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Primordial black holes (PBHs) can form in the early Universe via the collapse of large density

perturbations. There are tight constraints on the abundance of PBHs formed due to their gravitational

effects and the consequences of their evaporation. These abundance constraints can be used to constrain

the primordial power spectrum, and hence models of inflation, on scales far smaller than those probed by

cosmological observations. We compile, and where relevant update, the constraints on the abundance of

PBHs before calculating the constraints on the curvature perturbation, taking into account the growth of

density perturbations prior to horizon entry. We consider two simple parametrizations of the curvature

perturbation spectrum on the scale of interest: constant and power-law. The constraints from PBHs on the

amplitude of the power spectrum are typically in the range 10�2–10�1 with some scale dependence.

DOI: 10.1103/PhysRevD.79.103520 PACS numbers: 98.80.Cq

I. INTRODUCTION

Primordial black holes (PBHs) can form in the early
Universe via the collapse of large density perturbations
[1,2]. If the density perturbation at horizon entry in a given
region exceeds a threshold value, of order unity, then
gravity overcomes pressure forces and the region collapses
to form a PBH with mass of order the horizon mass. There
are a number of limits, spanning a wide range of masses, on
the PBH abundance. PBHs with mass MPBH & 5� 1014 g
will have evaporated by the present day [3,4], and their
abundance is constrained by the consequences of the
Hawking radiation emitted. More massive PBHs are con-
strained by their present-day gravitational effects. The
resulting limits on the initial mass fraction of PBHs are
very tight, � � �PBH=�tot <Oð10�20Þ, and can be used to
constrain the power spectrum of the primordial density, or
curvature, perturbations (see e.g. Ref. [5]).

The power spectrum of the primordial curvature pertur-
bation, PRðkÞ, on cosmological scales is now accurately
measured by observations of the cosmic microwave back-
ground (CMB) [6] and large-scale structure [7,8]. These
measurements can be used to constrain, and in some cases
exclude, inflation models (c.f. Ref. [9]). Cosmological
observations span a relatively small range of scales (co-
moving wave numbers between k� 1 Mpc�1 and k�
10�3 Mpc�1), and hence probe a limited region of the
inflaton potential. The PBH constraints on the curvature
power spectrum are fairly weak; the upper limit is many
orders of magnitude larger than the measurements on
cosmological scales. They do, however, apply over a very

wide range of scales (from k� 10�2 Mpc�1 to k�
1023 Mpc�1) and therefore provide a useful constraint on
models of inflation [10].
The simplest assumption for the power spectrum is a

scale-free power law with constant spectral index, n:

P RðkÞ � k3

2�2
hjRkj2i ¼ PRðk0Þ

�
k

k0

�
n�1

; (1)

where k0 is a suitably chosen normalization scale. In this
case the PBH abundance constraints require n < 1:25–1:30
[11–14]. The spectral index on cosmological scales is,
however, now accurately measured: n ¼ 0:963þ0:014

�0:015 [6].

In other words, if the power spectrum is a pure power law
then the number of PBHs formed will be completely
negligible. However, as we will now outline, if the primor-
dial perturbations are produced by inflation then the power
spectrum is not expected to be an exact power law over all
scales.
The power spectrum produced by slow-roll inflation can

be written as an expansion about a wave number k0 (e.g.
Ref. [15])

lnPRðkÞ � lnPRðk0Þ þ ½nðk0Þ � 1� ln
�
k

k0

�

þ 1

2
�ðk0Þln2

�
k

k0

�
þ . . . ; (2)

where the spectral index and its running, �ðkÞ �
d lnn=d lnk, are evaluated at k0 and can be expressed in
terms of the slow-roll parameters. This expansion is valid
provided lnðk=k0Þ is small for the relevant k values. This is
the case for cosmological observations, but not for the wide
range of scales probed by PBH constraints.
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In fact only very specific, and contrived, inflaton poten-
tials produce a constant spectral index [16]. It is possible
for the power spectrum to vary sufficiently with scale so
that PBHs can potentially be overproduced. For instance in
the running-mass inflation model [17,18], the power spec-
trum is strongly scale-dependent and PBH constraints ex-
clude otherwise viable regions of parameter space [19,20].
More generally, Peiris and Easther [21] recently found,
using slow-roll reconstruction, that inflation models which
are consistent with cosmological data can overproduce
PBHs.

