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Does bulk viscosity create a viable unified dark matter model?
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We investigate in detail the possibility that a single imperfect fluid with bulk viscosity can replace the
need for separate dark matter and dark energy in cosmological models. With suitable choices of model
parameters, we show that the background cosmology in this model can mimic that of a ACDM universe to
high precision. However, as the cosmic expansion goes through the decelerating-accelerating transition,
the density perturbations in this fluid are rapidly damped out. We show that, although this does not
significantly affect structure formation in baryonic matter, it makes the gravitational potential decay
rapidly at late times, leading to modifications in predictions of cosmological observables such as the CMB
power spectrum and weak lensing. This model of unified dark matter is thus difficult to reconcile with
astronomical observations. We also clarify the differences with respect to other unified dark matter models
where the fluid is barotropic, i.e., p = p(p), such as the (generalized) Chaplygin gas model, and point out
their observational difficulties. We also summarize the status of dark sector models with no new

dynamical degrees of freedom introduced and discuss the problems with them.
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I. INTRODUCTION

In recent years the cosmological picture that over 95%
of the energy in our universe is contributed by a dark sector
has been supported independently by a number of obser-
vations, notably those of type la supernovae (SN) luminos-
ity distances, cosmic microwave background (CMB)
anisotropies, the power spectrum of clustered matter, and
weak lensing [1-4]. This dark sector can be further sub-
divided into dark matter and dark energy according to their
different gravitational properties. The concordance ACDM
paradigm, in which dark matter is assumed to be weakly
(or just gravitationally) interacting massive particles (the
cold dark matter), and dark energy is a positive cosmologi-
cal constant (A) or slowly varying scalar field, has been
successful in confronting all these observational data sets.
However, the smallness of the cosmological constant, and
the fact that it only becomes dominant recently make this
model conceptually unattractive and stimulates the exami-
nation of new models (for a review see [5]).

Since both cold dark matter (CDM) and dark energy are
invisible and have as yet unknown origins, it is natural to
consider the possibility that they are actually not two exotic
matter species but just different aspects of a single fluid.
These scenarios are frequently dubbed unified dark matter
(UDM) models. In the context of general relativity they
assume an equation of state p = p(p) or p = p(H), where
H is the Hubble rate; in universes with zero spatial curva-
ture these prescriptions are identical. A particular class of
cosmology with this equation of state was investigated in
the context of studies of cosmological bulk viscosity [6—
11] in which the viscosity coefficient is 7(p) = ap™ and

*b.li@damtp.cam.ac.uk
WLj.d.barrow@dam‘[p.cam.ac.uk

1550-7998/2009/79(10)/103521(9)

103521-1

PACS numbers: 98.80.—k, 95.36.+x

the effective pressure in the Friedmann equation is p’ =
(y — )p — 3Hn(p), and of string production effects [12]
which mimic the effects of bulk viscosity of this form with
m = 3/2[7].

The flat bulk viscous cosmologies also include as sub-
cases the so-called Chaplygin gas model (p = —Ap~ %)
[13-15], which is just a bulk viscosity for dust (y = 1)
with m + 1/2 = —a, and its generalizations to p + p =
Bp" [13], which is just ¥ = 0 and m + 1/2 = A, or other
functional forms p(p) [5]. The Chaplygin gas models are
simple, with no new dynamical degrees of freedom, and yet
produce an interesting time evolution for the dark energy.
However, it was shown subsequently that the density per-
turbation of this fluid will either blow up or experience
rapid oscillatory damping at late times, so the models can
be stringently constrained by the matter power spectrum
[16]. This distinctive behavior arises because there is a
minimum possible total density of the universe at late
times.

