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We examine the structure of a cosmic string endowed with two Abelian neutral currents, associated

with two global Uð1Þ symmetries. We first resolve the microstructure and show that it depends on two

state parameters, namely, the squares of the phase gradients of the current carriers. We then provide a

macroscopic description for such a string and show that it depends on an additional Lorentz-invariant state

parameter that relates the two currents. We find that in most of the parameter space, the two-current string

is essentially equivalent to the single-current-carrying string; i.e., only one field condenses onto the defect.

In the regions where two currents are present, we find that as far as stability is concerned, one can

approximate the dynamics with good accuracy using an analytic model based on either a logarithmic (on

the electric side, i.e., for timelike currents) or a rational (on the magnetic side, i.e., for spacelike currents)

world sheet Lagrangian. We end up by generalizing to the N current case.
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I. INTRODUCTION

Among all possible topological defects [1–3] that may
have appeared as consequences of early phase transitions,
only cosmic strings may still be compatible with cosmol-
ogy. They generically arise [4,5] in the hybrid inflationary
models [6,7] that are implemented in grand unified theories
[8–10] and are an unavoidable consequence of grand uni-
fied theories and supersymmetry breaking when there ex-
ists a low-energy unbroken R parity. More recently, cosmic
strings have been the subject of renewed interest because it
has been realized that such configurations could also exist
as cosmologically relevant solutions in the context of string
theory whereD3= �D3 andD3=D7 brane inflationary models
lead to the formation of D strings at the end of the expand-
ing phase. It has been suggested [11] that these objects
correspond to D-term cosmic strings in supergravity
theory.

In many instances, e.g., in supersymmetric theories [12],
the Lorentz invariance that is typical of Nambu-Goto
strings [13,14] used in cosmological settings [15–21] can
be broken by the appearance of currents flowing along the
world sheet [22,23]. This effect is known to halt cosmic
string loop decay caused by dissipative effects and yield
new equilibrium configurations named vortons [24–29].
The density of these vortons is tightly constrained by the
value of the normalized density � � �=�crit today and by
primordial nucleosynthesis [30,31]. A non-current-
carrying string network also has a characteristic energy

scalemcs which is constrained directly by the time stability
measurements of binary pulsars [32] and indirectly by the
observation that the cosmic microwave background [33] is
dominated by the signal produced by the amplification of
primordial density fluctuations during inflation [34].
Vorton (equilibrium) states can be destabilized [35–37]

through various mechanisms, e.g., with a coupling of the
Higgs field to an electromagnetic current [38–40], with the
existence of shocks or in the presence of high curvature
regions [41,42]. The vortons are described by means of
various possible internal equations of state [43–47] which
stem from a detailed study of the internal microscopic
structure of the vortices that arise from the coupling of
the string-forming Higgs field to a bosonic current carrier
[48–50]. More recently, vorton instabilities have (to some
extent) been confirmed in large field theory simulations
[51].
The macroscopic formalism developed by Carter [43–

46] and that describes general p-branes embedded in a
n-dimensional spacetime can be used to study the dynam-
ics of current-carrying cosmic strings. As it stands, the
formalism applies to the case of a single current for which
a single state parameter provides a complete description of
the string. However, it cannot be used for a system de-
scribed by two or more state parameters as is the case when
the Higgs field couples to fermions [52]. It gets worse when
massive modes are present in the spectrum [53], because
the current induces qualitatively different macroscopic
properties when the state parameters are changed. There
is no complete description of a general ‘‘many-current’’
world sheet and only the case of a ‘‘cold’’ superconducting
current coupled to a ‘‘hot’’ entropy current appropriate for
the ‘‘warm’’ string model has been treated [54] (see how-
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ever the objections concerning the use of the word ‘‘super-
conducting’’ string in this reference).

The purpose of this work is to generalize the above to an
arbitrary number of currents flowing along a cosmic string.
We do this by first considering the simplest possible ex-
tension of the Witten neutral (also referred to as global)
model, namely, that of two scalar field condensates.
Witten’s so-called superconducting model was based on
an extra Uð1Þ invariance realized by means of a scalar field
coupled with the string-forming Higgs field. The scalar
field, in general, also couples to a gauge field, so the
associated Uð1Þ can be identified with electromagnetism,
hence the original use of the word superconducting. The
global Witten model [49] is a simplification of Witten’s
original proposal in which no gauge field is present: the
Uð1Þ symmetry is of the global type, so that the current-
carrying strings it describes are purely local, having no
possible long-range interactions. As shown in Ref. [40],
such a model reproduces the mechanical properties of the
strings, and the coupling with electromagnetism is only a
small correction with a negligible backreaction on the
dynamics.

In this work, we extended Witten’s neutral model by
duplicating the scalar carrier sector. The new symmetry,
apart from the broken string-forming local Uð1Þ, consists
in the product of two global Uð1Þ’s. In this case, coupling
with electromagnetism through the approximation of
Ref. [40] is possible for only one of these extra Uð1Þ’s.
However, being concerned only with the mechanical prop-
erties of the underlying string, we do not consider this
possibility.

The two-current case provides the one-dimensional ana-
log of the ordinary 3D Landau superfluid model [55]. It has
been shown that hydrodynamical systems with more than
one current present new [56] instabilities, as, e.g., the two-
stream plasma instability [57,58] (see Ref. [59] for a
pedagogical presentation of this issue). In order to test
the stability of a vorton state against perturbations in
more than a single current, we provide in this paper one
more step towards a complete formalism for the many-
current-carrying cosmic string. For that purpose, we con-
sider in Sec. II a specific model with two scalar fields
trapped in the vortex core, leading to two conserved cur-
rents, and thus three boost-invariant state parameters. We
provide numerical solutions for the field profiles as a
function of the radial coordinate in Sec. III. Being strictly
local, the solutions of the field equations in the microscopic
theory for the Nielsen-Olesen vortex ansatz [60] depend on
only two out of the three state parameters, respectively,
proportional to the amplitude of the two independent cur-
rents. These two state parameters therefore completely
determine the string structure at any point along the world
sheet. On the other hand, the integrated quantities intro-
duced in Sec. IVand the world sheet dynamics described in
Secs. V, VI, and VII exhibit an additional dependence on a

third state parameter, a quantity proportional to the scalar
product of the two currents. In fact, Secs. V and VI deal
with the world sheet description of a string endowed with a
set ofN condensates, in which case there exists, in addition
to the usual N state parameters, an extra set of NðN � 1Þ=2
state parameters given by the scalar products of all pairs of
distinct currents. This number is equal to 1 whenN ¼ 2. In
Secs. V, VI, and VII, we also consider the internal stability
of a string endowed with N condensates (N ¼ 2 in
Sec. VII) and show that, contrary to what the three-
dimensional case suggests, no new instability is predicted
when several currents are involved.
Finally, it is known that single-current-carrying strings

can be described by a macroscopic Lagrangian depending
on a single string state parameter [47,49]. In the case at
hand, and since the field equations only depend on two
state parameters, one could think of similarly describing a
two-current string by means of a sum of Lagrangians, one
for each current. In Sec. VIII, we compare the dynamics of
the string as given by the fully interacting theory of pre-
vious sections to the dynamics of this sum of individual
Lagrangians that describe noninteracting fields and that
provide the possibility to perform a fully analytic treatment
of the string physics. In principle, the two approaches do
not describe the exact same physics, even when the cou-
pling term of the fields in fully interacting theory is set to
zero, but our results exhibit satisfactory agreement be-
tween the two for zero and even for weak coupling offering
the possibility to study strings with several weakly coupled
field condensates in a fully analytic way.

II. TWO COMPLEX SCALAR FIELDS MODEL

In order to introduce a current-current coupling in a
vorton state, we couple a Higgs field H, charged under a
broken local Uð1Þ symmetry with associated gauge field
C� and charge q, to two uncharged complex scalar fields�

and �, with global Uð1Þ symmetry,

L ¼ � 1

2
ðD�HÞyðD�HÞ � 1

4
C��C

�� � �

8
ðjHj2 � �2Þ2

� 1

2
@��

?@��� 1

2
@��

?@��� VðH;�;�Þ: (1)

The interaction potential for � and � is given by

VðH;�;�Þ ¼ 1

2
m2

�j�j2 þ 1

2
m2

�j�j2 þ 1

2
ðjHj2 � �2Þ

� ðf�j�j2 þ f�j�j2Þ þ 1

4
��j�j4

þ 1

4
��j�j4 þ g

2
j�j2j�j2: (2)

The kinetic term for H reads D�H ¼ ð@� þ iqC�ÞH and

C�� � @�C� � @�C�. The vacuum is defined as usual as

the minimum of the potential, i.e., through �V=�H ¼
�V=�� ¼ �V=�� ¼ 0. This leads to a system of three
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cubic equations for the field amplitudes jHj, j�j and j�j.
Although these equations are soluble in general, we shall
only be interested in the regions of parameter space for
which the absolute minimum is at jhHi0j2 ¼ �2 [breaking
the Uð1Þlocal symmetry] and � ¼ � ¼ 0. Such a choice is
made implicitly with the potential written as in Eq. (2).

There exist two additionalUð1Þglobal symmetries, carried
by � and �, that independently leave the vacuum un-
changed. Before symmetry breaking, one therefore has
Uð1Þlocal �Uð1Þglobal �Uð1Þglobal. In the case f� ¼ f�
and �� ¼ �� ¼ g, one has Uð1Þglobal �Uð1Þglobal !
SUð2Þglobal.

At zero temperature, the theory stemming from Eq. (1)
admits vortexlike solutions. In order to study locally cylin-
drically symmetric cosmic string configurations, the refer-
ence frame is chosen locally aligned with the vortex, and
the z axis is defined to lie along the string. We denote by r
and 	 the usual cylindrical coordinates centered on the
string location and express the solution using the
Nielsen-Olesen [60] ansatz

Hðx
Þ ¼ hðrÞein	 and C�ðx
Þ ¼ QðrÞ � n

q
�	
�; (3)

for a string with winding number n, hð0Þ ¼ 0, and Qð0Þ ¼
n. Far from the vortex, one recovers the vacuum state
defined by hð1Þ ¼ jhHi0j ¼ � and Qð1Þ ¼ 0.