Motivated by this, we compile and update the constraints
on the abundance of PBHs (Sec. II). We then translate the
abundance constraints into detailed generalized constraints
on the power spectrum of the curvature perturbations
(Sec. III), taking into account the evolution of the density
perturbations prior to horizon entry.

II. PBH ABUNDANCE CONSTRAINTS

The PBH constraints can, broadly, be split into two
classes: those that arise from their present-day gravita-
tional consequences and those that arise from the products
of their evaporation. In both cases, in order to constrain the
primordial density or curvature perturbation, we need to
translate the constraints into limits on the initial PBH mass
fraction.

Throughout we will assume that the PBHs form at a
single epoch and their mass is a fixed fraction, fM, of the

horizon mass MPBH ¼ fMMH, where fM � ð1=3Þ3=2 [22].
A scale-invariant power spectrum produces an extended

PBH mass function dnPBH=dMPBH / M�5=2
PBH [2,23], how-

ever (as discussed in the Introduction above) in this case
the number density of PBHs would be completely negli-
gible [10,24]. For scale-dependent power spectra which
produce an interesting PBH abundance it can be assumed
that all PBHs form at a single epoch [25]. As a conse-
quence of near critical phenomena in gravitational collapse
[26–28] the PBHmass may, however, depend on the size of
the fluctuation from which it forms [29–31] in which case
the mass function has finite width. Most of the constraints
that we discuss below effectively apply to the mass func-
tion integrated over a range of masses. The range of
applicability is usually significantly larger than the width
of the mass function produced by critical collapse, so in the
absence of a concrete prediction or model for the primor-
dial power spectrum in most cases it is reasonable to
approximate the mass function as a delta-function. The
constraints from cosmic-rays and gamma-rays produced
by recently evaporating PBHs are an exception to this.
These constraints depend significantly on the PBH mass
function and therefore need to be calculated on a case by
case basis [32–36]. We therefore do not include these
constraints in our calculation of generalized constraints
on the curvature perturbation power spectrum.

Taking into account the cosmological expansion, the
initial PBH mass fraction, �ðMPBHÞ, is related to the
present-day PBH density, �0

PBH, by

�ðMPBHÞ � �i
PBH

�i
crit

¼ �eq
PBH

�eq
crit

�
ai
aeq

�
� �0

PBH

�
ai
aeq

�
; (3)

where a is the scale factor, ‘‘eq’’ refers to matter-radiation
equality and �crit is the critical energy density. Using the
constancy of the entropy, (s ¼ g�sa3T3), where g?s refers
to the number of entropy degrees of freedom, we relate the
scale factor to the temperature of the Universe and using

the radiation density, � ¼ �2

30 g?T
4, and horizon mass,

MH ¼ 4�
3 �H�3, we obtain

�ðMPBHÞ ¼ �0
PBH

�
geq?
gi?

�
1=12

�
MH

M
eq
H

�
1=2

; (4)

where g? is the total number of effectively massless de-
grees of freedom and we have taken g?s � g?. The horizon
mass at matter-radiation equality is given by (c.f. Ref. [37])

M
eq
H ¼ 4�

3
�eqH

�3
eq ¼ 8�

3

�0
rad

aeqk
3
eq

: (5)

Inserting numerical values, gi? � 100, g
eq
? � 3, �0

radh
2 ¼

4:17� 10�5, �crit ¼ 1:88� 10�29h2 g cm�3, keq ¼
0:07�0

mh
2 Mpc�1, a�1

eq ¼ 24000�0
mh

2 and �0
mh

2 ¼
0:1326� 0:0063 [6] gives M

eq
H ¼ 1:3� 1049ð�mh

2Þ�2 g
so that

�ðMPBHÞ ¼ 6:4� 10�19�0
PBH

�
MPBH

fM5� 1014 g

�
1=2

: (6)

As first shown by Hawking [38] a black hole with mass
MPBH emits thermal radiation with temperature

TBH ¼ 1

8�GMPBH

� 1:06

�
1013 g

MPBH

�
GeV: (7)