There have been some explicit investigations in the bulk
viscous cosmology in connection with the dark energy
problem. Fabris et al. [17,18] investigated the case in
which the viscosity coefficient has the form 1(p) = ap™
and considered both background and perturbed evolutions
of a universe dominated by viscous matter. However, these
studies were limited by certain simplifications. In
Ref. [17], for example, the authors obtained an analytical
solution for p, (where the subscript v denotes viscous
matter) as a function of scale factor a, under the assump-
tion that no other matter species exist in the universe (the
same assumption as [7]). In Ref. [18] the authors added a
baryonic matter species and estimated the cosmological
parameters in detail using Bayesian statistics; but their
calculation was largely confined to the special case m =
0 and used only supernovae data to derive the constraints.
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We believe that such an analysis needs to be generalized.
First, as will be seen below, m = 0 is not necessarily the
best fit for these models, even for the background cosmol-
ogy. Second, no radiation component was included in
previous analysis. This is a reasonable simplification as
long as we are only concerned with the late-time cosmic
expansion and only using the supernova data. But when
observables are also related to the high-redshift features,
such as the CMB shift parameter, the radiation must be
taken into account. In fact, the properties of the viscosity
could significantly modify the early-time evolution of the
universe if the late-time evolution is consistent with the
supernova data, and so the CMB shift parameter could be
effective in constraining the model. Third, a detailed study
of the linear perturbations in the model is needed as a
critical check of the model’s feasibility. As we will see
below, the UDM model based on viscous matter has several
distinctive predictions regarding the perturbations when
compared to the ACDM paradigm or the Chaplygin gas
model. Such a feature is very general, making the model
barely compatible with observations. This indicates that a
UDM model without new dynamical degrees of freedom is
unlikely to be observationally acceptable.

The rest of this paper is organized as follows. In Sec. II,
we give the basic field equations which will be used in the
subsequent analysis. In Sec. III we consider the back-
ground evolution of a universe dominated by a viscous
matter (in the presence of normal matter species such as
baryons, photons, and neutrinos). Using the SN data and
CMB shift parameter, we find the best-fit model parameters
and show that these give a background cosmology very
similar to the prediction of the ACDM paradigm.
Section 1V is devoted to the perturbed evolution of general
bulk viscosity models, which we find to behave very differ-
ently from both ACDM and other UDM models. Finally,
we discuss our results and conclude in Sec. V. We will
frequently call the UDM fluid with p = p(p, H) ‘“‘the
viscous dark matter.”

II. THE FIELD EQUATIONS

In this section we list the general field equations that
govern the evolution of the cosmological background and
its first-order perturbations in general relativity, which will
be used in later sections. The perturbation equations will be
given in the covariant and gauge invariant formalism, using
the method of 3 + 1 decomposition.

The main idea of 3 + 1 decomposition is to make space-
time splits of physical quantities with respect to the 4-
velocity u® of an observer. The projection tensor h,, is
defined as h,, = g, — u,u, and can be used to obtain
covariant tensors perpendicular to u. For example, the

covariant spatial derivative V of a tensor field Th ¢ is
defined as

VeThie = heht - hihy - VT (D)
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The energy-momentum tensor and covariant derivative of
the 4-velocity are decomposed, respectively, as

Tab =Ty t 2q(aub) + pugu, — Phabr (2)

Vaub = Oyp + W ,p + %Hhab + uaAb‘ (3)

In the above, 7, is the projected symmetric trace-free
(PSTF) anisotropic stress, g, the vector heat flux vector, p
the isotropic pressure, o, the PSTF shear tensor, w,, =
ﬁ[aub], the vorticity, § = V¢u, = 3a/a (a is the mean
expansion scale factor) the expansion scalar, and A, =
11, the acceleration; the overdot denotes time derivative
expressed as ¢ = u?V, ¢, brackets mean antisymmetriza-
tion, and parentheses symmetrization. The 4-velocity nor-
malization is chosen to be u“u, = 1. The quantities 7,
qa, p, p are referred to as dynamical quantities and o,
w,,, 0, A, as kinematical quantities. Note that the dynami-
cal quantities can be obtained from the energy-momentum
tensor 7T, through the relations

p= Tabuaub, p= _%hahTab’
Tap = hthTcd + phab'

“4)
qda = hzuc Tcd’

Decomposing the Riemann tensor and making use of the
Einstein equations, we obtain, after linearization, a set of
propagation and constraint equations governing the evolu-
tion of perturbed physical quantities. Here we shall only
list the equations that will be used in later sections, and for
more details we refer the reader to [19].