In this solitonic background, the breaking of
Uð1Þglobal �Uð1Þglobal, dynamically generated as the bo-
sonic fields� and � condense in the string, can lead to the
appearance of currents along the vortex. To see this, we
repeat the analysis, first presented in Refs. [22,23] and
based on a perturbative expansion in the fields � and �
which are assumed small to begin with. The field equations
derived from Eq. (1) can be written in the form of two-
dimensional time-independent Schrödinger equations as
follows. Given � ¼ �ðr; 	ÞeiE�t and � ¼ �ðr; 	ÞeiE�t

and neglecting nonlinear terms in the fields, one has

���þV�� ¼ E2
��; (4)

� ��þV �� ¼ E2
��; (5)

with

V � ¼ f�ðh2 � �2Þ þm2
�;

V � ¼ f�ðh2 � �2Þ þm2
�:

(6)

If these potentials are both negative definite, there exist
bound states for both fields, i.e., solutions with E2

� < 0 and

E2
� < 0, leading to instabilities in these fields, and there-

fore to condensates. If the vacuum masses of � and �
vanish, this is certainly the case; it holds true as well in a
neighborhood of ðm2

�;m
2
�Þ ¼ ð0; 0Þ provided the con-

straints

f��
2 >m2

�; f��
2 >m2

� (7)

are imposed. Although these conditions have been derived
from a dynamical analysis, they can be recovered by
examining the vacuum condition �V=�� ¼ �V=�� ¼ 0
at the string location, i.e., settingH ¼ 0. Assuming neither
� nor � vanishes, this gives

��j�j2 þ gj�j2 ¼ f��
2 �m2

�;

gj�j2 þ ��j�j2 ¼ f��
2 �m2

�;

which is only possible in the range of parameters defined
by Eq. (7). As we now make clear, although these con-
straints are necessary they are by no means sufficient.
Indeed, when one field condenses, inclusion of its non-
linear potential term ðg=2Þj�j2j�j2 in the action modifies
the other field Schrödinger equation in a way that cannot be
determined analytically. This correction is positive definite
so that a strong coupling between current-carrying fields
tends to drive one of the condensates to zero. In this work
we focus our attention on the effect of this coupling on the
string’s energy density, tension and stability and we further
restrict attention to the weak to moderate coupling case and
impose the condition

���� > g2 (8)

on the quartic coupling constants.
At this stage, it is worth recalling that our two-current

model is made by a duplication of the current carrier in the
original Witten bosonic string model [22] (restricted to the
neutral configurations only), together with an assumed-
small coupling between the fields. Thus, Witten’s analysis
according to which the instanton transition between differ-
ent winding sectors is exponentially suppressed holds,
strictly speaking in the limit of vanishing coupling g, for
each carrier separately. In this limit, both currents are
persistent, and one expects this to hold true in a sizable
(or at least nonzero) neighborhood of the parameter space,
provided the coupling is small enough, as it should be if we
assume the constraint (8) is satisfied.

III. TWO-CURRENT-CARRYING
CONFIGURATIONS AND NUMERICAL

SOLUTIONS

For the cylindrically symmetric forms

�ðx
Þ ¼ �ðrÞeic � ¼ �ðrÞeið!�t�k�zÞ; (9)

�ðx
Þ ¼ �ðrÞeic � ¼ �ðrÞeið!�t�k�zÞ; (10)

together with (3), the field equations read

d2h

dr2
þ 1

r

dh

dr
¼

�
Q2

r2
þ 1

2
�ðh2 � �2Þ þ f��

2 þ f��
2

�
h;

(11)

d2Q

dr2
� 1

r

dQ

dr
¼ q2h2Q; (12)
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d2�

dr2
þ 1

r

d�

dr
¼ ½w� þ f�ðh2 � �2Þ þm2

�

þ ���
2 þ g�2��;

d2�

dr2
þ 1

r

d�

dr
¼ ½w� þ f�ðh2 � �2Þ þm2

�

þ ���
2 þ g�2��; (13)

where the two real state parameters

w� � k2� �!2
� and w� � k2� �!2

� (14)

are Lorentz scalars. Knowledge of these two parameters is
sufficient to fully determine the microscopic structure of
the defect. Since the currents are vectors, an additional
Lorentz scalar can be built out of the vortex fields. It
represents the relative position of the two currents and
arises in the two integrated functions (energy per unit
length and tension) that are necessary to describe the string
dynamics completely.

A. Dimensionless quantities

The coupled Eqs. (11)–(14) can be solved using a suc-
cessively over relaxed method, a procedure appropriate to
this category of boundary condition nonlinear systems
[48–50]. This method is presented in full detail in
Ref. [61]. Defining the dimensionless distance variable

� � ffiffiffiffi
�

p
�r

and the rescaled field functions X, Y and Z through

h � X�; m�Y �
ffiffiffiffiffiffiffi
��

q
�; m�Z � ffiffiffiffiffiffi

��

p
�; (15)

we renormalize the coupling constants as

~q 2 � q2

�
; ~g � gm2

�m
2
�

������
4
; (16)

and


i � m2
i

�i�
2
; �i � fim

2
i

��i�
2
; �i � m4

i

��i�
4
; (17)

the index i standing for either � or �. In terms of the
dimensionless variables and couplings, the action reads

S ¼ �
�2
Z ��

dX

d�

�
2 þ X2Q2

�2
þ 1

~q2�2

�
dQ

d�

�
2

þ 1

4
ðX2 � 1Þ2 þ 
�

�
dY

d�

�
2 þ 
�

�
dZ

d�

�
2

þ ð ~w� þ ��ÞY2 þ ð ~w� þ ��ÞZ2

þ ð��Y
2 þ ��Z

2ÞðX2 � 1Þ þ 1

2
��Y

4

þ 1

2
��Z

4 þ ~gY2Z2

�
�d�; (18)

in which we have used the dimensionless form of the state

parameters

~w i � m2
i

��i�
4
wi; (19)

with i ¼ �;�. The constraints (7), when expressed in
terms of the dimensionless parameters, simply read �i >
�i.
The coupling parameter space was explored by fixing


i,�i and ~q and varying �i and ~g for lightlike currents, i.e.,
for ~wi ¼ 0. Three typical solutions are presented in Fig. 1.
These solutions were obtained with the following boundary
conditions1: Y0ð0Þ ¼ Z0ð0Þ ¼ Yð1Þ ¼ Zð1Þ ¼ 0, while
the vortex itself satisfies Xð0Þ ¼ 0, Xð1Þ ¼ 1,Qð0Þ ¼ n ¼
1 (we restrict attention to unit winding numbers strings in
what follows) and Q0ð0Þ ¼ 0.

B. The state parameter space

We now discuss the allowed range of values for ~wi. We
first consider the solution near the string core. Assuming
two condensates to be present, we expand both functions as

Y ¼ y0 þ y2�
2 þ � � � ; Z ¼ z0 þ z2�

2 þ � � � : (20)

Using (20) in the field equations yields

~w i < �i � �i: (21)

From Eq. (7), we note that (making use of the one-current
terminology [49]) this is a constraint on the ‘‘magnetic’’
side of the current, i.e., a constraint on the possible range of
spacelike currents having w � 0.
For � ! 1, the field equations read


�

�
Y00 þ 1

�
Y0
�
� ð ~w� þ ��ÞY;


�

�
Z00 þ 1

�
Z0
�
� ð ~w� þ ��ÞZ;

(22)

and their solutions are expressed in terms of Bessel func-
tions. As in the one-current case, there are phase frequency
thresholds above which the currents radiate away from the
vortex. This translates into a constraint on timelike currents

~w i >��i: (23)

Both constraints imply that the two state parameters from
which the microscopic structure can be derived must sat-
isfy �m2

i < wi < fi�
2 �m2

i . These conditions are neces-
sary to confine the current, but not sufficient to ensure there
is indeed one. Indeed, because of the nonlinear interactions
between the fields, even when these conditions are met,
there exists the possibility that the total energy would be
minimized by a vanishing current.

1From now on, a prime will represent a differentiation with
respect to the rescaled distance variable �.
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IV. EQUATION OF STATE

In this section, we determine the macroscopic, i.e.,
integrated, quantities from which the string dynamics can

be derived. These are the total currents associated with
�ðx
Þ and �ðx
Þ and the eigenvalues of the stress-energy
tensor.

A. Currents

A conserved current is associated with each Uð1Þglobal
symmetry. Given (9) and (10), one has

J ð�Þ
� ¼ �2@�c �; J ð�Þ

� ¼ �2@�c �; (24)

where

@�c i ¼ !it� � kiz�: (25)

The unit vectors t� and z� are, respectively, timelike and

spacelike and are defined by

t� �
1
0
0
0

0
BBB@

1
CCCA and z� �

0
1
0
0

0
BBB@

1
CCCA; (26)

in the system of coordinates ft; z; x; yg. Given this conven-
tion, the two state parameters Eq. (14) are

wi ¼ g��@�c i@�c i ðno sum on i ¼ �;�Þ: (27)

What matters in a macroscopic formalism such as that of
Refs. [43–46] is the Lorentz square of the currents inte-
grated in the transverse direction

C �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc�c�j

q
; (28)

where

c� ¼ cð�Þ
� þ cð�Þ� �

Z h
J ð�Þ

� þ J ð�Þ
�

i
d2x?: (29)

We denote the integrated currents by ci�, i ¼ �;�. For a

straight and static string configuration, we then have�
C
2


�
2 ¼

��������w�

�Z
�2rdr

�
2 þ w�

�Z
�2rdr

�
2

þ 2x

�Z
�2rdr

��Z
�2rdr

���������; (30)

which involves, in addition to w� and w�, a third state

parameter x, given by

x � @c � � @c � ¼ k�k� �!�!�: (31)

We note that, as mentioned in the introduction, although it
does not enter into the microscopic description, x appears
in the macroscopic description of the vortex dynamics.
In the macroscopic formalism, the integrals of the scalar

fields over the transverse section are especially meaning-
ful. They read

0.0 5.0 10.0 15.0 20
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~g = ~g
1
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~g
2
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2

2
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ρ
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~g
2
= ~g

3

2
= 0.5 γφγσ

Z(ρ)

Distance to the string core

FIG. 1 (color online). Dimensionless field profiles obtained
using 
� ¼ 1:8� 10�2, 
� ¼ 1:4� 10�2, �� ¼ 1:0� 10�2,