The current understanding of PBH evaporation [39] is that
PBHs directly emit all particles which appear elementary
at the energy scale of the PBH and have rest mass less than
the black hole temperature. Thus if the black hole tem-
perature exceeds the QCD confinement scale, quark and
gluon jets are emitted directly. The quark and gluon jets
then fragment and decay producing astrophysically stable
particles: photons, neutrinos, electrons, protons and their
antiparticles. Taking into account the number of emitted
species the mass loss rate can be written as [40]

dMPBH

dt
¼ �5:34� 1025�ðMPBHÞM�2

PBH g s�1; (8)

where �ðMPBHÞ takes into account the number of directly
emitted species (�ðMPBHÞ ¼ 0:267g0 þ 0:147g1=2 þ
0:06g1 þ 0:02g3=2 þ 0:007g2 where gs is the number of

degrees of freedom with spin s) and is normalized to one
for PBHs with mass MPBH 	 1017 g which can only emit
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photons and neutrinos. For lighter PBHs �ð5� 1014 g<
MPBH < 1017 gÞ ¼ 1:569. The PBH lifetime is then given
by [40]

� � 6:24� 10�27M3
PBH�ðMPBHÞ�1 s: (9)

From the Wilkinson Microwave Anisotropy Probe
(WMAP) 5 yr data [6] the present age of the Universe is
t0 ¼ 13:69� 0:13 Gyr. The initial mass of a PBH which is
evaporating today is therefore MPBH � 5� 1014 g [4],
while less massive PBHs will have evaporated by the
present day.

We will now compile, and where relevant update, the
PBH abundance constraints. We divide the constraints into
two classes: those for PBHs with MPBH > 5� 1014 g,
arising from their gravitational consequences (Sec. II A)
and those forMPBH < 5� 1014 g arising from their evapo-
ration (Sec. II B).

A. Gravitational constraints

1. Present-day density

The present-day density of PBHs with MPBH > 5�
1014 g which have not evaporated by today must be less
than the upper limit on the present-day cold dark matter
(CDM) density. Using the 5 yr WMAP measurements [6],
�0

CDMh
2 ¼ 0:1099� 0:0062, h ¼ 0:719þ0:026

�0:027, gives

�0
PBH < 0:25; (10)

which, using Eq. (6), leads to

�ðMPBHÞ< 1:6� 10�19

�
MPBH

fM5� 1014 g

�
1=2

for MPBH > 5� 1014 g: (11)

2. Lensing of cosmological sources

If there is a cosmologically significant density of com-
pact objects then the probability that a distant point source
is lensed is high [41]. The limits as given below have been
calculated assuming an Einstein de Sitter Universe, �m ¼
1, and a uniform density of compact objects. The recalcu-
lation of the constraints for a� dominated Universe would
be nontrivial. The constraints would, however, be tighter
(due to the increased path length and the larger optical
depth to a given redshift) [42], and the constraints given
below are therefore conservative and valid to within a
factor of order unity.

Gamma-ray bursts.—Light compact objects can femto-
lens gamma-ray bursts (GRBs), producing a characteristic
interference pattern [43]. A null search using BATSE data
leads to a constraint [44]

�c < 0:2 for 10�16M
 <MPBH < 10�13M
; (12)

where �c is the density of compact objects, assuming a
mean GRB redshift of one.

Quasars.—Compact objects with mass 10�3M
 <
MPBH < 300M
 can microlens quasars, amplifying the
continuum emission without significantly changing the
line emission [45]. Limits on an increase in the number
of small equivalent width quasars with redshift lead to the
constraint [42]:

�c < 0:2 for 0:001M
 <MPBH < 60M
; (13)

assuming �tot ¼ �c.
Radio sources.—Massive compact objects, 106M
 <

MPBH < 108M
, can millilens radios sources producing
multiple sources with milliarcsec separation [46]. A null
search using 300 compact radio sources places a constraint
[47]

�c < 0:013 for 106M
 <MPBH < 108M
: (14)

3. Halo fraction constraints

There are also constraints from the gravitational conse-
quences of PBHs within the Milky Way halo. They are
typically expressed in terms of the fraction of the mass of
the Milky Way halo in compact objects, fh ¼
MMW

