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Gauss-Bonnet braneworld cosmological effect on relic density of dark matter
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In Gauss-Bonnet braneworld cosmology, the Friedmann equation of our four-dimensional Universe on
3-brane is modified in a high energy regime (Gauss-Bonnet regime), while the standard expansion law is
reproduced in low energies (standard regime). We investigate the Gauss-Bonnet braneworld cosmological
effect on the thermal relic density of cold dark matter when the freeze-out of the dark matter occurs in the
Gauss-Bonnet regime. We find that the resultant relic density is considerably reduced when the transition
temperature, which connects the Gauss-Bonnet regime with the standard regime, is low enough. This
result is in sharp contrast with the result previously obtained in the Randall-Sundrum braneworld

cosmology, where the relic density is enhanced.
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I. INTRODUCTION

Recent various cosmological observations, in particular,
the WMAP satellite [1], have established the A cold dark
matter (ACDM) cosmological model with a great accu-
racy, and the relic abundance of the cold dark matter is
estimated as (68% C.L. uncertainties)

Qepyh?® = 0.1131 = 0.0034. (1)

However, clarifying the identity of the dark matter particle
is still a prime open problem in particle physics and
cosmology. Since the standard model (SM) has no suitable
candidate for the cold dark matter, the observation of the
dark matter suggests new physics beyond the SM in which
the dark matter particle is naturally provided. Many can-
didates for dark matter have been proposed in various new
physics models, for example, the neutralino in supersym-
metric models is one of the promising candidates [2].

Among several possibilities, the dark matter as the ther-
mal relic may be the most plausible scenario, since in this
case, the relic abundance of the dark matter is insensitive to
the history of the early universe before the freeze-out time
of the dark matter, such as the mechanism of reheating
after inflation etc. This scenario allows us to estimate the
dark matter relic density by solving the Boltzmann equa-
tion [3],

awv _ s{ov)
dx xH

where Y = n/s is the yield defined by the ratio of the dark
matter number density (n) to the entropy density of the
universe s = 0.439g.m> /x>, g. ~ 100 is the effective total
number of relativistic degrees of freedom, and x = m/T is
the ratio between the dark matter mass (m) and the tem-
perature of the universe (T). The yield in equilibrium Ygq
is written as Ypo = 0.145(g/g.)x¥2e™* for x = 3 with g
being the degrees of freedom of the dark matter. In the

(Y2 = Y2y), 2
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standard cosmology, the Hubble parameter is described by
the total energy density of the universe [p =
(7%/30)g.(m/x)*] through the Friedmann equation of the
form,

87
3"

where Mp, = 1.22 X 10! GeV is the Planck mass. Using
explicit formulas presented above, the Boltzmann equation
can be rewritten into the form

H? =

3

dy A

= =S - i), )
with  an  x-independent  constant A = xs/H =
026\/§:mMP1

Solving the Boltzmann equation, we can obtain the
thermal relic abundance of the dark matter at the present
universe. As is well known, an approximate formula of the
solution to the Boltzmann equation (for the S-wave anni-
hilation process) can be described as

Xq
Mov)’

where x; = m/T,; with the decoupling temperature T';. It is
useful to express the relic density in terms of the ratio of
the dark matter density to the critical density, Qh?> =
msyY(0)h?/p,., where p.=1.1X107h*>cm™3, h=
0.7173:59%, and sy = 2900 cm ™3 [3]:

Q2 = 1.07 X 10°x, GeV~!
\/E’ZMPl(O'V)

In a typical dark matter scenario such as the weakly
interacting massive particle scenario, x; ~ 23 and thus
the dark matter relic density is controlled only by its
annihilation cross section {ov).

Recently, the braneworld models have attracted a great
deal of attention as a novel higher dimensional theory. In

Y(00) = &)

(6)
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these models, it is assumed that the standard model parti-
cles are confined on a ‘““3-brane,” while gravity resides in
the whole higher dimensional spacetime. The braneworld
cosmology based on the model first proposed by Randall
and Sundrum (RS) [4], the so-called RS II model, has been
intensively investigated [5]. It has been found that [6] the
Friedmann equation in the RS cosmology leads to a non-
standard expansion law in high energies, while the standard
cosmology is reproduced in low energies.