�� ¼ 0:8� 10�2, �� ¼ 5:5� 10�4, �� ¼ 4:5� 10�4, ~q2 ¼
1:0� 10�1, ~w� ¼ ~w� ¼ ~x ¼ 0 and finally from top to bottom

~g2 ¼ ~g21 ¼ 0:0, ~g2 ¼ ~g22 ¼ 0:05���� and ~g2 ¼ ~g23 ¼ 0:5����.
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K � � �2

Z

�2ðrÞrdr and K� � �2

Z

�2ðrÞrdr
(32)

and correspond to the partial derivatives of the macro-
scopic Lagrangian

L ðwiÞ �
Z

Ld2x?; (33)

with respect to the currents. Given that the solutions of the
field equations are determined with the four-dimensional
Lagrangian, variations with respect to the parameters wi

yield directly

K i ¼ 2
@L
@wi

: (34)

The integrated current C can of course be reexpressed using
dimensionless variables. Defining

~C � C
�
; (35)

we then have

~C ¼
�������� ~w�

��


�

�Z
Y2�d�

�
2 þ ~w�

��


�

�Z
Z2�d�

�
2

þ 2~x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
����


�
�

s �Z
Y2�d�

��Z
Z2�d�

���������1=2

; (36)

where the third dimensionless parameter ~x reads

~x � m�m�

�
ffiffiffiffiffiffiffiffiffiffiffiffi
����

p
�4

x: (37)

B. Stress-energy tensor

The stress-energy tensor can be obtained from the
Lagrangian through

T�� � �2g�
g��
�L
�g
�

þ g��L: (38)

It has two eigenvalues corresponding to a spacelike
direction and a timelike direction of the world sheet.
Denoting by u� and v� the normalized, respectively, time-
like and spacelike eigenvectors of T��, and setting ��� ¼
�u�u� þ v�v�, the first fundamental tensor of (whose
mixed form is the projector on) the string world sheet,
the eigenvalues, namely, the energy per unit length U and
tension T, are obtained through the expression for the
integrated stress-energy tensor [43–46]

�T �� �
Z

T��d2x? ¼ Uu�u� � Tv�v�

¼ ðU� TÞu�u� � T���: (39)

In order to diagonalize the energy-momentum tensor, we
define (in the world sheet coordinates t and z) ~�ab ¼

Diagf�1;þ1g, the string metric tensor, and express the
two-dimensional part of the stress-energy tensor as the sum
of a diagonal part Tab

D ¼ �A~�ab, with

A ¼ 2

Z �

1

2

��
dh

dr

�
2 þ h2Q2

r2
þ 1

q2r2

�
dQ

dr

�
2

þ
�
d�

dr

�
2 þ

�
d�

dr

�
2
�
þ Vðh;�;�Þ

�
rdr; (40)

and a mixed nondiagonal part

Tab
ND ¼ B C

C B

� �
; (41)

with

B ¼ 

Z
½ðk2� þ!2

�Þ�2 þ ðk2� þ!2
�Þ�2�rdr (42)

and

C ¼ 2

Z
ðk�!��

2 þ k�!��
2Þrdr: (43)

The eigenvalues of the stress-energy tensor are obtained
through

detðTab þ �~�abÞ ¼ 0; (44)

and we find that the energy per unit length and tension read

U ¼ Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � C2

p
; (45)

T ¼ A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � C2

p
: (46)

The quantity

B2 � C2 ¼ 
2

��
w�

Z
�2rdr� w�

Z
�2rdr

�
2

þ 4x2
�Z

�2rdr

��Z
�2rdr

��
(47)

is obviously positive definite, so that U and T are well-
defined. Using (32), this expression can be rewritten as

B2 � C2 ¼
�
1

2
w�K� � 1

2
w�K�

�
2 þ x2K�K�: (48)

Note that the Nambu-Goto equation of state is recovered
when B2 ¼ C2.
Both U and T are shown in Fig. 2, in the ðt�; z�Þ frame.

For negative and small positive values of ~w�;�, there are

two condensates in the string. For larger positive values of
either ~w� or ~w�, one of the two condensates vanishes and

the physics reduces to the usual case: the tension diverges
to negative values for ~wi ! ��i while the energy density
diverges to positive values (see Figs. 3 and 4). When there
are two condensates in the string, there exists an additional
divergence when both ~w� and ~w�, respectively, tend to

��� and ���. In this limit, the quantity A diverges

because it contains an integral in r over a sum of the
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squares of � and � in the potential term and they are

themselves divergent [50]. When x ¼ 0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � C2

p
on the

other hand is a slowly growing function in this limit
because it is equal to an integral in r over the difference
of the squares of � and �. Note that in Figs. 3 and 4, the
full lines represent one-dimensional profiles of U and T
along ~w� and ~w� for different values of ~w� and ~w�,

respectively. The dashed lines represent the approximate
values ofU and T obtained from the analytic model [47,49]
which we compare to the numerical results in Sec. VIII.
The timelike and spacelike eigenvectors ua and va are

defined, respectively, through the eigenvalue equations

Tabub ¼ �U ~�abub; with ~�abuaub ¼ �1; (49)

FIG. 2 (color online). Energy per unit length U (left) and tension T (right) as functions of ~w� and ~w� for ~g1, ~g2 and ~g3 from top to
bottom, respectively. Both U and T diverge for ~wi ! ��i. Note that when both ~w� ! ��� and ~w� ! ���, T and U both diverge
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and

Tabvb ¼ �T ~�abvb; with ~�abvavb ¼ þ1: (50)

The canonical form (39) is recovered provided the four-
dimensional eigenvectors defined through Eqs. (49) and
(50) are chosen to be the solutions of Eqs. (49) and (50).

The eigenvector thus read

u� ¼
��

Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � C2

p �
2 � C2

��1=2
Bþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 � C2
p
C
0
0

0
BBB@

1
CCCA;

(51)

-0.02 -0.01 0 0.01 0.02 0.03
~ν

4.9

5.0

5.1

5.2

4.8

U/η2

T/η2

-0.02 -0.01 0 0.01 0.02 0.03
~ν

4.9

5.0

5.1

5.2

4.8

U/η2

T/η2

-0.02 -0.01 0 0.01 0.02 0.03
~ν

4.9

5.0

5.1

5.2

4.8

U/η2

T/η2

-0.02 -0.01 0 0.01 0.02 0.03
~ν

4.9

5.0

5.1

5.2

4.8

U/η2

T/η2

-0.02 -0.01 0 0.01 0.02 0.03
~ν

4.9

5.0

5.1

5.2

4.8

U/η2

T/η2

-0.02 -0.01 0 0.01 0.02 0.03
~ν

4.9

5.0

5.1

5.2

4.8

U/η2

T/η2

-0.02 -0.01 0 0.01
~ν

4.9

5.0

5.1

5.2

U/η2

T/η2

-0.02 -0.01 0 0.01
~ν

4.9

5.0

5.1

5.2

U/η2

T/η2

-0.02 -0.01 0 0.01
~ν

4.9

5.0

5.1

5.2

U/η2

T/η2

FIG. 3 (color online). U (upper curves) and T (lower curves) one-dimensional profiles along w� for w� ¼ �2:25� 10�4 ���i=2,
0.0 and 2:25� 10�4 � �i=2 (from left to right) and for ~g1, ~g2, and ~g3 (from top to bottom). The solid lines correspond to U and T
obtained numerically while the dashed lines were obtained from the analytic model [47,49] discussed in Sec. VIII. Note the x

coordinate defined by ~� ¼ w�=
ffiffiffiffiffiffiffiffiffiffi
jw�j

q
in order to emphasize the neighborhood of ~w ¼ 0.
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v� ¼
�
C2 �

�
B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � C2

p �
2
��1=2

B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � C2

p
C
0
0

0
BBB@

1
CCCA:

(52)

Again, given that B2 � C2 � 0, the quantities under the
square roots in u� and v� are positive definite, a result
which will be useful below. In addition, the combination
B2 � C2 depends only on the state parameters and on the
Ki’s and is thus a Lorentz scalar. Therefore Eq. (48) holds

in whatever frame. One may therefore work in a frame in
which C ! 0, in which case Eq. (48) simply gives the
value of B. Note that in order to see that this limit is indeed
well-defined in Eqs. (51) and (52), these two expressions
need to be rewritten in a slightly different form from the
one presented here. In the limit C ! 0, one then finds that
they are nothing but the unit vectors t� and z� of Eq. (26).
This frame is the generalization of that frame for which, in
the single-current case, the phase gradient of the current
carrier depends either on time or on space, but not on both;
i.e., the boosted frame in which either the frequency or the
momentum of the trapped scalar field is removed.
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-0.02 -0.01 0 0.01 0.02 0.03
~ν

4.9

5.0

5.1

5.2

4.8

U/η2

T/η2
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FIG. 4 (color online). The same as Fig. 3 but along w� with w� ¼ �2:25� 10�4 ����=2, 0.0 and 2:25� 10�4 � ��=2.
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C. Available ranges of variation of the underlying
parameters

There exists a finite wi range within which two currents
can appear. In this range Ki � 0 (i ¼ 1; 2) and x is well-
defined. The coupling between � and � acts (nonlinearly)
as a positive mass term for both these fields and quite
generically (for any given set of masses and coupling
constants) will reverse the condensation of either of the
two fields outside the appropriate wi range. The string then
behaves like a one-current-carrying string.

The range of variation of x can be constrained using the
spacelike or timelike character of the two currents. Setting
generic two-dimensional normalized spacelike and time-
like vectors S� and T�, respectively, with

S�ð�Þ � t� sinh�þ z� cosh�;

T�ð�Þ � t� cosh�þ z� sinh�;
(53)

where � is a constant, the currents ci� can be chosen

proportional to either S� or T�, depending on their nature.

