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Hybrid inflation faces two well-known problems: the blue spectrum of the nonsupersymmetric version

of the model and the fine-tuning of the initial conditions of the fields leading to sufficient inflation to

account for the standard cosmological problems. They are investigated by studying the exact two-fields

dynamics instead of assuming slow-roll. When the field values are restricted to be less than the reduced

Planck mass, a non-negligible part of the initial condition space (around 15% depending on potential

parameters) leads to successful inflation. Most of it is located outside the usual inflationary valley and

organized in continuous patterns instead of being isolated as previously found. Their existence is

explained and their properties are studied. This shows that no excessive fine-tuning is required for

successful hybrid inflation. Moreover, by extending the initial condition space to Planckian-like or super-

Planckian values, inflation becomes generically sufficiently long and can produce a red-tilted scalar power

spectrum due to slow-roll violations. The robustness of these properties is confirmed by conducting our

analysis on three other models of hybrid-type inflation in various framework: ‘‘smooth’’ and ‘‘shifted’’

inflation in SUSY and SUGRA, and ‘‘radion assisted’’ gauge inflation. A high percentage of successful

inflation for smooth hybrid inflation (up to 80%) is observed.
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I. INTRODUCTION

For almost a decade, the cosmic microwave background
data have supported a cosmological concordance model, in
which inflation [1–5], an early phase of accelerated expan-
sion, is the favored explanation for the origin of the pri-
mordial fluctuations.1 For more than 25 years, many
models of inflation have been proposed, from toy models
to more realistic models based on various high energy
physics frameworks [4,9–11]. The incoming flow of cos-
mological data has however started to discriminate among
the models. In particular, the last release of the WMAP 5-
years data [12] favored a red-tilted scalar power spectrum.

If some single-field models are still able to reproduce the
current data, the presence of multiple scalar fields in all the
high energy physics frameworks proposed today (Higgs
fields in grand unified theories, superpartners in supersym-
metry, moduli in string theory) makes it hard to imagine
that the inflaton field is not coupled to any other scalars.
The simplest (and yet motivated) known example of multi-
field inflation is the hybrid one. The original hybrid model
of inflation, proposed in [13,14], had been introduced as an
alternative way to end inflation and could be realized for
sub-Planckian field values unlike chaotic models. The key
idea is to couple the inflaton field to a Higgs-type waterfall
field which ends inflation by acquiring a nonvanishing

vacuum expectation value (vev). This model could be
considered as realistic if employing a Higgs field and an
extra singlet of some minimal extension of the standard
model of particle physics. It also represents a toy model for
many multifield models of inflation in other frameworks.
Indeed, hybrid(-type) models of inflation have been
embedded in almost all high energy frameworks: in (ex-
tended) supersymmetry and supergravity [15–18], in grand
unified theories [19,20], or various extra-dimensional theo-
ries [21–24].
When confronting the original hybrid inflation to the

CMB data, it is however well-known [9] that the power
spectrum tilt is blue which is now disfavored. This is only
valid when slow-roll is assumed and when the vacuum
energy density dominates the potential since in the other
case, the potential becomes equivalent to a chaotic model.
In this paper, we illustrate these properties and study the
predictions for the spectral index of the model using the
exact field dynamics. We find a new way to generate a red-
tilted spectrum due to nontrivial effects of the violation of
slow-roll, give the two possible conditions on the parame-
ters of the potential to generate a red spectrum of pertur-
bations and discuss the field values that these conditions
require.
Several fundamental questions about initial conditions

for inflation are still open (see for example [25–31]). In this
paper, we will not address the important problem of spatial
homogeneity of the fields [25] and we will assume that the
field values do not enter the self-reproducing inflationary
regime [28]. Even when restricting to the classical approxi-
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mation, the existence of a fine-tuning on the initial values
of the fields was found, for hybrid inflation [29–31]. (An
opposite conclusion has been obtained [32] for the smooth
hybrid inflation model. We will comment on this model at
Sec. III). The space of initial conditions is described by
regions in the plane ð�i; c iÞ, where �i and c i denote the
initial values of the inflaton and the waterfall field, respec-
tively. By fine-tuning of the initial conditions, one means
that the regions leading to sufficient (60 e-folds or more)
inflation have been found to be composed [29,31] of an
extremely thin band around c i ¼ 0 and a few apparently
random points in the rest of the plane. Uncertainties remain
on whether these points are of null measure [31] or not
[29]. The thin band is also considered as fine-tuned because
c i has to be so close to 0 that any quantum fluctuations
would shift its value outside the successful region [29].
This would be an important problem for hybrid-type in-
flation because it means that these models would not easily
be the natural outcome of some preinflationary era (see
however [33]).