Since the Hubble parameter is involved in the
Boltzmann equation, the dark matter relic abundance de-
pends on the expansion law of the early universe at freeze-
out time. Therefore, if our Universe is higher dimensional
and obeys the nonstandard expansion law at the freeze-out
time, the resultant relic abundance of the dark matter will
be altered. The RS braneworld cosmological effect on the
dark matter physics has been investigated in detail [7-10],
in particular, it has been shown that the resultant dark
matter relic abundance is considerably enhanced. In the
same context of the RS braneworld cosmology, other cos-
mological issues such as leptogenesis [11] and the cosmo-
logical gravitino problem in supersymmetric models [12]
have also been examined.

In this paper, we investigate the nonstandard cosmologi-
cal effect on the dark matter relic abundance in the context
of the Gauss-Bonnet (GB) braneworld cosmology. Once
the Gauss-Bonnet term is added in the RS braneworld
model, the Friedmann equation in high energies is modi-
fied from the one in the RS braneworld cosmology. We will
show that the GB braneworld cosmological effect works to
reduce the thermal relic abundance of the dark matter. This
is in sharp contrast with the RS braneworld cosmological
effect.

II. RELIC DENSITY UNDER THE MODIFIED
FRIEDMANN EQUATION

Let us begin with parametrizing a modified Friedmann
equation in a certain class of braneworld cosmological
models such as

H = HyF(x,/x), (N

where H, is the Hubble parameter in the standard cosmol-
ogy, and the function F denotes the modification of the
Friedmann equation in braneworld models.
Phenomenologically viable models should reproduce the
standard cosmology in low energies, so that we impose a
condition: F(x,/x) = 1 for x,/x < 1. Here, x, = T,/m and
we call T, “transition temperature’ at which the modified
expansion law shifts into the standard cosmological one.
The model-independent constraints on 7, is given by the
success of the big bang nucleosynthesis (BBN) in the
standard cosmology, and the transition should complete
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before the BBN era, 7, = 1 MeV.! For concreteness, we
assume

Flx,/x) = (%)y (8)

for x,/x>1 with a constant y. We can see that this
parameterization is in fact a good approximation for
Friedmann equations obtained in known braneworld cos-
mological models. For example, y = 2 corresponds to the
RS braneworld cosmology, while y = —2/3 to the GB
braneworld cosmology as we will see later. Here we keep
v as a free parameter to make our discussion applicable to
general braneworld models (if such models exist).

First we approximately solve the Boltzmann equation
with the modified Friedmann equation in the nonstandard
cosmology. Equation (4) is modified into

ay _ /\( (ov)
F(x,/x)

from which we can understand that the effect of the modi-
fied Friedmann equation is equivalent to modify the anni-
hilation cross section in the standard cosmology;

=)y o

in the era x,/x > 1 which we are interested in. Equation (6)
implies that the braneworld cosmological effect enhances
(reduces) the thermal relic abundance of dark matter for
vy>0(y<O0).

For simplicity, we parameterize the thermal average of
the annihilation cross section times the relative velocity as
(ov) = o,x " with a (mass dimension 2) constant ¢, and
an integer n (n =0 and 1 corresponds to S-wave and
P-wave processes, respectively). At the early time, the
dark matter particle is in the thermal equilibrium, and Y
tracks Ygq closely. To begin, consider the small deviation
from the thermal distribution A =Y — Ygo < Ygq. The
Boltzmann equation leads to

dx x2

)~ i) ©)

dY)
Pl e

A=— =
Ao, x"(2Ygg + A) 20,

x2+n—y’ (11)

where we have used an approximation formula dYgq/dx =
—Ygq. As the temperature decreases or equivalently x
becomes large, the deviation grows since Ygq is exponen-
tially dumping. Eventually the decoupling occurs at x,
roughly evaluated as A(x,) = Y(x,) = Ygqo(x,). At a fur-

"The precision measurements of the gravitational law in the
submillimeter range lead to much more stringent constraint, for
example, 7, =1 TeV for the RS braneworld model [4].
However, this constraint is, in general, quite model dependent
and can be moderated in some extended models [13]. In this
paper, we consider only the model-independent BBN constraint
on the transition temperature.
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ther low temperature, A =Y > Y, is satisfied and the
Y]%Q term in the Boltzmann equation can be neglected so
that

dA _ _ATn yn2p2 (12)

e Y
dx X

and the solution is formally given by

1 _ 1 n Ao,
A(x)  Alxg) (y—n—1x/

(xy—nl — fo"*l).