If the two currents are of a different kind, with, e.g., cð�Þ
�

spacelike and cð�Þ� timelike, we can take cð�Þ
� ¼ffiffiffiffiffiffiffi

w�
p

S�ð��Þ and cð�Þ� ¼ ffiffiffiffiffiffiffiffiffiffiffi�w�
p

T�ð��Þ, leading to x ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�w�w�
p

sinhð�� � ��Þ, which provides no further re-

striction on the range. On the other hand, if both currents

are spacelike, we have cð�Þ
� ¼ ffiffiffiffiffiffiffi

w�
p

S�ð��Þ and cð�Þ� ¼ffiffiffiffiffiffiffi
w�

p
S�ð��Þ, and we then find that x ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

w�w�
p

coshð�� � ��Þ, and is therefore larger thanffiffiffiffiffiffiffiffiffiffiffiffiffi
w�w�

p
. Similarly, if both currents are timelike, we set

cð�Þ
� ¼ ffiffiffiffiffiffiffiffiffiffiffi�w�

p
T�ð��Þ and cð�Þ� ¼ ffiffiffiffiffiffiffiffiffiffiffi�w�

p
T�ð��Þ, leading

to the result that x ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi
w�w�

p
coshð�� � ��Þ, which is

now smaller than � ffiffiffiffiffiffiffiffiffiffiffiffiffi
w�w�

p
. In short, for two currents

having the same character, the range of variation of x is
restricted to

jxj � ffiffiffiffiffiffiffiffiffiffiffiffiffi
w�w�

p
: (54)

One of the currents, cð�Þ
� , say, can be lightlike. In this case,

it must read cð�Þ
� ¼ m�ð�t� þ �0z�Þ, where we have fixed

the arbitrary normalization to the mass of the correspond-
ing current carrier for reasons of dimensions, while �2 ¼
�02 ¼ 1. If cð�Þ� is spacelike, i.e., cð�Þ� ¼ ffiffiffiffiffiffiffi

w�
p

S�ð��Þ, we
obtain x ¼ �0m�

ffiffiffiffiffiffiffi
w�

p
e���0�� , while if it is timelike, with

cð�Þ� ¼ ffiffiffiffiffiffiffiffiffiffiffi�w�
p

T�ð��Þ, the third state parameter is then x ¼
��m�

ffiffiffiffiffiffiffiffiffiffiffi�w�
p

e���0�� . Finally, both currents can be light-

like, with cð�Þ
� ¼ m�ð��t� þ �0�z�Þ and cð�Þ� ¼

m�ð��t� þ �0�z�Þ, leading to x ¼ �m�m�ð���� �
�0��

0
�Þ.

We shall see in detail in Sec. VII A that the range of x is
further restricted by imposing the stability of the string
under transverse perturbations.

It is important to realize at this stage that the macro-
scopic dynamics of a string on which two condensates can
appear is more complicated than its one condensate coun-
terpart. In particular, the number of degrees of freedom is
itself a dynamical variable: as either state parameters w�

and w� evolve along the string or with time (they both are
in principle functions of the string internal coordinates
[41–46]), the corresponding fields may switch back and
forth between condensating to noncondensating situations,
with the consequence that the number of state parameters
may jump discontinuously, being equal to either one or
three (we are assuming that the underlying parameters are
such that forw� ¼ w� ¼ 0, both condensates are present).

This seems to forbid any kind of macroscopic treatment
such as proposed in Refs. [43–46]. We shall see however
that because the string remains essentially a one-
dimensional object, its classical stability can be investi-
gated provided a generalization of the usual framework is
made. This is was we do in the following sections.

V. ELASTIC STRING DYNAMICS

The dynamics of a current-carrying elastic string de-
pends on the string’s internal degrees of freedom but not
on its geometry. It has been extensively studied in [43–46].
Because its Lagrangian depends only on the two state
parameters wi, a string with two condensates can be
studied using the same formalism. The purpose of this
section is to extend the existing formalism for the dynam-
ics of a single-condensate elastic string to anN-condensate
string.

A. Preliminary geometric definitions

The string world sheet is defined as the two-dimensional
surface swept by the string during its time evolution. It has
timelike and spacelike directions associated with timelike
and spacelike internal coordinates �0 and �1. The metric on
the string world sheet reads

hab ¼ g��x
�
;ax�;b; (55)

where the subscripts “;a”; “;b”; . . . denote derivation with

respect to �a; �b; . . . ; the inverse metric is hab. The embed-
ding of the two-dimensional metric in four-dimensional
spacetime is defined through the string world sheet’s first
fundamental tensor as

��� ¼ habx
�
;ax�;b: (56)

Its mixed form ��
� is identified with the tangential pro-

jector on the string world sheet. The orthogonal projector is
then defined through

?�
� ¼ g�� � ��

�: (57)

With these definitions, it is possible to embed all fields on
the world sheet in four-dimensional spacetime, provided
that the 4D covariant derivative taken along the string
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world sheet ra is replaced by a new longitudinal covariant

derivative �r� which projects out the meaningless varia-

tions transverse to the string world sheet,

�r � ¼ ��
�r�: (58)

We also introduce the antisymmetric fundamental tensor
"�� through the relation

"��"�
� ¼ ���: (59)

Note that " is defined up to an overall sign. The curvature
tensor

K��
� ¼ ��

�
�r��

�
� (60)

is tangent to the world sheet in its first two covariant
indices � and � and orthogonal to it in its contravariant
index �. Since the projector ��

� defines the space tangent
to the string world sheet, K��

� is symmetric in its first two

indices. This is the Weingarten identity [43–46]

K½���
� ¼ 0: (61)

Finally, using two orthonormal basis vectors u� and v�

tangent to the world sheet and chosen timelike and space-
like, respectively, the fundamental tensors take the simple
form

��� ¼ �u�u� þ v�v�; (62)

"�� ¼ �ðu�v� � u�v�Þ: (63)

B. The elastic string model

As stated above, an elastic string is described by an
effective Lagrangian which only depends on its internal
degrees of freedom. In the case at hand, there areN internal
degrees of freedom given by the N fields c i associated
with the N currents living on the string world sheet. The
Lagrangian

L ¼ Lð�ijÞ (64)

may thus a priori depend on any of the scalars

�ij ¼ ���
	
�r�c i


	
�r�c j



; (65)

i.e., the full set of state parameters that form an N � N
symmetric matrix. The Lagrangian will thus be written in
the remainder of the paper as a function of the symmetric
matrix � ¼ ð�ijÞ and denoted by Lð�Þ.

For instance, in the case of the two currents presented in
the previous sections, Eqs. (27) and (31) show that �ii ¼
wi and ��� ¼ ��� ¼ x, whereas Eq. (33) immediately

shows that the Lagrangian of this particular model only
depends on the diagonal entries wi of the matrix �.

The equations of motion of the elastic string can be
obtained directly by varying the Lagrangian with respect
to the world sheet coordinates x�ð�aÞ and to the internal

fields c i. However, it is easier and more useful to write the
dynamical equations as conservation equations because the
physically meaningful unknowns are the string conserved
currents ci�, not the internal fields c i.
There are 2N þ 4 independent degrees of freedom: six

for the first current which defines the string world sheet
through its tangent space and therefore satisfies the
Weingarten identity (61), and then two for each of the
otherN � 1 currents which live in this same tangent space.
2N þ 4 equations are therefore needed.
The N conserved currents inside the string

ci� ¼ �L

�
	
�r�c i


 ¼ �L
��jk

	
�i

j
�r�c k þ �i

k
�r�c j



; (66)

where �i
j is the Kronecker delta, can be expressed in terms

of the phase gradients through

ci� ¼ Kij �r�c j; (67)

with

K ij ¼ 2
�L
��ij

: (68)

Note that Eq. (68) generalizes Eq. (34). These currents are
an obvious choice for a first set of N conservation equa-
tions. Their conservation equations read

�r �ðci�Þ ¼ 0: (69)

The stress energy-momentum tensor T�� defined by
Eq. (39) or equivalently by

T�� ¼ L��� � 2
�L
���� ¼ L��� �Kij

	
�r�c i


	
�r�c j



;

(70)

satisfies the conservation equation

�r �T
�� ¼ 0; (71)

and provides 4 additional conservation equations. The first
two are given by the transverse part of this relation,
namely,

?�
� �r�T

�� ¼ 0; (72)

defined as its projection orthogonal to the world sheet, is
associated with the geometry of the string world sheet. The
remaining two equations are given by the longitudinal part
of Eq. (71),

��
� �r�T

�� ¼ 0; (73)

and are associated with the internal degrees of freedom of
the string. Finally, there exists an irrotationality condition

on each of the N gradient fields �r�c i:

"�� �r�ð �r�c iÞ ¼ 0: (74)
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The vector �r�ð"��Þ being purely orthogonal [see Eq. (63)

], these irrotationality conditions can be turned into con-
servation equations through an integration by parts

�r �ðd�i Þ ¼ 0; (75)

where

d�i ¼ "�� �r�c i: (76)

The previous considerations result in the existence of 2N
conserved currents and a conserved tensor, which, when
the Weingarten identity is taken into account, provides a
total of 2N þ 6 conservation equations. These are two
more than needed. This is because, as will be shown
next, there exists a redundancy between the two longitudi-
nal stress-energy tensor conservation equations and 2 of
the N current conservation equations. In the well-known
case of one current only, i.e., for N ¼ 1, the two current
conservation equations are exactly equivalent to the longi-
tudinal part of the stress-energy tensor. On the other hand,
in the general case, the natural choice is to keep the 2N
conservation equations only.