Several papers have proposed some solutions to the fine-
tuning problems. It has been proposed to replicate many
times identically the inflaton sector [31], even though no
motivations have been proposed for this replication. A
similar idea had been employed to construct the
N-flation model [34] but the replication in this context is
not more natural [35]. It has also been proposed [31,36] to
embed hybrid inflation into a brane description. The in-
duced modifications to the Friedmann-Lemaı̂tre equations
provide additional friction in the evolution of scalar fields.
Thus slow-rolling is favored and more of the initial condi-
tion space gives rise to successful inflation. This friction
can also be efficiently played by dissipative effects [37],
when couplings between the inflaton and the waterfall field
with a bath of other fields are assumed. Finally, it has been
proposed [38] to solve this problem by accepting a short
(N � 10) phase of hybrid inflation and implementing a
second one responsible for the generation of the primordial
fluctuations, thus solving the horizon problem.

However, to our knowledge, little has been proposed to
explain the properties of the (un-)successful space of initial
conditions: discreteness, subdominance, size and limits. In
this paper, we first show that super-Planckian initial con-
ditions always give rise to a sufficiently long phase of
hybrid inflation and can produce a red-tilted power spec-
trum without the need of any fine-tuning. We provide a
detailed analysis of the properties of the initial condition
space, explain why parts of this space were thought to be
discrete, and what are the field trajectories leading to these
apparently isolated points. In particular, we show that they
can be viewed as the ‘‘anamorphosis’’ (that is a deformed
image) of the thin successful band. We also give the area of
successful initial conditions in the plane ð�i; c iÞ. Even
when restricting the fields to sub-Planckian values, we
find around 15% of successful initial conditions and we
discuss the effect of varying the different parameters of the

potential. When going to super-Planckian values, we con-
firm that this ratio tends to 100%.
To prove the robustness of these results, we explore the

space of initial conditions for three other hybrid-type mod-
els: the supersymmetric and supergravity smooth [39–41]
and shifted [42,43] models, as well as the ‘‘radion as-
sisted’’ gauge inflation [24]. The first two models are direct
extensions of the F-term hybrid inflation [17] and are
motivated by the fact that their inflationary valley is shifted
away from c ¼ 0, so that any harmful topological defects
formed during the symmetry breaking induced by c would
be diluted away. The last model is based on a hybrid-type
potential even though constructed in 5D. Its main motiva-
tion resides in the fact, that by construction, the form of the
potential is controlled (and thus protected) by gauge
symmetries.
Before going any further, let us discuss the physical

motivations of enlarging the space of initial conditions to
super-Planckian values. Even though this possibility has
been moderately studied in [30], most previous works
[29,31] restricted their analysis to initial values of the fields
under the Planck mass. For nonsupersymmetric four-
dimensional theories, it was proposed in [4] that quantum
gravity corrections are controlled as long as the energy
density and the effective masses are sub-Planckian. In this
case, effective field theories can be an appropriate frame-
work to describe fields of Planckian-like amplitude. More
recently, several models such as natural inflation [44], or
gauge inflation [45–47] also allow fields to be super-
Plankian. For example, in gauge inflation, the inflaton field
is part of a gauge field and thus the form of the potential is
protected by gauge symmetries, leaving nonrenormaliz-
able corrections highly constrained.
Let us turn to supersymmetric frameworks. Since un-

controlled nonrenormalizable corrections to the superpo-
tential and the Kähler potential appear, super-Planckian
fields are inevitably problematic for models constructed
in the context of supersymmetry (SUSY) or supergravity
(SUGRA). Global SUSY is only valid as long as all fields
have an amplitude much smaller than2 Mpl. When closer

to the reduced Planck mass (but still below), SUGRA
corrections are important and supergravity is the correct
framework to describe the model. Above Mpl, the non-

renormalizable corrections become dominant: the nonre-
normalizability of SUGRA prevents us from using it and a
UV-complete theory is then necessary [48]. Finding and
describing inflaton fields with Planckian displacements in
string theories is, however, possible in certain sectors of
string theories, though not always stable and their potential
is not easily flat [48,49]. Several models of inflation con-
structed within string theories have been proposed (see for

2Throughout this paper, we will denote the Planck mass by
mpl � G�1=2 ’ 1:2� 1019 GeV and the reduced Planck mass by
Mpl � ð8�GÞ�1=2.

SÉBASTIEN CLESSE AND JONATHAN ROCHER PHYSICAL REVIEW D 79, 103507 (2009)

103507-2



e.g. [11,48,50,51] and refs therein) and some of them have
a low-energy effective description that mimics hybrid in-
flation [10,21,22]. These examples motivated us to assume
that the effective inflationary potentials studied in this
paper can also originate from frameworks in which it is
safe to consider super-Planckian fields. As a conclusion,
we have chosen to study them both in the sub-Planckian
and super-Planckian field regimes. However, we will al-
ways restrict ourselves to sub-Planckian energy densities.