PBH=M
MW
tot . They require some modeling of the

Milky Way halo (typically the density and/or velocity
distribution of the halo objects). Consequently there is a
factor of a few uncertainty in the precise values of the
constraints.
Assuming that PBHs make up the same fraction of the

halo dark matter as they do of the cosmological cold dark
matter, and ignoring the uncertainties in the CDM density
(since this is negligible compared with the uncertainties in
halo fraction limit calculations), we can relate the halo
fraction to the PBH cosmological density:

fh � MMW
PBH

MMW
CDM

� �0
PBH

�0
CDM

¼ �0
PBHh

2

�0
CDMh

2
� 5�0

PBH: (15)

Microlensing.—Solar and planetary mass compact ob-
jects in the Milky Way halo can microlens stars in the
Magellanic Clouds, causing temporary one-off brightening
of the microlensed star [48]. The relationship between the
observed optical depth, �, (the probability that a given star
is amplified by more than a factor of 1.34) and the fraction
of the halo in MACHOs depends on the distribution of
MACHOs in the Milky Way halo. For the ‘‘standard’’ halo
model used by the microlensing community (a spherical
cored isothermal sphere) � � 5� 10�7fh [49,50], with the
derived value of limits on fh varying by factors of order
unity for other halo models.
The EROS Collaboration find a 95% upper confidence

limit � < 0:36� 10�7 which they translate into limits on
the halo fraction [51]:

fh < 0:04 for 10�3M
 <MPBH < 10�1M
; (16)

or
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fh < 0:1 for 10�6M
 <MPBH <M
: (17)

Combined EROS and MACHO Collaboration limits on
short duration events constrain the abundance of light
MACHOs [52]

fh < 0:25 for 10�7M
 <MPBH < 10�3M
; (18)

while a dedicated search by the MACHO Collaboration for
long (> 150 days) duration events leads to limits on more
massive MACHOs [53]:

fh < 1:0 for 0:3M
 <MPBH < 30M
; (19)

or

fh < 0:4 for MPBH < 10M
: (20)

Combined, these limits give

fh < 0:25 for 10�7M
 <MPBH < 10�6M
; (21)

fh < 0:1 for 10�6M
 <MPBH <M
; (22)

fh < 0:4 for M
 <MPBH < 10M
: (23)

Wide binary disruption.—More massive compact ob-
jects would affect the orbital parameters of wide binaries
[54,55]. Comparison of the separations of observed halo
binaries with simulations of encounters between compact
objects and wide binaries lead to a constraint [56]

fh < 0:2 for 103M
 <MPBH < 108M
: (24)

See however Ref. [57] for a recent reexamination of this
constraint which leads to a somewhat weaker limit.

Disk heating.—Massive halo objects traversing the
Galactic disk will heat the disk, increasing the velocity
dispersion of the disk stars [58]. This leads to a limit, from
the observed stellar velocity dispersions, on the halo frac-
tion in massive objects [59]

fh <
Mdisk;lim

MPBH

;

Mdisk;lim ¼ 3� 106
�

�h

0:01M
 pc�3

��1
�

�obs

60 km s�1

�
2

�
�

ts
1010 yr

��1
M
; (25)

where �h is the local halo density and �obs and ts are the
velocity dispersion and age of the halo stars, respectively.

B. Evaporation constraints

1. Diffuse gamma-ray background

PBHs with masses in the range 2� 1013 <MPBH < 5�
1014 g evaporate between z � 700 and the present day and
can contribute to the diffuse gamma-ray background
[23,24,32,60–62]. As discussed above, these constraints
depend significantly on the PBH mass function and hence
we will not consider them further.

2. Cosmic-rays

The abundance of PBHs evaporating around the present
day can also be constrained by limits on the abundance of
cosmic-rays (in particular positrons and antiprotons)
[23,63]. The constraints from antiprotons have been calcu-
lated for several mass functions and are essentially equiva-
lent to those from the diffuse gamma-ray background
[35,64].

3. Neutrinos

Neutrinos produced by PBH evaporation contribute to
the diffuse neutrino background. The neutrino spectrum,
and hence the resulting PBH abundance constraints, de-
pend strongly on the PBH mass function, but the con-
straints are typically weaker than those from the diffuse
gamma-ray background [33,34].