We now show that the conservation equations (69) and
(76), or equivalently (74), imply the longitudinal conser-
vation of the stress-energy tensor. Rewriting the stress-
energy tensor as

T�� ¼ L��� � cj�ð"��d�j Þ ¼ L��� � ð"��d
�
i Þci�;

(77)

we have

���
�r�T

�� ¼ �r�L� "��c
i� �r�d

�
i : (78)

Furthermore, the gradient of Eq. (64) reads

�r �L ¼ 1

2
Kij �r�

h
���

	
�r�c i


	
�r�c j


i
¼ ci�"��

�r�d
�
i ;

(79)

so that Eq. (78) becomes

���
�r�T

�� ¼ ci½����
�"�

�ðr�di�Þ: (80)

Finally, c
½�
i ���� is tangential and antisymmetric in its �

and � indices and is thus proportional to the antisymmetric
tangential tensor "��:

ci½����� ¼ ð"��ci�Þ"��: (81)

Equation (78) therefore reduces to

���
�r�T

�� ¼ ð"��ci�Þ
	
�r�d

�
i



; (82)

and as expected implies

���
�r�T

�� ¼ 0: (83)

C. Equations of state

It is clear from the previous section that, besides the
Weingarten identity, the equations of motion can be re-
duced to 2N þ 2 conservation equations (69), (72), and
(75). As stated before, the currents d

�
i are the physically

most meaningful quantities and, from their definition (76),
yield the matrix of state parameters

�ij ¼ ����di�dj�: (84)

They also appear explicitly in N of the conservation equa-
tion (75).
On the other hand, the N þ 2 other conservation equa-

tions do not depend explicitly on the d�i ’s. However, since
they determine the matrix of state parameters through (84),
which in turn determines the Lagrangian and its deriva-
tives, it is certainly possible to express the stress-energy
tensor T�� and the other conserved currents ci� as func-
tionals of the unknowns di�. These functionals are there-

fore additional identities that form a set of equations of
state. In general, they will be determined by the underlying
field theory model (i.e., a generalization to N currents of
what was done in the first four sections of this paper), and
will characterize the current-carrying string model under
consideration.
The N2 equations of state expressing

K ij ¼ Kijð�Þ (85)

are necessary and sufficient to determine the conserved
currents

ci� ¼ Kij"��dj�; (86)

from the other currents di�, and the symmetric matrix �

given by (84).
As for the stress-energy tensor, it is a tangential, and thus

two-dimensional, symmetric tensor which is therefore de-
termined by three parameters. The stress-energy tensor is
usually expressed in the diagonal form (39) where u� and
v� are a basis of, respectively, timelike and spacelike
orthonormal vectors, whereas the eigenvalues U and T
can be, respectively, interpreted as the string energy den-
sity and tension. Thus, the natural choice for the three
parameters defining the stress-energy tensor are U, T,
and the position of the basis ðu�; v�Þ in the tangent space.
The latter is akin to a hyperbolic angle c with a given
direction such as that of one of the currents di� and d1�, for

example. Note that this only defines the vectors u� and v�

up to a sign, but this sign does not change the stress-energy
tensor (39). There will thus be three extra equations of state
expressing these three parameters as a function of the
matrix �. In conclusion, there are N þ 3 equations of state
which will be chosen here as (84) and (85) and

U ¼ Uð�Þ; T ¼ Tð�Þ; c ¼ c ð�Þ; (87)

where the hyperbolic angle c is such that
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d1� / coshðc Þu� þ sinhðc Þv�; (88)

if d1� is timelike, and

d1� / sinhðc Þu� þ coshðc Þv�; (89)

if it is spacelike.

D. Duality

In the case of one current, there exists a duality which
allows one to exchange the roles of the currents c

�
1 and d

�
1

[43–46]. The existence of 2N conserved currents instead of
the expected N suggests that there similarly should be a
duality between the two sets of N conserved currents ci�

and d�i . This is a duality under the global exchange of the
two sets of currents, not just of two given currents ci� and
d�i . More precisely, we are looking for a dual Lagrangian
~L, of the same general form as L (but a function of

different scalar fields ~c ), yielding the same equations of
motion, but such that the two sets of N conserved currents
are exchanged. Using tildes to distinguish all quantities
derived from the dual Lagrangian, it is sufficient to require
that

~c i� ¼ di�; (90)

~d i� ¼ ci�; (91)

~T �� ¼ T��: (92)

Using the notations of Eqs. (64), (65), and (68) as well as
the definitions (66) and (76) with tildes for the dual model,
Eq. (91) becomes

"�
� �r�

~c i ¼ Kij �r�c j; (93)

which yields in turn that

~� ij ¼ �Kik�klKlj ¼ �ðK�KÞij; (94)

where the right-hand side is to be understood as matrix
multiplications. Then, substituting Eq. (93) into (90) yields

�r �c i ¼ "�
� ~Kij

�r�
~c j ¼ ~KijKjk �r�c k; (95)

which in turn implies

~K ¼ K�1; (96)

where the right-hand side is again to be understood as a
matrix inverse.

Finally, the last equation (92) can be expanded using

Eq. (70) and the previous expressions for ~K and �r ~c i as

ð ~L�LÞ��� ¼ �Kijð �r�c iÞð �r�c jÞ
� ð��

���
� � "�

�"�
�Þ: (97)

The identity

��
���

� � "�
�"�

� ¼ ����
�� � "��"

��; (98)

which can be derived for instance by using a pair of
orthonormal vectors and Eqs. (63), enables one to simplify
Eq. (97) to

~L ¼ L�Kij�ij ¼ L� TrðK�Þ; (99)

where in the latter expression, the matrix trace Tr has been
taken.

Thus a model with Lagrangian ~Lð~�ijÞ given by

Eqs. (94), (96), and (99) has, by construction, the same
2N conserved currents and stress-energy tensor, and thus
the same equations of motions as the initial model de-
scribed by the Lagrangian L. However, these three equa-
tions are not completely independent since one must
satisfy consistency equations derived from Eq. (68),
namely,

~K ij ¼ 2
d ~L
d~�ij ¼ ðK�1Þij: (100)

This equation can straightforwardly be derived from
Eqs. (99) and (94).

Thus, the model described by the Lagrangian ~Lð~�Þ
derived from the initial model by Eqs. (94) and (99)
produces the exact same elastic string dynamics. This is
precisely the duality found previously [43–46] for an elas-
tic string with a single current.

VI. THE ELASTIC DOMAIN

The elastic N-current-carrying string model introduced
in preceding sections is obtained from the field theory
solution of a straight and static string solution and further
assuming that, at the macroscopic level, the string is locally
straight and static in a rotated and boosted frame in which
u� and v� defined in Eq. (39) are aligned with the t and z
axes. This is usually an excellent approximation since the
string curvature is of the order of the Hubble scale, while
its thickness (to which the latter curvature must be com-
pared to evaluate the ‘‘straightness’’ of the string) is of the
order of the Compton wavelength of the lightest particle
involved (typically a current carrier).
However, this approximation is only meaningful if the

static straight solution is dynamically stable, because oth-
erwise, the string curvature, however negligible to begin
with, will drive the string away from the straight and static
solution. The conditions under which the string remains
straight and static will define the domain of elasticity of the
string. Evaluating string stability at the field theory level is
a complicated task. Instead, we shall determine whether
the static straight string solution is dynamically stable in
the elastic string model. If it is, the description is self-
consistent. If it is not, a more detailed calculation must be
performed at the microscopic level.
In the straight and static solution, the currents d�i are

constant along the string world sheet. This implies that the
other currents ci� and the stress-energy tensor T�� are also
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constant. This ensures that the equations of motion (69),
(72), and (75) are satisfied.

Here, we shall take the static timelike Killing vector t�

and the static spacelike Killing vector z� introduced in (26)
to describe the time coordinate and the direction along
which the string lies. The stress-energy tensor (39) then
reads

T�� ¼ Ut�t� � Tz�z�: (101)

It constrains the frame ðt�; z�Þ through c in Eq. (87).
To test the dynamical stability of the straight and static

‘‘background’’ solution thus defined, we Fourier expand
the first-order perturbations of the equations of motion, and
derive the characteristic modes. If all the characteristic
modes are real, the unperturbed solution is stable; other-
wise it is unstable.

A. Stability of the transverse modes

As explained earlier, there are only two transverse de-
grees of freedom and the corresponding equations are
given by Eq. (72), which can be rewritten as

?�
�

�
u�r�u

� � T

U
v�r�v

�

�
¼ 0; (102)

where ?�
� is the projector orthogonal to the string world

sheet defined in Eq. (57). The string world sheet is defined
implicitly from its tangent space (generated by the eigen-
vectors u� and v�). Equation (61) therefore needs to be
satisfied by the eigenvectors. It yields

?�
�ðu�r�v

� � v�r�u
�Þ ¼ 0: (103)

Transverse perturbations of di� do not change their mutual

scalar products ��ij to first order and thus, the energy

density U and tension T of the string are not affected by
transverse perturbations of the world sheet. Conversely, the
current conservation equations are unaffected to first order
by transverse perturbations. Thus, the transverse modes are
decoupled and it is sufficient to consider transverse pertur-
bations of the eigenvectors u� and v�, together with
Eqs. (102) and (103).

This system of equations is exactly the same as in the
case of a string carrying a single current [43–46]. Given the
usual definition [62] �ðQÞ � ei��ðQÞ with r�� ¼ k�,

k ¼ k�v
�, ! ¼ �k�u

�, where Q denotes u� or v� and

�ðQÞ 	 1, one finds that transverse perturbations propa-
gate at velocity

c2T ¼ !2

k2
¼ T

U
; (104)

as can also be checked directly from Eqs. (102) and (103).
This result was to be anticipated, since the conservation
equations are identical to those of the single string case and
their projection orthogonal to the world sheet does not
depend on perturbations of the conserved currents but

only on �ðu�Þ and �ðv�Þ. Thus, the dynamical stability
of the transverse perturbation of the straight string requires
simply that the tension be positive:

T � 0: (105)

B. Stability of the longitudinal modes

We now consider the longitudinal modes, i.e., those
propagating in an internal way along the string world sheet.
We expect the results to differ from those of the single
string case since, contrary to the transverse conservation
equations, the longitudinal conservation equations depend
on perturbations of the conserved currents. The presence of
more than one current implies current-current interactions.
In addition, contrary to the single-current case in which
T�� is automatically diagonal, we lose the freedom to align
the currents with our preferred frame ðu�; v�Þ. As a result,
the well-known result c2L ¼ �dT=dU > 0 is not expected
to be recovered in the general case of N currents.
In order to describe these modes, we once again assume

that the string remains straight and the problem is effec-
tively two-dimensional in the ðt�; z�Þ plane. In this case,
the unknowns are the string currents d�i . The correspond-
ing equations can be chosen to be the conservation equa-
tions (69) and (75), together with the equations of state
(85). As in the single-current case, the world sheet is not
perturbed by longitudinal modes. The tensors ��� and "��

are therefore not affected by longitudinal perturbations.
We expand the perturbations of the N currents di� in

Fourier modes as �di�e
i!�x

�
. The equations of motion for

the longitudinal perturbations are then derived from
Eq. (69) as

K ijð!�"
���dj�Þ� 2

�Kij

��kl

����dk�dl�ð!�"
��dj�Þ ¼ 0;

(106)

and from Eq. (75) as

���!��di� ¼ 0: (107)

At this order in perturbations, a mode associated with one
of the currents thus couples to all other unperturbed cur-
rents but not to their perturbed part. Thus, the string will be
stable against longitudinal perturbations as long as the
dispersion relation for a given mode is a real.
Unfortunately, the system of 2N equations given by the
two expressions above is quite complicated and there is
a priori no way to solve it in the general case. In particular,
as announced at the beginning of this section, the simple
form c2L ¼ �dT=dU > 0 is not recovered. The main sim-
plification which can be achieved is to halve the number of
equations and unknowns by noting that, from Eq. (107), all
the perturbations �di� must be orthogonal to !�, and thus

collinear to each other. However, this is not enough to solve
the system algebraically or even to reduce the problem to a
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standard eigenvalue problem. Thus, to get explicit con-
straints of the elastic domain associated with the longitu-
dinal equations, we shall restrict ourselves to the case of
two currents.