The first equation we will use is the Raychaudhuri
equation:

. 1 ~
9+§02—V“Aa+%(p+3p)=0. (5)

The second equation to be used involves the projected
Ricci scalar R into the hypersurfaces orthogonal to u“,
which can be expressed as

R =2kp —20% (6)

Since we are considering a spatially flat universe, the
spatial curvature vanishes (at background level) on large
scales and so R = 0. Thus, from Eq. (6), we obtain

10% = kp, (7)

which is the Friedmann equation that governs the expan-
sion of the universe in standard general relativity.

Furthermore, we will need the conservation equations
for the energy-momentum tensor,

p+(p+po+Vig, =0, (8)

ga Tt %QQa + (p + p)Aa - @ap + ﬁbﬂab =0. ©

Equations (5), (8), and (9) involve both background and
first-order perturbed quantities (such as A,, ¢,). To obtain
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equations for the background cosmology it is sufficient to
neglect all first-order terms, while to obtain corresponding
equations for the perturbation evolution we need to take the
spatial derivatives @a [cf. Equation (1)] of these equations.
For the perturbation analysis it is then more convenient to
work in the k space because we shall confine ourselves to
the linear regime where different k& modes decouple.
Following [19], we make the following harmonic expan-
sions of our perturbation variables:

Vop = ZSX”QZ
k

Tap = ZH Ql:zb
k

. k
k
qa = ».q0%
k

y K k k ok
Vil =3 200 A= -AQ;
k k

in which QF is the eigenfunction of the comoving spatial
Laplacian a?V? satisfying

R k2
V20k = ol o~ (10)

and QF, Q’;b are given by QX = ¢ Aan, ];b = %@leZ)‘
The perturbed version of Eq. (8) is

X, + (p+ p)Z, — abA,) + (X, + XD)6 + aV, Vg,
=0. (11

In Sec. IV we shall use the harmonic expansion coefficients
of Egs. (5), (9), and (11) to derive the evolution equation
for the density perturbation of the viscous dark matter.

III. THE BACKGROUND EVOLUTION

The field equations governing the background cosmic
expansion are the Friedmann equation, the Raychaudhuri
equation, and the conservation equations for energy den-
sities of the different matter species (baryons, radiation,
and viscous dark matter). Not all these equations are
independent, and we choose the Friedmann equation
(here H = a/a = 0/3),

3H2 = 87G(pp + ps + pr), (12)

and the conservation equations,

ps t+3Hpg =0, (13)
pr t4Hpr =0, (14)
pp +3H(pp + pp) =0, (15)

as our starting point. In these equations pg, pr, and pp, are,
respectively, the energy densities of baryonic matter, ra-
diation, and the (viscous) dark matter. The pressure pp =
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(y — Dpp — 3aHp} is the effective pressure of the dark
matter, with y, a, m being our free model parameters.

We shall not follow [18] by dividing pp into different
components with different equation of states (EoS),
although it can be useful mathematically, since that might
hide the fact that there is only a single fluid with varying
EoS. When it comes to the perturbative evolution of this
fluid, it will be misleading if one thinks that part of the fluid
behaves as a cosmological constant which has no pertur-
bation, while another part simply clusters as CDM, there
being no interactions between them. We also note that the
Hubble expansion rate H appears in the expression of pp,
which means that the EoS of the viscous dark matter
depends also on the existence and properties of other
matter species, and so we cannot neglect the effects of
baryonic matter and radiation (at early times).