4. Hadron injection

PBHs with mass MPBH < 1010 g have a lifetime � <
103 s and evaporate before the end of nucleosynthesis,
and can therefore affect the light element abundances
[65–68]. The constraints from hadron injection have been
reevaluated (see Ref. [69]), taking into account the emis-
sion of fundamental particles and using more up-to-date
measurements of the Deuterium and 4He abundances
(D=H � 4:0� 10�5, Yp � 0:252 respectively):

�ðMPBHÞ< 10�20 for 108 g<MPBH < 1010 g; (26)

�ðMPBHÞ< 10�22 for 1010 g<MPBH < 3� 1010 g:

(27)

5. Photodissociation of deuterium

The photons produced by PBHs which evaporate be-
tween the end of nucleosynthesis and recombination can
photodissociate deuterium [70]. The resulting constraints
on the PBH abundance have been updated, in the context of
braneworld cosmology in Ref. [71]. Adapting that calcu-
lation to the standard cosmology we find:

�ðMPBHÞ< 3� 10�22

�
MPBH

fM10
10 g

�
1=2

for 1010 g<MPBH < 1013 g: (28)

6. CMB distortion

Photons emitted by PBHs which evaporate between z�
106 and recombination at z� 103 can produce distortions
in the cosmic microwave background radiation [72]. Using
the COBE/FIRAS limits on spectral distortions of the
CMB from a black body spectrum [73], Ref. [74] finds

�ðMPBHÞ< 10�21 for 1011 g<MPBH < 1013 g: (29)
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7. (Quasi-)stable massive particles

In extensions of the standard model there are generically
stable or long-lived massive (Oð100 GeVÞ) particles. Light
PBHs with mass MPBH & 1011 g can emit these particles
and their abundance is hence limited by the present-day
abundance of stable massive particles [75] and the decay of
long-lived particles [76,77].1

Gravitinos in supergravity theories and moduli in string
theories are generically quasistable and decay after big
bang nucleosynthesis, potentially altering the light element
abundances. The effect of their decay on the products of
big bang nucleosynthesis leads to a constraint on the initial
PBH fraction [76]:

�ðMPBHÞ< 5� 10�19

�
gi?
200

�
1=4

�
�

3

��
x�

6� 10�3

��1

�
�
fMMPBH

109 g

��1=2
� �Y�

10�14

�
for MPBH < 109 g;

(30)

where x� is the fraction of the luminosity going into

quasistable massive particles, gi? is the initial number of
degrees of freedom (taking into account supersymmetric
particles), � is the mean energy of the particles emitted in
units of the PBH temperature and �Y� is the limit on the

quasistable massive particle number density to entropy
density ratio.
In supersymmetric models, in order to avoid the decay of

the proton, there is often a conserved quantum number R-
parity, which renders the Lightest Supersymmetric Particle
(LSP) stable, and the present-day density of such stable
particles produced via PBH evaporation must not exceed
the upper limit on the present-day CDM density [75]. This
leads to a constraint on the initial PBH fraction
(c.f. Ref. [76]):

�ðMPBHÞ< 6� 10�19h2
�
gi?
200

�
1=4

�
�

3

��
xLSP
0:6

��1

�
�
fMMPBH

1011 g

��1=2
�

mLSP

100 GeV

��1

for MPBH < 1011 g

�
100 GeV

mLSP

�
; (31)

TABLE I. Summary of constraints on the initial PBH abundance, �ðMPBHÞ.
Description Mass range Constraint on �ðMPBHÞ

Gravitational constraints

Present-day PBH density MPBH > 5� 1014 g <2� 10�19ð MPBH

fM5�1014 g
Þ1=2

GRB femtolensing 10�16M
 <MPBH < 10�13M
 <1� 10�19ð MPBH

fM5�1014 g
Þ1=2

Quasar microlensing 0:001M
 <MPBH < 60M
 <1� 10�19ð MPBH

fM5�1014 g
Þ1=2

Radio source microlensing 106M
 <MPBH < 108M
 <6� 10�20ð MPBH

fM5�1014 g
Þ1=2

Halo densitya

LMC Microlensing 10�7M
 <MPBH < 10�6M

10�6M
 <MPBH <M

M
 <MPBH < 10M


<3� 10�20ð MPBH

fM5�1014 g
Þ1=2

<1� 10�20ð MPBH

fM5�1014 g
Þ1=2

<5� 10�20ð MPBH

fM5�1014 g
Þ1=2

Wide binary disruption 103M
 <MPBH < 108M
 <3� 10�20ð MPBH

fM5�1014 g
Þ1=2

Disk heating MPBH > 3� 106M
 <2� 106 1

f1=2M

ð MPBH

5�1014 g
Þ�1=2

Evaporation

Diffuse gamma-ray background 2� 1013 g<MPBH < 5� 1014 g depends on PBH mass function