VII. THE ELASTIC DOMAIN FOR THE TWO-
CURRENT MODEL

We shall now concentrate explicitly on the elastic string
model that pertains to the microscopic model of the first
sections. In this case, the Lagrangian (64) that stems from
Eq. (33) depends only on the state parameters wi ¼ �ii

(i ¼ 1; 2, with the identification � ! 1 and � ! 2), but
not on the off-diagonal component x. Note that in the
general case a dependence of L on �12 ¼ x is a priori
allowed. In the case at hand, while Eq. (39) or Eq. (70) do
not depend on x, Eq. (87) does depend on it, and one must
be careful to take this dependence into account. The other
relevant parameters of the problem, ci� and Ki, can
similarly be identified with the ones defined in Eqs. (29)
and (32), respectively, with the change of indices � ! 1
and � ! 2.

A. Stability of the transverse modes

The propagation of transverse perturbations along the
string takes place, independently of the string’s internal
structure, with a velocity [43–46] c2T ¼ T=U. Given that
U > 0, the stability of a string subjected to transverse
perturbations requires T > 0. This is equivalent to a con-
straint x 
 xlim, where xlim is obtained in the microscopic
theory using Eqs. (46)–(48) and reads

xlim ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�K�

q �
A2 �

�
1

2
w�K� � 1

2
w�K�

�
2
�
1=2

:

(108)

This inequality is not automatically possible, for it de-
mands A2 > 1

4 ðw2
�K

2
� þ w2

�K2
�Þ, a condition which has

no counterpart in the single-current case.

B. Stability of the longitudinal modes

The four longitudinal equations can be chosen as either
the conservation of the four currents c

�
1;2 and d

�
1;2, or as the

conservation of the two currents c�1;2 and of the longitudinal

part of the stress-energy tensor. Indeed, from Eq. (82) we
know that the conservation of the four currents implies the
conservation of the longitudinal part of the stress-energy
tensor, but also that the converse is true, since

c�2;1
�r�T�

� ¼ c�2;1"��c
�
i
�r�d

�
i ¼ ð�1Þ1;2c�2 "��c

�
1
�r�d

�
1;2:

(109)

Of course, because of the duality relations (90)–(92), we
can symmetrically choose to keep the conservation of the

two currents d1;2� and of the longitudinal part of the stress-

energy tensor instead.
As in Sec. VI B, we work with the four conservation

equations (69) and (75) together with the identity (86) and
the equations of state (85). The latter reduce to two equa-
tions only since the Lagrangian (33) only depends on the
two state parameters w1;2. The corresponding dynamical

equations perturbed to first order are then given by
Eqs. (106) and (107).

C. General case

We first will consider the cases when both fields are
condensed in the string and x � 0 or w1w2 � 0. The other
cases, corresponding to having only one field condensed in
the string and one field set to zero or having all four
currents collinear and lightlike, will be studied separately.
In the case at hand, the conserved currents have both

timelike and spacelike components in the basis ðu�; v�Þ
and it is therefore convenient to introduce the following
two lightlike vectors:

eþi� ¼ 1

2
½di� � ð�1Þi"��di��; (110)

where the overall sign of "�
� is chosen such that eþi� ¼ di�

if x � 0 and w1w2 ¼ 0. Another two lightlike vectors are
chosen such that

���e�i�eþi� ¼ �1
2; ���e�i�e�i� ¼ 0: (111)

When w1w2 � 0, these vectors are given explicitly by

e�i� ¼ 1

2wi

½di� þ ð�1Þi"��di��: (112)

These four lightlike vectors are obviously related since
there are only two null directions in the longitudinal plane.
In fact, one can show that

w1d2� ¼ xd1� � sgnðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � w1w2

q
ð"��d1�Þ; (113)

and

w2d1� ¼ xd2� þ sgnðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � w1w2

q
ð"��d2�Þ; (114)

where the sign of "�� was chosen appropriately when
w1w2 � 0, and the sign function was used. Note that the
term under the square root is always positive since, from
Eq. (54), when w1w2 � 0, one must have x2 � w1w2 � 0.
When x ¼ 0 (and thus w1w2 
 0), the sign of x plays no
role in these identities and can be fixed arbitrarily at þ1.
From Eqs. (113) and (114) one can then derive the simple
relation

e�1� ¼ ��1e�2�; (115)

with

COUPLED CURRENTS IN COSMIC STRINGS PHYSICAL REVIEW D 79, 103514 (2009)

103514-15



� ¼ xþ sgnðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � w1w2

q
; (116)

Note again that � � 0 in the case we are considering.
With these definitions, the currents can be rewritten as

di� ¼ eþi� þ wie
�
i�: (117)

Perturbations can be expanded in Fourier modes !� and
are written as

�di� ¼ ð�dþi eþi� þ �d�i e�i�Þei!�x
�
; (118)

with no summation on the repeated index i. The variation
of the state parameters is given by Eq. (84) as

�wi ¼ ð�d�i þ wi�d
þ
i Þei!�x

�
: (119)

The other two currents ci� can be deduced from the
identity (86) and

�ci�

Kii
¼ "���di� þ @ lnðKiiÞ

@wj

�wj"
��di�; (120)

with no summation on the repeated index i, while �wj is

given by Eq. (119). Note that since we assumed that two
currents were condensed in the string, Kii � 0.
The equations of motion for the longitudinal modes are

given by Eqs. (106) and (107), and yield a homogeneous
linear system of equations

Xþ
1 �d

þ
1 þ X�

1 �d
�
1 ¼ 0;

Xþ
2 �d

þ
2 þ X�

2 �d
�
2 ¼ 0;

½Xþ
1 þ L1;1ðXþ

1 � w1X
�
1 Þw1��dþ1 þ ½�X�

1 þ L1;1ðXþ
1 � w1X

�
1 Þ��d�1 þ L1;2ðXþ

1 � w1X
�
1 Þðw2�d

þ
2 þ �d�2 Þ ¼ 0;

L2;1ðXþ
2 � w2X

�
2 Þðw1�d

þ
1 þ �d�1 Þ þ ½Xþ

2 þ L2;2ðXþ
2 � w2X

�
2 Þw2��dþ2 þ ½�X�

2 þ L2;2ðXþ
2 � w2X

�
2 Þ��d�2 ¼ 0; (121)

where

X�
i ¼ ���!�e

�
i �; Li;j ¼ @ lnðKiiÞ

@wj

: (122)

The dispersion equation is obtained by equating the deter-
minant to zero and is a homogeneous fourth degree poly-
nomial in the two components of !� which does not
appear to have any obvious solutions. It can be written
down in a compact form as

X4
i¼0

ciðX�
2 Þ4�iðX�

1 Þi ¼ 0: (123)

Noting that Xþ
1;2 ¼ �X�

2;1 from Eq. (115), the coefficients ci
are found to be

c0 ¼ D�2w2
2; (124)

c1 ¼ �2�ðDw1w
2
2 þDw2�

2 þ �2L1;1 þ w2
2L2;2Þ; (125)

c2 ¼ Dðw2
1w

2
2 þ 4�2w1w2 þ �4Þ

þ 4�2ð1þ L1;1w1 þ L2;2w2Þ; (126)

c3 ¼ �2�ðDw2
1w2 þDw1�

2 þ w2
1L1;1 þ �2L2;2Þ; (127)

c4 ¼ D�2w2
1; (128)

where D is the determinant of the matrix Li;j and � was
defined in Eq. (116). We define

� ¼ X�
1

X�
2

¼ ��e�1t þ e�1z
��e�2t þ e�2z

; (129)

where � ¼ !t=!z is the dispersion relation. The string will
remain stable under perturbations in the range of parameter
space in which � is a real. Since the e�i� are real, it suffices
that � be real. In terms of �, Eq. (123) reads

c0 þ c1�þ c2�
2 þ c3�

3 þ c4�
4 ¼ 0: (130)

Algebraic solutions to this equation are easily obtained
using the well-known Ferrari procedure. Only L1;1 and
L2;2, which depend implicitly on the wi’s, must be deter-
mined numerically from the integrated quantities of
Sec. IV. In order to determine the regions of parameter
space in which the string is indeed stable, one must there-
fore input the values of L1;1 and L2;2 obtained numerically
in the analytic forms of the roots of (130) obtained with the
Ferrari procedure. We do so in the range wmin 
 wi 

wmax and �xlim 
 x 
 xlim where the upper and lower
limits on wi are given by Eqs. (21) and (23) and the limits
on x are given by the condition for stability of the trans-
verse modes. Figures 5–8 provide a comparison of the
regions of stability obtained using the constraint xlim and
the solutions of Eq. (130) 2 R for the cases of zero, weak
and moderate coupling ~g. The region of stability in the x
direction is given by the conditions for stability of the
transverse modes while that in the ~wi (i ¼ 1; 2) directions
is provided by requiring that the roots of Eq. (130) be real.
As shown in the figures, stability can be enhanced in the x
direction as one goes to stronger coupling, but it is always
significantly reduced in the ~w1 and ~w2 directions. This is
especially true when one of the currents is spacelike: in
Figs. 6 and 7, the string is entirely unstable for a coupling
greater or equal to ~g3. Note that the region of stability of
the analytic model of Sec. VIII is also shown in these
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figures. It is discussed at the end of the next section.
Finally, we point out once again that the stability condi-
tions obtained by solving Eq. (130) are not valid when one
or both currents are lightlike, i.e., for ~w1 ~w2 ¼ 0. The
stability in these cases is discussed in the next subsections.