13)

For the S-wave process (n = 0), for example, the well-
known result in the standard cosmology (corresponding to
v =0), 1/Y(0) =~ Agy/x,, is obtained. When we take
v = 2, our analysis here is the same as the one in [7] for
the RS braneworld cosmology. For n = 0, for example,
A(x)~! is continuously growing, and this growth stops at
X = x;, so the resultant relic abundance has been found to
be 1/Y(o0) = Aoyx,. Then, we obtain the ratio of the
energy density of the dark matter in the RS braneworld
cosmology ({)(gs)) to the one in the standard cosmology

(£)(5)) such that
QO
R (L) (14)

Xd(s)

where x,,) is the decoupling temperature in the standard
cosmology. The relic abundance is enhanced by the RS
braneworld effect for x, > x,(,), while it should saturate to
the standard result for x, <.

On the other hand, if v <0, we arrived at the result
which is in sharp contrast with the one in the RS brane-
world cosmology. For simplicity, we consider only n = 0
in the following equation, and the analysis for n > 0 is
straightforward. In this case, we obtain

1 A -
.~ 90 (ﬁ) yx;l’ (15)
Y(oo) 1 —y\xy

and the ratio of the energy density of the dark matter in this
braneworld cosmology ({}(;)) to the one in the standard
cosmology (£)(,)) is evaluated as

Q x,\~7( x
)
(s) Xy Xd(s)

Thus, the resultant relic density is reduced in the case for
v <0 and x; < x,. This is nothing but the case that hap-
pens in the GB braneworld cosmology.

III. GAUSS-BONNET BRANEWORLD
COSMOLOGICAL EFFECT

Motivated by string theory considerations, it is a natural
extension to add higher curvature terms to the bulk gravity
action in the RS braneworld model [14]. Among possible
terms, the Gauss-Bonnet invariant is of particular interest
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in five dimensions, since it is a unique nonlinear term in
curvature which yields second order gravitational field
equations. The five-dimensional gravitational action with
the GB invariant is given by

§=5 j Bx T -2As + R + a(R? — 4R, R
Ks

d4x\/ _g4(0- + Lmatler)’
(17)

+ RahcdRade)] - f

brane

where ki = 8m/M: with the five-dimensional Planck
scale M5, o >0 is the brane tension, and A5 <0 is the
bulk cosmological constant. The RS model is recovered in
the limit @ — 0.

Imposing a Z, parity across the brane in an anti-de Sitter
bulk and modeling the matters on the brane as a perfect
fluid, the modified Friedmann equation on the spatially flat
brane has been found as [15,16]

2 2
RPN e RS R

where B =4au?=1— 41+ 4aAs/3 and m, = o'/*.
There are four free parameters, s, m,, @, and 3, corre-
sponding to the original free parameters, ks, o, As, and «,
which are constrained by phenomenological requirements.
To reproduce the Friedmann equation of the standard
cosmology with zero cosmological constant in the limit
H?/u? < 1, we find two relations among the parameters:

_ 87 [

kimhy =2u(3 — B), Ki—M—l%l=1+BK5.

19)

The modified Friedmann equation can be rewritten in the
useful form [17]

H? = %2[(1 - B)cosh(%) - 1],

p + m = m? sinhy, (20)

where y is a dimensionless measure of the energy density,
and

_ o Brra=py _pr |, 0-p)Y

BKS ki ¥ B+ p)
Here we have used Eq. (19) to eliminate x5 in the last
equality. In the same way, we express m,, as

mt = 2’:—26 :L g) 22)

The evolution of the GB braneworld cosmology is char-
acterized by the two mass scales, m, and m,. Expanding
Eq. (20) with respect to y, we find three regimes for m, >
m,: the GB regime for p > m?,

S

21

m
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1+ 2/3
sz( 4BB;uﬁp) : (23)

the RS regime for m% > p > m?,

2

K
mﬁjﬁ (24)

: 4
and the standard regime for my, > p,

12
H?>=~"%p (25)
3
Since we are interested in the GB regime, let us simplify
the evolution of the universe by imposing the condition
m, = m,, which leads to

33— 1282+ 158—2=0 (26)

and hence, 8 = 0.151. In this case, the RS regime is
collapsed and there are only two regimes in the evolution
of the universe. Applying the parameterization to the non-
standard Friedmann equation in Egs. (7) and (8),

1/6 £\2/3
H=%@)=%G), @7
p x

t
for p > p, or equivalently x < x,, while H = H for p <
P, where

27 (1 + B\2 u?
P =

- = =~ 2242
6\ 3 3.9u2M3,. (28)

K3
In Fig. 1, we show that our approximation for the
Friedmann equation is in fact a good approximation to
the exact form in Eq. (20).