Cosmic-rays similar to DGRB depends on PBH mass function

Neutrinos similar to DGRB depends on PBH mass function

Hadron injection 108 g<MPBH < 1010 g <10�20

1010 g<MPBH < 3� 1010 g <10�22

Photodissociation of deuterium 1010 g<MPBH < 1013 g <3� 10�22ð MPBH

fM1010 g
Þ1=2

CMB distortion 1011 g<MPBH < 1013 g <10�21

(Quasi-)stable massive particlesb MPBH < 1011 g <� 10�18ðfMMPBH

1011 g
Þ�1=2

Present-day relic densityc MPBH < 5� 1014 g <4 1

f1=2M frel
ð MPBH

5�1014 g
Þ3=2

aThese constraints depend on the PBH distribution within the Milky Way halo and hence have a factor of order a few uncertainty.
bConservative summary, depends on physics beyond the standard model of particle physics.
cOnly applies if evaporation leaves stable relic.

1More massive PBHs can also emit these particles in the late
stages of their evaporation, when their mass drops below
�109 g. However the resulting constraints are substantially
weaker than those from hadron injection during nucleosynthesis.
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where mLSP is the mass of the LSP and xLSP is the fraction
of the luminosity carried away by the LSP.

These constraints depend on the (uncertain) details of
physics beyond the standard model, and we therefore
summarize them conservatively as

�ðMPBHÞ & 10�18

�
fMMPBH

1011 g

��1=2
for MPBH < 1011 g:

(32)

8. Present-day relic density

It has been argued that black hole evaporation could
leave a stable Planck mass relic [78–80], in which case the
present-day density of relics must not exceed the upper
limit on the CDM density

�0
rel < 0:25: (33)

Writing the relic mass as Mrel ¼ frelMPl this gives a tenta-
tive constraint

�ðMPBHÞ< 4
1

f1=2M frel

�
MPBH

5� 1014 g

�
3=2

for MPBH < 5� 1014 g: (34)

The constraints are summarized in Table I and are dis-
played in Fig. 1. As can be seen from Fig. 1, the constraints
probe a very large range of scales, and in some cases

several constraints overlap across particular mass ranges.
The solid line indicates the strongest constraints for each
mass scale, and we consider only these when constraining
the primordial power spectrum in Sec. III.

III. CONSTRAINTS ON THE CURVATURE
PERTURBATION POWER SPECTRUM

We focus in the following on the standard case of PBH
formation, which applies to scales which have left the
horizon at the end of inflation. It has recently been shown
[81,82] that PBHs can also form on scales which never
leave the horizon during inflation, and therefore never
become classical. We also only consider Gaussian pertur-
bations and a trivial initial radial density profile, and refer
to Ref. [83] for the effects of non-Gaussian perturbations
and to Refs. [84,85] for estimates on the effect of devia-
tions from a trivial initial density profile.
A region will collapse to form a PBH if the smoothed

density contrast, in the comoving gauge, at horizon cross-
ing (R ¼ ðaHÞ�1), �horðRÞ, satisfies the condition �c �
�horðRÞ � 1 [22], where �c � 1=3. The mass of the PBH
formed is approximately equal to the horizon mass at
horizon entry, MPBH ¼ fMMH, which is related to the
smoothing scale, R, by [37]

MH ¼ M
eq
H ðkeqRÞ2

�
g
eq
?;

g?