D. Special case of a static condensate

This case is characterized by x ¼ 0 and either w1 ¼ 0 or
w2 ¼ 0. It cannot be included in the general case because
� ¼ 0 and thus, from Eq. (115), eþi� ¼ 0. Let us call

generically i the index for which wi ¼ 0, and j the other
index. This case corresponds to !i ¼ ki ¼ 0 in Eqs. (9)

and (10), and thus to a static condensate. As a consequence,
it is clear that di� ¼ 0. Using Eq. (106) one finds that the

perturbation equations for the two currents decouple. The
two characteristic modes !� for the static condensate are

simply given by the two lightlike directions in the longi-
tudinal plane. Thus, these perturbations are always stable.
The stability condition for the other current reduces to

1þ 2wjLj;j � 0: (131)

It is interesting to note that the characteristic polynomial
(123) found in the previous general case has two obvious
real solutions corresponding to the two lightlike directions

FIG. 5 (color online). Region of stability for ~w� ����=2 and �� < 0 (i.e., for timelike currents) for all three values of ~g and
compared with the region of stability obtained with the analytic model.

FIG. 6 (color online). The same as Fig. 5 but for ~w� � ��=2 and �� > 0 (i.e., for spacelike currents). Note that in the case ~g3, the
string is unstable in this range of parameters.
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X�
1 ¼ 0 and Xþ

1 ¼ 0, and two other solutions which are
real exactly when the condition (131) is satisfied. Thus, the
general stability condition from the first case extends also
to this limiting case.

E. Special case of only one current condensate

In this case, the effective Lagrangian (33) depends only
on one of the state parameters. There are only two longi-
tudinal degrees of freedom and the equations derived in
Sec. VII B do not apply. Calling generically i the index of
the remaining condensate, only wi, Kii and Li;i are non-

zero. The perturbation equations derived from Eqs. (106)

are exactly the same as the ones derived for the decoupled
nonstatic condensate in the previous case. Thus the stabil-
ity condition is also given by the inequality (131).
Note that this case has been studied in detail in previous

works [43–46] and it is in fact well known that the speed of
propagation of longitudinal perturbations is given by

c2L ¼ � dT

dU
¼ ð1þ 2wiLi;iÞsignðwiÞ: (132)

The stability condition is simply dT=dU < 0 or equiva-
lently that 1þ 2wiLi;i � 0.

FIG. 7 (color online). The same as Fig. 5 but for ~w� � ��=2 and �� < 0 (i.e., for one timelike and one spacelike current). As in the
previous figure, the case of ~g3 is unstable in this parameter range.

FIG. 8 (color online). The same as Fig. 5 but for ~w� ����=2 and �� > 0 (i.e., roles reversed with respect to the previous figure).
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F. Special case of two static condensates

This occurs when x ¼ w1 ¼ w2 ¼ 0. In this case, there
is no current in the string, from (48), B2 � C2 ¼ 0, thus
from Eqs. (45) and (46) U ¼ T, and the stress-energy
tensor is Lorentz-invariant.

This limit corresponds effectively to a currentless
Nambu-Goto string which is stable and although it is an
interesting model in it own right, it is not an elastic string
model.

VIII. STABILITY OF THE SIMPLIFIED MODEL

In this section, we test the possibility that while both
fields are condensed in the string, they can be assumed (in
some approximation) to be independent of each other. In
this case the Lagrangian reads

L ¼ L1ð�1Þ þL2ð�2Þ þm2; (133)

where Lið�iÞ is an effective Lagrangian which can be
identified with that of a string with a single condensate.
We include an additional m2 term in order to compensate
the bare Goto-Nambu energy contribution which, as we
shall see, comes in twice, i.e., once for each of the
Lagrangians L1 and L2. As shown in Refs [47,49], the
energy Ui and tension Ti as a function of the state parame-
ter wi of a string with a single current are accurately
reproduced by a Lagrangian of the following form:

L ið�iÞ ¼ �m2 � wi

2

�
1þ wi

m2
i

��1
if wi > 0; (134)

i.e., in the magnetic case, and

L ið�iÞ ¼ �m2 �m2
i

2
ln

�
1þ wi

m2
i

�
if wi < 0; (135)

i.e., in the electric case. In Eqs. (134) and (135), m and mi

are adjustable mass parameters of the order of the Higgs

mass mh ¼
ffiffiffiffi
�

p
� and of the order of the condensate mass

parameters m� and m�, respectively. The energy per unit

length Ui and tension Ti is given by [43–46]

Ti ¼�Li þwiKi and Ui ¼�Li if wi > 0 (136)

and

Ui ¼�Li þwiKi and Ti ¼�Li if wi < 0: (137)

A comparison between the numerical integration for a
string with a single condensate and the analytic model is
provided in Fig. 9 and shows remarkable agreement in
most of the stable range given by Eq. (131) and the
condition that T > 0.

In practice, for the simplified model of Eq. (133), i.e., in
the situation where more than one field condensates onto
the string, the mass parameters are shifted from the mass
parameters one would get for a string with a single con-
densate. We will assume in this section that for the two
fields to condensate, a minimum condition is that the

associated currents be dynamically stable separately, i.e.,
c2iT;L � 0 for each [43–46]. Now, assuming that both fields

condensate in the string, one can consider the dynamical
stability of this simplified string model against perturba-
tions in the associated currents. Because of the decoupled
form of the Lagrangian (133), it is clear that the conserved
currents c

�
i and d

�
i depend only on theLið�iÞ. This means

that the longitudinal perturbation equations decouple and
reduce to twice (once for each current) the usual longitu-
dinal equations for a string with only one current. Thus, the
stability condition is just c2iL � 0, a condition which we

took to be necessary to have two current condensates. This
result can be verified from Eqs. (121) and (122) by noting
that for the Lagrangian of Eq. (133), L1;2 ¼ L2;1 ¼ 0, and
c2iL is given by Eq. (132).

The stability of the string against transverse perturba-
tions is simply given by (105). The stress-energy tensor
associated with Eq. (133) is the sum of the stress-energy
tensors of each component

T�� ¼ T��
1 þ T��

2 þm2���; (138)

where T��
i are the stress-energy tensors for a string with a

single condensate,

T
��
i ¼ Uiu

�
i u

�
i � Tiv

�
i v

�
i ; (139)

in whichUi and Ti are the energy density and tension in the
string, respectively.
The energy density and tension of the simplified model

for the two-condensate case are shown in the lower part
of Fig. 9 and are compared to the numerical results
obtained for the interacting model in Figs. 3 and 4 for
the three values of the coupling ~g considered in this work.
In all three cases, the effective Higgs mass parameter m
of the model (dashed lines) was adjusted so as to best fit
the numerical results obtained for the full interacting
model. On the other hand, better agreement with the
numerical results of the interacting model was found by
keeping the effective scalar field mass parameters mi

equal to the best fit value obtained in the single-condensate
case. As expected, agreement of the model with the nu-
merical results is very satisfactory for ~g1 and ~g2 but is
unsatisfactory for ~g3. This serves to confirm that the model
can only be used at weak coupling. We further note that
(somewhat coincidentally) the model appears to better
agree with the weakly coupled case (i.e., for ~g2) than
with the uncoupled case (i.e., for ~g1). Finally, we stress
that the simplified model and the fully interacting model
but with ~g1 ¼ 0 should not be taken to be two descriptions
of precisely the same physics since in the latter, there is an
interplay between the two scalar fields through their cou-
plings to the Higgs and associated Uð1Þlocal gauge field. As
a result, one should always expects a discrepancy between
the two.
We now turn to a more detailed discussion of the stabil-

ity of transverse and longitudinal modes in the simplified
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model. The vectors u�i and v�
i are, respectively, timelike

and spacelike unit vectors associated with current i. In
order to diagonalize T��, we write the stress-energy tensor
(138) in the basis ðu�1 ; v�

1 Þ. The eigenvalues Ui and Ti are

related by the equations of state in the usual way [47] of a
one-condensate string, and the other eigenvectors ðu�2 ; v�

2 Þ
can be determined from ðu�1 ; v�

1 Þ and x with Eqs. (113) and
(114). As stated before, the stability of the transverse
modes is given by T > 0 and this constraint on T can be
used to obtain a constraint on the range of x. This is what
we do in the remainder of this work. The longitudinal
modes decouple and their stability, as in the single-current

case, is given by 1þ 2!iLi;i � 0. For the models of

Eqs. (134) and (135) this reduces to �� 
 ~w 
 �=3 (or
�m2

i 
 wi < m2
i =3) in both possible cases, i.e., w1w2 � 0

and w1w2 
 0.

A. Case I: w1w2 � 0

In this case, jxj � ffiffiffiffiffiffiffiffiffiffiffiffi
w1w2

p
, and d

�
i ¼ ffiffiffiffiffiffiffiffiffiffi�wi

p
u
�
i for time-

like currents and d�i ¼ ffiffiffiffiffiffi
wi

p
vi for spacelike currents. Using

Eq. (113), one has

u
�
2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

w1w2
p ðxu�1 þ sgnðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � w1w2

q
v
�
1 Þ; (140)

-0.02 -0.01 0 0.01 0.02 0.03
4.9

5.0

5.1

5.2

~ν

T/η 2

U/η2

-0.02 -0.01 0 0.01 0.02 0.03

5.0

4.9

5.1

5.2

~ν

T/η 2

U/η2

FIG. 9 (color online). (Top) Analytic models vs numerically determined U and T for a string with one current. The microscopic
parameters used to compute U and T numerically from the complete interacting case (solid lines) are those used for � (left) and �
(right) throughout the rest of this work. The mass parameters m and mi [see Eqs. (134) and (135)] used to compute U and T in the
analytic model (dashed lines) were adjusted to match the normalization of U and T obtained numerically. (Bottom) Analytic
computation of U (left) and T (right) for a string with two currents using the mass parameters m as in the single-current case shown in
the upper part of the figure.
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v�
2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

w1w2
p ðsgnðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � w1w2

q
u�1 þ xv�

1 Þ: (141)

Using Eq. (138), the stress-energy tensor in the basis ðu�1 ; v�
1 Þ is given by the sum T�� þm2���, where