Next, we estimate the free model parameters y, «, and
m. We will set v = 1 in all the calculations below because
we want the viscous dark matter to behave like CDM at
(early) times when the correction term is not important. For
m, earlier studies [7] showed that when m > 1/2 the uni-
verse will start from a de Sitter phase and finally evolve
towards power-law perfect-fluid dominated expansion,
while if m < 1/2 it is just the opposite, with late-time
approach to de Sitter evolution; the special m = 1/2 case
corresponds to power-law evolution throughout. In fact,
from the expression pp = —3aH pf} we can see that if pp

dominates over other matter species (so that H pll)/ )
then pp will be a constant if m = —1/2. We can estimate
that the best-fit value of m is around —1/2. In what
follows, m will be taken as a free parameter to be con-
strained by data. Finally, « is obviously a dimensional
constant. To determine its value, we note that to explain
the SNe data we need the candidate for dark energy to
contribute an effective energy density and pressure of the
same order as p, in the ACDM model. Thus, we have

Ppo = Pcomo T Pas 3aHyppy = pa

in which the quantities on the left-hand sides are for our
model while those on the right-hand sides are for the
ACDM model. A subscript 0 here denotes the present
value of a quantity. Using the results cpy = 0.20 and
Q) = 0.76, we calculate from the above two equations that
B = aHypihd =0.26. This gives us a sense about the
magnitude of the dimensionless quantity (3, which is
chosen as another model parameter instead of « and will
be constrained below.

With the above preliminaries, it is now straightforward
to rewrite the conservation equation of the viscous dark
matter, Eq. (15), as

0 + rpge N + r,de4Ni|1/2’ 16)

*+ — m
Q 379 9BQ [ 1+rbd+rrd

where we have defined @ = ppm/pPomos 7va = PBo/ PDMOS
rra = Pro/Pomo, and also used the Friedmann equa-
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tion (12) to substitute for the Hubble parameter, H. The
star denotes a derivative with respect to N = loga. Because
there are in general no closed-form solutions to these
cosmological equations, we will use Eq. (16), together
with Egs. (12)—(14), in our subsequent numerical calcula-
tion. Note that r,,; and r,,; are constants which are fixed
once )y and Qy are known (using the fact that the uni-
verse is spatially flat, so that Qpy =1 — Qg — Qg):
Qpy =1 = Qp — Qg):

Qp Qg

T, -0y T To0, -0 U7

A natural choice of the initial (final) condition of Eq. (16)
isp(N=0)=1.

We have used the supernovae luminosity distance data
[2] and CMB shift parameter [20] to constrain the model
parameters m and 3, analytically marginalizing the current
Hubble expansion rate H, and assuming the baryon density
today is fixed by big bang nucleosynthesis and measure-
ments of the light element abundances. The result is shown
in Fig. 1 and the best-fit parameters we find are (m, 8) =
(—0.4,0.236) which lie close to our estimate above (m =
—0.5, B = 0.264). Figure 2 shows the cosmic evolution of
the fractional energy densities in the bulk viscous model
with the above best-fit parameters. It can be seen there that
the viscous model mimics the concordance ACDM para-
digm extremely well all through its cosmic history. The
model therefore appears to work well as a description of
the background cosmology.

02} 4
0.0 4
SNe + CMB shift

02 4

04}

-06 |

-08 | -

12 1 R 1 R 1 R 1 R 1 R 1 R 1 R
0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

p

FIG. 1. The joint constraints on m and 8 from supernovae and
CMB shift-parameter data. The dark grey and light grey areas
denote the 68% and 95% confidence regions, respectively. The
current Hubble expansion rate H is marginalized over analyti-
cally and the other parameters used are Qx = 8.475 X 107> and
Qg + Qp = 0.04 evaluated at the present time.
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FIG. 2 (color online). Solid lines: The evolution of the frac-
tional energy densities of viscous dark matter ) (black),
baryons Qy (red), and radiation (including photons and massless
neutrinos) Qg (blue), versus 1 + z where z is the redshift. The
model parameters here are chosen as m = —0.4 and 8 = 0.236.
Dashed lines: The same evolutions for the concordance ACDM
model. Here, (), denotes the fractional energy density of the
dark sector, i.e., dark energy (a cosmological constant) plus cold
dark matter. The other parameters used (for both models) are
Qp = 8475 X 1075 and Qg + Qp = 0.04, evaluated at the
present time.

