; (52)

where dm are constants. By expanding �0
0, we find ð�0

0 ¼

0. The contribution from the Maxwell field in Eq. (41) then
leads to:

80��0
0
��2
2 þ 48�ðð�0

0
��1
1Þþ 8�ð2ð�0

0
��0
0Þ

¼ 40��0
0ð

2 ��0
0 � 48�ðð�0

0ð
��0
0Þþ 8�ðð�0

0ð
��0
0 þ ��0

0ð�
0
0Þ

¼ 40��0
0ð

2 ��0
0 � 48�ð�0

0ð
��0
0 � 48��0

0ð
2 ��0

0

þ 8�ð�0
0ð

��0
0 þ 8�ð ��0

0ð�
0
0 þ 8��0

0ð
2 ��0

0

þ 8� ��0
0ð

2�0
0 ¼�32�ð�0

0ð
��0
0 þ 8� ��0

0ð
2�0

0 ¼ 0

(53)

where we have used �1
1 ¼ ��ð�0

0 and �2
2 ¼ 1

2
�ð2�0

0.

Therefore, the electromagnetic field makes no contribution
to the equation of�1

0. So in either case, the equation of�
1
0

reduces to

ð�ð�1
0 þ 5�1

0 ¼ 10ð�0
1Þ2 � 15�0

0�
0
2; (54)

which is exactly the same equation as that in the vacuum
case. Then by imposing the AASC, it is shown in [15] that
Eq. (54) implies that all the Newman-Penrose constants
must be zero. This completes the proof of our theorem.
Remark. The asymptotically algebraically special con-

dition has played an important role in the proof of this
paper and in [15]. Obviously, this condition is satisfied by
the Kerr-Newman solution. The following arguments show
that the AASC is a rather weak condition imposed on a
general asymptotically flat space-time. Note that the Kerr-
Newman space-time is axisymmetric. Such symmetry is
not required in our theorem. From Eq. (27), we can see that
�0

1 contains 1Y1;1 and 1Y1;�1 components that do not

appear in the Kerr-Newman solution. Simple calculation
shows that spanf1Y1;1; 1Y1;0; 1Y1;�1g is not a representative

space of SOð3Þ. Thus we cannot cancel such components
by a rotation. Based on the characteristic initial value
method [24], it is not difficult to construct exact solutions
with nonzero B1 and B�1. Furthermore, the spin-weight
components of�k

0 are just the Janis-Newman multipoles of

gravitational field [20]. The AASC only gives a restriction
between Janis-Newman’s dipoles and quadrupoles [15].
Since there is no restriction on higher order multipoles, it
is easy to see that there are many solutions which satisfy
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the conditions of our theorem and are not equivalent to the
Kerr-Newman solution.

III. CONCLUDING REMARKS

We have proven that all the NP constants of an asymp-
totic flat, stationary, asymptotically algebraically special
electrovacuum space-time are zero. The Kerr-Newman
solution manifestly satisfies all the conditions. So our
theorem implies that all the NP constants of the Kerr-
Newman solution are zero. This result has been obtained
recently [25] by other authors. In the proof of the theorem,
we have assumed that the Maxwell field is stationary. If

this condition is not imposed, _�1
0 will not be zero. Then

Eq. (51) tells us �0
0 will contain other components of the

spin-weight spherical functions. These terms correspond to
the Janis-Newman multipole of Maxwell field [20]. In the

presence of these terms, the NP constants may not vanish.
Last but not least, an interesting issue is to single out the
Kerr-Newman solution from solutions which satisfy the
conditions of our theorem. From the discussion of the last
section, we find that the AASC is not enough to uniquely
determine the Kerr-Newman solution. It seems that more
restrictions on the Maxwell field are needed. This will be
discussed in our future work.
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