T�� ¼
U1 þ x2U2 � ðx2 � w1w2ÞT2

w1w2

ðU2 � T2Þjxj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � w1w2

p
w1w2

ðU2 � T2Þjxj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � w1w2

p
w1w2

�
�
T1 þ x2T2 � ðx2 � w1w2ÞU2

w1w2

�
0
BBBB@

1
CCCCA: (142)

In order to address the first stability condition (T � 0), we compute U and T. They are simply given by the eigenvalues of
the stress-energy tensor. We therefore solve

det½T�� þ ðm2 � �Þ���� ¼ X2 þ ðU1 þU2 þ T1 þ T2ÞX þ
�
ðU1 þU2ÞðT1 þ T2Þ � y2

w1w2

ðU1 � T1ÞðU2 � T2Þ
�
¼ 0;

(143)

where X ¼ ��m2 and y2 ¼ x2 � w1w2 � 0. In order to
satisfy T � 0, one finds that

y2 
 w1w2

ðU1 þU2 �m2ÞðT1 þ T2 �m2Þ
ðU1 � T1ÞðU2 � T2Þ : (144)

B. Case II: w1w2 
 0

In this case, and without loss of generality, we take d
�
1 ¼ffiffiffiffiffiffiffiffiffiffi�w1

p
u�1 and d�2 ¼ ffiffiffiffiffiffi

w2
p

v�
2 . We then have

u�2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�w1w2
p

�
sgnðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � w1w2

q
u�1 þ xv�

1

�
; (145)

v�
2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�w1w2

p
�
xu�1 þ sgnðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � w1w2

q
v�
1

�
: (146)

Following the procedure outlined in the preceding section,
we find

y2 
 jw1w2j ðU1 þ T2 �m2ÞðT1 þU2 �m2Þ
ðU1 � T1ÞðU2 � T2Þ : (147)

Alternatively, from Eq. (144) and (147), stable configu-
rations can be expressed as a limit on x. For w1w2 � 0,

x2 
 x2lim ¼ w1w2ðU1 �m2 þ T2ÞðU2 �m2 þ T1Þ
ðU1 � T1ÞðU2 � T2Þ ;

(148)

and for w1w2 
 0,

x2 
 x2lim ¼ jw1w2jðT1 þ T2 �m2ÞðU1 þU2 �m2Þ
ðU1 � T1ÞðU2 � T2Þ :

(149)

Figures 5–8 provide a comparison of the regions of
stability of the fully interacting model obtained using the
constraint xlim given by Eq. (108) and the solutions of
Eq. (130) 2 R with the region of stability obtained for

the simplified model using the constraints given by
Eqs. (148) and (149) for ~g1, ~g2 and ~g3. In the simplified
model, both Ti and Ui are proportional to m2. As a result,
xlim is independent of m. It is interesting to note that, at
least in principle, the coupling g indirectly plays a role in
the physics of the decoupled model if the best fitmi’s differ
in going from ~g1 to ~g3. If, however, the mi’s of the analytic
model are kept the same for all values of ~g (which is the
case here), the stability of the simplified model will be
strictly the same independently of the value of g. In this
case, the simplified model will reproduce the stability of
the interacting full theory only for weak coupling. This is
indeed the conclusion that can be drawn from the figures,
where the regions of stability computed using the simpli-
fied model approach those of the fully interacting model.

IX. CONCLUSIONS

In the Witten bosonic neutral superconducting string
model, the conserved current is given by the phase gradient
of a single Uð1Þglobal scalar field condensate. At the field
theory level and also in the integrated macroscopic world
sheet formalism [43–46], such a string can be described by
a single state parameter given by the square of the phase
gradient of the neutral field once the microscopic mass
parameters and couplings are fixed. In this work, we ex-
tended both the existing microscopic and macroscopic
descriptions of the neutral string to the case of a string
carrying several of these currents.
In the first part of this paper, we described how to

generalize the single-current microscopic structure of a
string to the two-current case [i.e., to the case of a string
in the presence of two Uð1Þglobal fields] and calculated the
integrated quantities needed to describe the macroscopic
evolution of a string world sheet endowed with two cur-
rents, i.e., the energy per unit length, the tension, and the
total currents. We pointed out that at the field theory level,
only the usual state parameters given by the square of the
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phase gradients are needed to fully describe the dynamics.
However, and in contrast with the other known case of a
string carrying two currents [54], in addition to the two
Lorentz-invariant state parameters required in the micro-
scopic description, the scalar product of the phase gra-
dients of the different fields is needed in order to
describe the energy per unit length, tension and integrated
currents relevant in the world sheet description. This dif-
ference can be explained by noting that the field equations
cannot depend on this third state parameter, denoted x,
because x represents the (Lorentz) angle between the world
sheet currents, and this could only have a dynamical effect
on the microstructure if there existed an interaction be-
tween the scalar field phases. Such an interaction is ex-
cluded by the assumed symmetry. On the other hand, the
macroscopic properties of the string needed to describe the
world sheet dynamics are nonlocal quantities and therefore
can and do depend on the parameter x.

In the first part of the paper, we also solved numerically
the field equations using a relaxation method and obtained
the parameter range in which both fields condensate onto
the string. As could be expected, when the Uð1Þglobal fields
are strongly coupled at the microscopic level, the region of
parameter space in which both fields condense onto the
string is greatly reduced. In addition, we computed the
energy per unit length, tension and the integrated current
as a function of the first two state parameters.

It was found that, at the microscopic level, the results
obtained in the single-current case extend to this more
complicated case. In particular, the phase frequency
threshold [49] that appears for a timelike current for one
condensate exists here as well. As a result, in the region of
the parameter space in which both currents play a signifi-
cant part in the string physics, divergences are observed in
the energy per unit length, tension and integrated currents.
In particular, the divergences observed as one (but not the
other) state parameter reaches its phase frequency thresh-
old are similar to the ones observed in the single-
condensate string. However, a divergence of the tension
T to positive values is observed when the phase frequency
threshold of both currents is approached. This feature does
not exist in the single-condensate string: as the phase
frequency threshold in the single-condensate string is ap-
proached, the tension diverges negatively. This feature
enlarges the range of validity of the no-spring conjecture
[63,64]; it would affect the electromagnetically supported
loop configuration [40] and their long-range gravitational
properties [65]. Finally, exact relations describing the de-
pendence of the various quantities of interest on the third
state parameter were obtained. This was made possible
only because, as already mentioned, the parameter x is
absent at the microscopic level.

In the second part of this paper, we presented a general
extension of Carter’s world sheet formalism to describe the
world sheet dynamics of a string endowed with N con-

densates. We derived the conservation equations associated
with the 2N string currents and obtained a duality relation
identical to the one that exists in the one-condensate string.
We then worked out the stability conditions of an
N-condensate string. At first order in perturbations, the
criterion for stability of transverse modes of a string carry-
ing N currents is identical to that of a string carrying a
single current: the propagation speed of perturbations must
be positive. It reduces to the same requirement as in the
single-condensate string, namely, that the string tension be
positive. This conclusion can be reached by inspection,
simply by substituting in the extrinsic equations of motion
of the string the ansatz for a perturbation. At first order,
perturbations in the longitudinal modes do not couple. The
string will therefore be stable if the propagation speed of
these modes is positive. However, for a general
N-condensate string, this condition does not reduce to
dT=dU < 0 as in the single-condensate string. Instead,
one obtains a set of coupled equations for the perturbations
of the N currents (a coupling of the perturbation of a
current with index i to all other unperturbed currents
with index j � i). Furthermore, in the world sheet formal-
ism, there exists an additional set of state parameters,
namely, the scalar product of all pairs of distinct phase
gradients that, in theN ¼ 2 condensate string, are naturally
identified with the parameter x of the microscopic field
model. These new parameters naturally complement the
ones obtained when going from one to two currents.
Given that there exists a priori no procedure to solve the

set of longitudinal equations in the case of N currents, we
carried out the numerical analysis in an application to a
two-condensate string. In this case, the condition for stabil-
ity of the transverse modes, namely, T > 0, can be turned
into a restriction on the range of possible variations con-
dition on the third state parameter. The perturbation equa-
tions in the longitudinal direction reduces to a set of four
coupled equations in which case the condition for stability
turns into a constraint on the solutions of a fourth-order
polynomial equation. This condition is that its roots, which
are functions of the dispersion relation of a given mode, be
real. Algebraic solutions of this equation were obtained
using the well-known Ferrari procedure. Combining the
constraint on x with the constraints on the roots of the
fourth-order polynomial equation completes the stability
analysis of the two-condensate string. The regions of
stability were shown in Figs. 5–8.
In the third part of this work, we investigated whether

the study of decoupled fields whose integrated Lagrangian
can be reproduced using simple approximate analytic for-
mulas is suitable to reproduce the physics in the two-
coupled fields case. In this approximation, the
Lagrangian is simply given by the sum of two single-
current string Lagrangians. As expected, we found that
even in this approximation, the energy per unit length
and tension depend on both the single-current state pa-
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rameters and x. Nevertheless, even when the nonlinear
coupling constant is set to zero in the fully interacting
Lagrangian, the simplified model should not be taken as
a description of precisely the same physics because in the
fully interacting Lagrangian, there is an interplay between
the two scalar fields through their couplings to the Higgs
and associatedUð1Þlocal gauge field. As a result, one should
always expect a discrepancy between the two. In short, the
full dynamical evolution of a two-current string, and thus
presumably of an N-current string, is not expected to be
fully reproduced by such a model. However, the ability to
give an approximate description of the physics in the
interacting case with a fully analytic model is attractive
and as shown in Figs. 3 and 4, the energy per unit length
and tension are very well approximated by the analytic
description of uncoupled fields as long as the coupling g is
small. Larger deviations are however observed for stronger
couplings.

We completed the study of the approximate model with
an analysis of its stability against transverse and longitu-

dinal perturbations in the currents. It was found that stabil-
ity of the string against longitudinal perturbations yields
the constraint dT=dU < 0. This is of course identical to the
result obtained for a string with a single condensate but
different from the result obtained the second part of the
paper in which coupled fields were considered. On the
other hand, the stability of the string against transverse
perturbations yields a constraint on x, as in the fully
coupled case. We finally compared the regions of stability
predicted by the analytic model of uncoupled fields to the
ones obtained in the interacting theory in Figs. 5–8 and
found good agreement at weak coupling only. We therefore
conclude that it is possible to address the stability of a
string endowed with coupled fields in a fully analytic way
with satisfactory accuracy at weak coupling only.
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