IV. THE EVOLUTION OF FIRST-ORDER DENSITY
PERTURBATIONS

Despite the excellent coincidence between the viscous
dark matter and ACDM models for the background evolu-
tion found in the last section, we should also investigate the
formation of large-scale structure to test whether the vis-
cous model is also a feasible model for dark energy. In this
section we show that, generally, a bulk viscosity depending
on the energy density, i.e., pp = —n(pp)Veu,, will sig-
nificantly influence the formation and evolution of large-
scale cosmological structure. This very different prediction
from that of the ACDM model indicates that stringent
constraints can be placed on the viability of the bulk
viscosity models using observational data on the CMB
spectrum, matter power spectrum, and weak gravitational

lensing.
Let us first concentrate on the special case considered
above, with pp = —appV?u, = —3aHp}. For an ob-

server comoving with dark matter particles (with 4-
velocity u,), the energy-momentum tensor could be writ-
ten as

Tah = PplUsUp — pD(gah - uaub)- (18)

In the ACDM paradigm, if one chooses the observer to be
comoving with the dark matter particles as above, then
obviously the peculiar velocity is zero, vp = 0, which
implies, by the conservation of energy-momentum tensor,
that A, = O for this observer, and there is no acceleration.
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In the bulk viscous model, however, vp = 0 and A, = 0
are different choices of frame which can be used in nu-
merical calculations. Here, for convenience, we will
choose the vp = 0 frame, in which, again from the con-
servation of energy, A, # 0, which is easy to understand
because the dark matter particles themselves have interac-
tions (the pressure pp) and cannot be acceleration free.

Taking the spatial derivative of pp and picking the
harmonic coefficients, we obtain

k kZ

where H = a'/a with’ = d/dr (r is the conformal time
defined by adr = dr) and Ap = Xp/pp is the density
contrast of the viscous dark matter.

As the anisotropic stress vanishes up to first order in
perturbations, from Eq. (9) we obtain

(pp + pp)A = X}, (20)
Similarly, from Eq. (11) we have
A+ (1 +wkZ —3wHAL =0, (21)

where we have defined the zero-order EoS parameter w =
w(a) = pp/pp for the viscous dark matter so that

w = —3aHpp L (22)

Finally, taking the spatial derivative of the Raychaudhuri
equation (5), we get

kZ + kHZ — KA+ 3(H' — HHA

= (X +3XNa, (23)

We shall assume here that the universe is dominated by
the viscous dark matter, so that on the right-hand side of
Eq. (23) X and X? can be replaced by Xp and XZ,
respectively. In more general cases it is straightforward
to include contributions from other matter species. Then,
from Eqgs. (19)—(21) and (23), we can eliminate Z and A to
obtain

AL +[Ci(a) + K2 Cy(a)]AL + [C3(a) + k*Cyla)]Ap = 0,
(24)

where we have defined

Cl(a)z.']‘[-i-KpDazw-f-(ﬂ—}[) o v

/

2H H 1+w 1+w
—3wH,; (25)
w 1
Cz(a) = = m ﬁ > (26)
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_ Kppa’
2

- 3(1 fw 9+ WJ{/) 3w

Ci(a) = [(1+ w)(1 + 3mw) + 3w?]

— 3w(H — 3{2)<m *s j:w); 27)
Cula) = W(m + s j:w> (28)

It is straightforward to check that when w = 0 (whether or
not m = 0), this reduces to the evolution equation for the
CDM density contrast, which does not depend on k, in-
dicating that the evolution of the CDM density contrast is
scale independent. For the viscous dark matter, however,
we see that the equation depends on k in the coefficients of
both A" and A. Equation (24) is effectively an equation for
a damped simple oscillator, with time-varying and scale-
dependent frequency and damping force, and no driving
force. On small scales (k > ) and at late times [when
w~ O(—1)], the C,(a) and C,(a) terms dominate the
coefficients of A’ and A, respectively; it is then easy to
show that the oscillator is overdamped so that its amplitude
decays to zero rapidly with no oscillations. This qualitative
feature can be seen in the upper panel of Fig. 3, where we
plot the evolution of the dark matter density contrast, Ap,
for four different length scales, k = 0.005, 0.01, 0.05,
0.1 Mpc™~!, for our best-fit model parameters (m = —0.4,
B = 0.236). We see that the evolution of A, deviates from
that predicted by the ACDM model only at late times, but
nonetheless significantly. The scale-dependent evolution of
density contrast is actually a general feature in the UDM
models without new dynamical degrees of freedom
[16,21,22]