�
1=3

; (35)

where Meq
H ¼ 1:3� 1049ð�mh

2Þ�2 g is the horizon mass
at matter-radiation equality.
Taking the initial perturbations to be Gaussian, the

probability distribution of the smoothed density contrast,
Pð�horðRÞÞ, is given by (e.g. Ref. [86])

Pð�horðRÞÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
�horðRÞ

exp

�
� �2

horðRÞ
2�2

horðRÞ
�
; (36)

where �ðRÞ is the mass variance

�2ðRÞ ¼
Z 1

0
W2ðkRÞP �ðk; tÞ dkk ; (37)

andWðkRÞ is the Fourier transform of the window function
used to smooth the density contrast. We assume a Gaussian
window function for which WðkRÞ ¼ expð�k2R2=2Þ.
The fraction of the energy density of the Universe con-

tained in regions dense enough to form PBHs is then given,
as in Press-Schechter theory [87] by,

�ðMPBHÞ ¼ 2
MPBH

MH

Z 1

�c

Pð�horðRÞÞd�horðRÞ: (38)

This leads to a relationship between the PBH initial mass
fraction and the mass variance,

FIG. 1 (color online). The limits on the initial mass fraction of
PBHs as a function of PBH mass (in grams). The solid lines
represent the tightest limits for each mass range and the dotted
lines are the weaker limits where there is an overlap between
constraints. As discussed in Sec. II we have not considered the
diffuse gamma-ray background constraint which applies for 2�
1013 g<MPBH < 5� 1014 g as it depends significantly on the
PBH mass function.
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�ðMPBHÞ ¼ 2fMffiffiffiffiffiffiffi
2�

p
�horðRÞ

Z 1

�c

exp

�
� �2

horðRÞ
2�2

horðRÞ
�
d�horðRÞ;

� fMerfc

�
�cffiffiffi

2
p

�horðRÞ
�
: (39)

The constraints on the PBH initial mass fraction can there-
fore be translated into constraints on the mass variance by
simply inverting this expression.

In order to calculate the mass variance we need the
density contrast in the comoving, or total matter, gauge
as a function of time and scale (c.f. Refs. [14,36]). To
calculate this we take the expressions for the evolution of
perturbations in the conformal Newtonian gauge, valid on
both sub- and super-horizon scales, and carry out a gauge
transformation to the total matter gauge (for further details
see the Appendix). We find

�ðk; tÞ ¼ � 4ffiffiffi
3

p
�
k

aH

�
j1ðk=

ffiffiffi
3

p
aHÞR; (40)

where j1 is a spherical Bessel function and R is the
primordial curvature perturbation. Hence the power spec-
trum of the density contrast is given by

P �ðk; tÞ ¼ 16

3

�
k

aH

�
2
j21ðk=

ffiffiffi
3

p
aHÞPRðkÞ: (41)

Substituting this into Eq. (37), and setting R ¼ ðaHÞ�1,
gives

�2
horðRÞ ¼

16

3

Z 1

0
ðkRÞ2j21ðkR=

ffiffiffi
3

p Þ expð�k2R2ÞPRðkÞdk
k
:

(42)

Since the integral is dominated by scales k� 1=R we
assume that, over the scales probed by a specific PBH
abundance constraint, the curvature power spectrum can
be written as a power law

P RðkÞ ¼ PRðk0Þ
�
k

k0

�
nðk0Þ�1

: (43)

This assumption is valid for general slow-roll inflation
models such as those considered in Refs. [19–21]. Using
Eqs. (39) and (42) we can translate the PBH abundance
constraints in Sec. II into constraints on the amplitude of
the curvature perturbation spectrum. For each constraint
we take the pivot point, k0, to correspond to the scale of
interest, k0 ¼ 1=R, and consider a range of values for nðk0Þ
consistent with slow-roll inflation, 0:9< nðk0Þ< 1:1. The
resulting constraints for nðk0Þ ¼ 1 are displayed in Fig. 2.
For nðk0Þ ¼ 0:9 and 1.1 the constraints are weakened or
strengthened, respectively, at the order of 2%. This indi-
cates that, for slow-roll inflation models, the constraints are
not particularly sensitive to the exact shape of the power
spectrum in the vicinity of the scale of interest. Thelarge-
scale constraints (small k) come from various astrophysical
sources such as Milky Way disk heating, wide binary
disruption and a variety of lensing effects. The small-scale

constraints generally arise from the consequences of PBH
evaporation, in particular, on nucleosynthesis and the
CMB. These evaporation constraints lead to tighter con-
straints on the abundance of PBHs and therefore the pri-
mordial power spectrum is more tightly constrained on
these scales. In general the constraints on the amplitude
of the primordial power spectrum span the range PR <
10�2–10�1 with some scale dependence.