Now we are ready to see the GB braneworld cosmologi-
cal effect on the dark matter relic abundance. Equation (27)
means that the modified Friedmann equation in the GB
braneworld cosmology corresponds to y = —2/3, and thus

10*
1000
100 b

10F

log,, (H*u?)

0.1fF

R

00 o5 1o
log,, (X/x;)

FIG. 1 (color online). The Hubble parameter as a function of p
in the GB braneworld cosmology. The solid line shows the exact
formula of the Friedmann equation, while the dashed line (in
red) corresponds to our approximation formula. Here, we have
taken a unit k4 = 1.
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FIG. 2 (color online). Numerical solutions of the Boltzmann
equation in the Gauss-Bonnet braneworld cosmology (solid line)
and in the standard cosmology (dashed line). The dotted line
corresponds to Ygo. The GB braneworld cosmological effect
reduces the resultant relic abundance from the one in the
standard cosmology.

we find

Caw) §(ﬁ)2/ g(Ld) (29)
Q(s) 3 Xd xd(s)

from Eq. (16). Therefore, the GB braneworld cosmological
effect reduces the relic density, and the reduction rate is
controlled by the transition temperature. This is our main
result. For the weakly interacting massive particle dark
matter, the typical value of the decoupling temperature is

X4 ~ 23, and this is not changing so much even under the
nonstandard Friedmann equation. Thus, we expect

Q(GB) 5(x,\¥/3
~Z (L) . 30
Q) 3 (23) (30)

For example, (gg)/€(y) = 0.25 for x, = 400.

Finally, let us check that our analytic result given above
is a good approximation for the results from the numerical
solution of the Boltzmann equation. Fixing the dark matter
mass m = 100 GeV, (ov) = 107°/m?, and x, = 400, we
numerically solve the Boltzmann equation with the
Friedmann equations in the standard cosmology and the
GB braneworld cosmology, respectively. The numerical
results are depicted in Fig. 2. Here, we obtain ) (gg) /€, =
0.26, which is very close to our previous result from
analytic formulas.

IV. CONCLUSIONS AND DISCUSSIONS

We have investigated the thermal relic density of the
cold dark matter in the braneworld cosmology, in particu-
lar, the Gauss-Bonnet braneworld cosmology, which is a
natural extension of the Randall-Sundrum braneworld
model to include the higher curvature terms. We have
modeled the modified Friedmann equation in such a way
applicable to general braneworld cosmological models and
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analytically solved the Boltzmann equation under some
approximation. Applying this result to the Gauss-Bonnet
braneworld cosmology, we have found that the resultant
relic density of the dark matter is considerably reduced
from the one in the standard cosmology, when the freeze-
out occurs well in the Gauss-Bonnet regime in the evolu-
tion of the universe. This conclusion is in sharp contrast
with the result in the Randall-Sundrum braneworld cos-
mology, where the relic density is enhanced by the brane-
world cosmological effect.

It is worth applying our results in this paper to concrete
dark matter models which have been investigated in the
standard cosmology. For supersymmetric models with the
neutralino dark matter, the RS braneworld cosmological
effect was analyzed [8]. It has been shown that the allowed
parameter region for the neutralino dark matter consistent
with the observed dark matter density is dramatically
modified from the one in the standard cosmology and
eventually disappears as the transition temperature is low-
ered. This is because the RS braneworld cosmological
effect enhances the dark matter relic density while super-
symmetric models, in particular, the constrained minimal
supersymmetric SM, tend to predict an overabundance of
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neutralino dark matter. On the other hand, the Gauss-
Bonnet braneworld cosmological effect reduces the relic
density of the dark matter and therefore can enlarge the
allowed parameter region in supersymmetric models. A
similar effect has been discussed in the scalar-tensor cos-
mology [18]. This enlargement of the cosmologically al-
lowed parameter region has an impact on the sparticle
search at the LHC. As investigated in [11,12] for the RS
braneworld cosmology, it would be interesting to consider
other cosmological issues also in the GB braneworld cos-
mology. We leave these subjectsto future works.
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