The lower panel of Fig. 3 displays the evolution of the
baryon density contrast Ag. Because viscous dark matter
clusters more weakly than cold dark matter, the gravita-
tional potential that the baryons lie in is also weaker,
making the baryons less clustered. However, since this
effect is indirect, the deviation of Ag from the ACDM
prediction is considerably smaller than that of Ap. Note
that the galaxy surveys actually measure the clustering of
luminous (baryonic) matter, rather than that of dark matter.
Consequently, these measurements can only be applied to
Ay, which is just weakly dependent on the model parame-
ters [23]. Nevertheless, as in the bulk viscous model, both
the amplitude and the shape of baryonic matter power
spectrum are distinct from those predicted by the ACDM
paradigm, and therefore we expect that stringent con-
straints can be obtained from it.

The analysis above is generalizable to an arbitrary
choice of the viscosity function 1(pp). To do this, we
just need to define
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FIG. 3 (color online). Upper panel: The evolution of the den-
sity perturbation Ap for the viscous dark matter (the solid
curves), as compared to the predictions for the cold dark matter
model (the dashed curves). The results for four different length
scales (k= 0.005, 0.01, 0.05, 0.1 Mpc’l) are displayed as
labeled beside the curves. The model parameters are chosen to
be (m = —0.4, B = 0.236). Lower panel: The same but for the
baryon density perturbation.

ji(a) = P 91(pp)
n(pp) Ipp

(29)

and replace the constants m in Egs. (27) and (28) with
i(a). Then, Eq. (24) describes the evolution of the dark
matter density contrast in the general case of n(pp).
There are a couple of points to be noted about Eq. (24).
First, it is clear that m = 0 does not guarantee that C, and
C, are zero, and the EoS of the viscous dark matter w is
important. Since w # 0, if the viscous dark matter is
responsible for accelerating the expansion of the universe,
our conclusion that the evolution of dark matter density
contrast will be sensitively scale dependent and deviate
significantly from ACDM will hold in general. Note that
this is different from the analysis of Ref. [18], which
considers the special case of m = 0 and concludes that
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the matter power spectrum in this model behaves well.
Second, Eq. (24) is qualitatively different from its counter-
parts in other models which unify dark matter and dark
energy, such as the (generalized) Chaplygin gas model. In
the latter we have generally C, = 0, and so the equation
describes an underdamped oscillator rather than an over-
damped one. Consequently, the dark matter density con-
trast oscillates with (rapidly) decaying amplitude (or blows
up if Cy is negative), in contrast to the monotonic decay in
our model here. Tracing the derivation of Eq. (24), it is easy
to find that the C, term comes from the term with Z in
Eq. (19), which is created by the fact that pp o« V?u,. We
also note that Eqgs. (25) and (26) are independent of m and
hence independent of the functional form of 7(pp). As
long as C, > 0, we will obtain a qualitative picture similar
to the one given in Fig. 3.

Although the very different evolution of Ap from that in
ACDM is not directly reflected in the observed galaxy
power spectrum, it will modify the gravitational potential
and subsequently affect observables such as the CMB,
weak lensing, and CMB-galaxy cross correlation. As the
viscous dark matter contributes the majority of the total
energy in the universe, a decay in its density contrast as in
Fig. 3 will also drive the gravitational potential ¢ to decay
significantly. This point is verified in Fig. 4, which clearly
shows that the decay of ¢ is much faster than that in the
ACDM model.