IV. SUMMARY

We have compiled, and where relevant updated, the
observational limits on the initial abundance of primordial
black holes. We then translated these limits into general-
ized constraints on the power spectrum of the primordial
curvature perturbation, taking into account the full time
evolution of the density contrast. The constraints on the
amplitude of the power spectrum are typically in the range
PR < 10�2–10�1 with some scale dependence. This is
slightly weaker than the PR < 10�3–10�2 assumed in
Ref. [21]. These more accurate generalized constraints
could be used to more accurately constrain the parameter
space of slow-roll inflation models (c.f. [11–14,19–21]).
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APPENDIX: DENSITYCONTRASTCALCULATION

The general, scalar, perturbed metric can be written as
(c.f. [86]):

ds2 ¼ a2ð�Þf�ð1þ 2�Þd�2 þ 2BðsÞ
i d�dxi

þ ½ð1� 2c Þ�ij þ 2EðsÞ
ij �dxidxjg; (A1)

where BðsÞ
i and EðsÞ

ij can be written as

BðsÞ
i ¼ � iki

k
B; (A2)

EðsÞ
ij ¼

�
� kikj

k2
þ 1

3
�ij

�
E; (A3)

where �, B, c , E are arbitrary scalar functions which
describe the perturbations on a Friedmann-Robertson-
Walker (FRW) background. Performing a first-order coor-
dinate change, ~� ¼ �þ 	0, ~xi ¼ xi þ 	i, the scalar metric
variables in the new gauge (denoted by a tilde) are then
given by

~� ¼ �� 	00 � h	0; (A4)

~B ¼ B� 	0 þ k	0; (A5)

~c ¼ c þ h	0; (A6)

~E ¼ E� k	; (A7)

where the scalar part of 	ið�; xiÞ is defined as 	iðsÞ ¼
� iki

k 	, primes denote derivatives with respect to conformal

time �, and h ¼ a0=a ¼ aH. The density contrast and the
velocity perturbation transform as

~� ¼ �þ 3hð1þ wÞ	0; (A8)

~V ¼ V þ 	0; (A9)

where V is related to the scalar part of the 3-velocity

vector, viðsÞ ¼ � iki

k V.

Reference [88] calculated the evolution of the density
and velocity perturbations in the conformal Newtonian
gauge (which has BN ¼ EN ¼ 0).
They found that during radiation domination (w ¼ 1=3)

for a fluid with vanishing anisotropic stress (and hence
�N ¼ c N), the remaining perturbations evolve according
to

�N ¼ j1ð
Þffiffiffi
3

p


C; (A10)

�N ¼ 2ffiffiffi
3

p
�
2
j1ð
Þ



� j0ð
Þ � 
j1ð
Þ
�
C; (A11)

VN ¼
�
j1ð
Þ � 


2
j0ð
Þ

�
C; (A12)

where 
 ¼ k=
ffiffiffi
3

p
aH and C is a normalization constant.

For the PBH abundance calculation we need the density
perturbation in the total matter gauge (T), which is defined
by BT þ VT ¼ 0, and ET ¼ 0. Since the comoving curva-
ture perturbation,R, is identical to the curvature perturba-
tion in the total matter gauge, c T (see e.g. [89]), we get
using Eqs. (A4)–(A7),

R ¼ �N � h

k
VN: (A13)

Similarly, the density contrast in the total matter gauge
(during radiation domination) is

�T ¼ �N � 4
h

k
VN: (A14)

Using the solutions Eqs. (A10) and (A12) above we get

R ¼ C

2
ffiffiffi
3

p j0ð
Þ; (A15)

which reduces in the small 
 (large-scale) limit to C ¼
2

ffiffiffi
3

p
R, allowing us to replace the normalization constantC

with the large-scale limit of R. Equation (A14) then
becomes, using Eqs. (A11) and (A12),

�T ¼ � 4ffiffiffi
3

p
�
k

aH

�
j1ðk=

ffiffiffi
3

p
aHÞR: (A16)
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