The fast decay of ¢ will enhance the integrated Sachs-
Wolfe (ISW) effect, which then contributes a source term
o [0 ¢! j[k(tg — 7)]dT to the CMB fluctuations, where
Je(kT) is the spherical Bessel function and ¢’ the (confor-
mal) time derivative of ¢. This corresponds to more power

0.0 r . |
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= 02}
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=
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10° 10° 10" 10°
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FIG. 4 (color online). The evolution of the gravitational po-
tential ¢ in the bulk viscosity model (solid curve) as compared
to the results for the standard ACDM paradigm (dashed curves).
The results for four different length scales (k = 0.0005, 0.001,
0.005, and 0.01 Mpc~!) are shown. Clearly ¢ decays much
faster in the bulk viscosity model.
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FIG. 5. The CMB temperature fluctuation spectrum of the bulk
viscosity model (the solid curve) as compared to the predictions
of the ACDM paradigm (the dashed curve). The model parame-
ters are chosen to be m = —0.4 and B8 = 0.236, and all other
parameters are the same in the two models.

in the CMB spectrum on large scales [24], as displayed in
Fig. 5. Note that the positions of the acoustic peaks for the
two models are the same in Fig. 5, because their back-
ground evolutions are almost indistinguishable. We can see
that comparison with CMB data could provide strong
restrictions on the present model as well. Again, because
the damping in Ap is a general feature in UDM models
based on bulk viscosity, so are the enhancements of the
ISW effect and the low-f CMB power. In principle, the
weak-lensing convergence power spectrum, which reflects
the (projected) potential distribution along the line of sight,
will also be modified (as compared to the ACDM result)
significantly by the rapid decay of the potential. This is not
considered here because the CMB spectrum itself already
places a stringent constraint on the model.

V. DISCUSSION AND CONCLUSIONS

To summarize, in this work we have investigated the
background cosmological evolution and large-scale struc-
ture formation in the bulk viscous models designed as
alternatives to dark energy. A bulk viscosity generates an
effective pressure p = —37n(p)H which, when the func-
tion n(p) is appropriately chosen, could drive the accel-
eration of the cosmic expansion. Our numerical calculation
focuses on a particular choice n(p) = ap™ with «, m
being constants. Such a choice has been considered before
in the literature [7], in the contexts of both inflationary and
late-time accelerating universes. It is interesting to note
that, with suitable values of m, the viscous matter behaves
as cold dark matter at early times and as a cosmological
constant in the future; thus this model naturally unifies dark
matter and dark energy, at least at the background level.

We have used the measurements of supernovae luminos-
ity distance and CMB shift parameter to constrain the
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model parameters and found that for the best-fitting pa-
rameters, m = —0.4 and B = 0.236 (B = «), the back-
ground evolution of the universe is almost the same as
that predicted by the ACDM model. From this viewpoint it
seems that the model is a feasible alternative to an explicit
cosmological constant.

However, when it comes to the linear perturbations, the
viscous dark matter starts to behave very differently from
cold dark matter. The pressure of the viscous dark matter
tends to resist the growth of the density contrast, and when
it becomes significant (at late times) this effect can rapidly
damp out the density perturbations, particularly on small
scales. Even though this smoothing of the viscous dark
matter density perturbation cannot be seen directly, it could
reduce the growth rate of density perturbations in the
luminous matter (which can be measured by the galaxy
power spectrum) and drive the fast decay of the gravita-
tional potential fluctuations, which subsequently modifies
the large-scale CMB spectrum, weak lensing, and CMB-
galaxy cross correlations.

Note that the model we consider has no explicit ACDM
limit, i.e., one cannot adjust the model parameters « and m
to make the model reduce to ACDM exactly, unless a
cosmological constant is added and the limit a — O is
taken. The latter case, in which we have both an explicit
cosmological constant and viscous matter, is not particu-
larly appealing because it will introduce more complexity
without solving any of the problems of ACDM. Rather, we
are interested in whether the viscous dark matter alone
could replace ACDM completely. This means that the
EoS parameter w will necessarily be of order —1 at late
times. According to our analysis in Sec. IV [cf. Egs. (24)-
(28)], it is the value of w that determines the evolution of
Ap, and so we expect that all the qualitative pictures given
in Sec. IV will remain in place in any attempts to replace
dark matter and dark energy with bulk viscous matter
alone. Viscous matter is therefore not a successful con-
tender for the dark sector.

The bulk viscosity model is another candidate to explain
the dark energy without introducing dynamical degrees of
freedom. In order to explain the accelerating cosmic ex-
pansion, one needs a negative (effective) pressure. If no
new dynamical degree of freedom is introduced, the nega-
tive pressure should be either a constant, or a function of
ppe (the energy density of the newly added matter), p,,
(the energy density of the existing matter), or H, or combi-
nations of these variables, which are all the possible vari-
ables in the background cosmology [25] (see [26,27] for a
counterexample however, where a new degree of freedom
is added but is made nondynamical). Hence, we have the
following conclusions for each of the allowed prescriptions
for a form of newly added matter [28-30]:

(1) The case p = const is simply a cosmological

constant.

(2) An example of the case p = p(ppg) is the (gener-

alized) Chaplygin gas model [14,15]. The large-
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(1]

(2]
(3]

(4]
(5]

scale structure formation here has been considered
in [16,21,22]. In this class of models we have X? «
X in general, and this leads to a term proportional to
k*>A in the evolution equation for the density con-
trast A of the newly added matter, and this term
dominates on small scales (k > J ). Depending on
the sign of this new term, A will either blow up or
oscillate and decay rapidly on small scales.

Note that this class of models is frequently consid-
ered as either UDM models or dark energy models.
In the former case, as shown in [16], the constraints
on the models are particularly stringent (note how-
ever that, as pointed out in [31,32], in these models
the nonlinear corrections can be important, which
will make the simple linear treatments inaccurate or
even incorrect, and will potentially significantly
modify the background evolution as well, depending
on the parameters used). In the latter case, density
perturbations of CDM and baryons may not be
affected significantly, much like the fact that in the
above viscous model the baryons are not greatly
affected. However, there generally will be other
distinct new features of the model [21].

Examples for the case p = p(p,,) include the
Cardassian model [33], the Palatini f(R) gravity
[34], and the @ = —3/2 Brans-Dicke theory with
a potential, the linear perturbations of which have
been considered in [35-39]. In these models, by a
similar argument as in the above, there will be a
term proportional to k*A,, in the evolution equation
for the existing matter density perturbation A ,,,. As a
result, A, will experience blowing up or rapidly
decaying oscillation on small scales at late times.
Note, however, that in this class of models the
averaging over the microscopic structure of the (ex-
isting) matter distribution may be a serious issue,
rendering the appropriately averaged cosmological
behavior very different from naive predictions
[40,41] (in a way similar to [32] though with some
differences; namely, in [40,41] the averaging is over
microscopic scales while in [32] it is over astro-
nomical scales). This is because p for the newly
added matter depends algebraically on the density of
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normal matter particles, and could be very different
inside and outside the distribution of the latter. As
the normal matter particles only occupy a tiny por-
tion of the total volume of the universe, after aver-
aging, p should be dominated by its value outside
the normal matter particles (i.e., in the vacuum),
which is likely to be a constant.

The case p = p(H) includes bulk viscosity model
with 1(p) = const considered in [18,42—44], which
is a special case for the general model we considered
in this work, with p = p(ppg, H). Here, the depen-
dence of p on H results in the evolution equation of
A for the newly added matter acquiring both a term
proportional to k>A and one proportional to k>A’.
Consequently, on small scales at late times, A will
decay rapidly without oscillation like an over-
damped oscillator. We have shown that the UDM
model based on this is generally unable to pass
several cosmological tests. Note that, as in the
case of p = p(ppg), the averaging issue again needs
to be taken into account if more precise predictions
are to be obtained [31,32], though its full effect and
significance need careful nonlinear studies such as
N-body simulations.

In all such cases (except p = const), we have seen that
the evolution of A (for either the existing matter or the
newly added matter) becomes very irregular. If the matter
with irregular perturbation evolution makes a significant
contribution to the total energy of the universe, then this
will lead to large modifications to the ACDM predictions
for the matter power spectrum, CMB, weak lensing and
similar tests. This indicates that a viable dynamical UDM
model is likely to involve extra dynamical degrees of
freedom in contrast to that provided by a (generalized)
Chaplygin gas or bulk viscosity [45-48].
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