The rest of the paper is organized as follows. In the
Sec. II, we extensively study the original hybrid inflation
model [13]. In particular, we discuss the validity of the one-
field slow-roll approximation and show that violation of
slow-roll conditions can strongly modify the dynamics.
Using exact numerical methods, applied on the two-field
potential, we provide a complete analysis of the space of
initial conditions and revisit the above-mentioned fine-
tuning problem. In Sec. III, we test the robustness of our
results on the three other models: SUSY/SUGRA smooth
hybrid inflation, SUSY/SUGRA shifted hybrid inflation
and radion-inflation. Our conclusions are drawn in
Sec. IV and some open questions are developed.

II. ORIGINAL HYBRID MODEL

Proposed in [13,14], the model is based on the potential

Vð�; c Þ ¼ 1

2
m2�2 þ �

4
ðc 2 �M2Þ2 þ �0

2
�2c 2; (1)

where� is the inflaton and c is the Higgs-type field. � and
�0 are two positive coupling constants, m and M are two
mass parameters. It is the most general form (omitting a
quartic term �00�4) of renormalizable potential verifying
the symmetries c $ �c and � $ ��. In the general
case, inflation is mostly assumed to be realized in the false-
vacuum along the c ¼ 0 valley and ends with a tachyonic
instability for the Higgs-type field. The critical point of
instability below which the potential develops nonvanish-
ing minima is

�c ¼ M

ffiffiffiffiffi
�

�0

s
: (2)

The system then evolves toward its true minimum at V ¼
0, h�i ¼ 0, and hc i ¼ �M, where throughout the paper,
h:i denotes the vacuum expectation value (vev) of a field.

In this section, we will first restrict ourselves to the
effective one-field approach to reanalyze the predictions
of the spectral index for the generated power spectrum.
This will be done solving numerically the exact field
equations of motion rather than assuming slow-roll.
Then, we will move one the full two-field dynamics and
study the initial conditions that lead to sufficiently long
inflation.

A. Effective one-field potential

To study the inflationary phase along the valley c ¼ 0,
it is common usage to restrict the potential of Eq. (1) to a
one-dimensional effective potential of the form

Vð�Þ ¼ �4

�
1þ

�
�

�

�
2
�
; (3)

with

� �
ffiffiffiffi
�

2

s
M2

m
; � � �1=4M=

ffiffiffi
2

p
: (4)

The Friedmann-Lemaı̂tre equations and the Klein-Gordon
equation in an expanding universe for this scalar field read

H2 ¼ 8�

3m2
pl

�
1

2
_�2 þ Vð�Þ

�
;

€a

a
¼ 8�

3m2
pl

½� _�2 þ Vð�Þ�;
(5)

€�þ 3H _�þ dV

d�
¼ 0; (6)

where a is the scale factor, H the Hubble parameter, and
the dot denotes a derivative with respect to cosmic time.
Inflation is realized starting at high field values, the field
rolling down toward 0. To mimic the two-field dynamics, in
this effective model, it is necessary to define an effective
critical value �c > 0 at which inflation ends.
The well-known slow-roll approximation consists in

neglecting the second derivative of the field in Eq. (6)
and the kinetic terms compared to the potential in Eq. (5).
Using the Hubble-flow parameters [52,53]

�0 � H; �nþ1 � d ln�n
dN

; (7)

inflation occurs for �1 ¼ � _H=H2 < 1 and slow-roll con-
ditions are satisfied when, for all n � 1, j�nj � 1. For the
effective hybrid potential, an analytical expression of the
first and second Hubble-flow parameter is easily derived in
the slow-roll approximation,

�1ð�Þ ¼ 1

4�

�
mpl

�

�
2 ð�=�Þ2
½1þ ð�=�Þ2�2 ;

�2ð�Þ ¼ 1

2�

�
mpl

�

�
2 ð�=�Þ2 � 1

½1þ ð�=�Þ2�2 :
(8)

It is clear from these expressions that the slow-roll con-
ditions are satisfied for large field values. As illustrated in
Fig. 1, Eq. (8) suggests that two phases of inflation can take
place [54]. A first phase at large values of the field, and a
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second phase at small values. These phases are separated
by a maximum of �1ð�Þ, reached at �max, and at which
�2ð�Þ changes its sign. In the slow-roll approximation
�max ¼ �. However, around �max, and for sufficiently
small values of �, slow-roll conditions can be violated,
as it is illustrated by the dashed line in Fig. 1. Thus a
resolution of the exact equations of motion for the fields is
required to study the influence of the transition period on
the dynamics of inflation.

1. Exact field dynamics

The dynamics of the one-field effective hybrid inflation,
without assuming slow-roll, is described by Eqs. (5) and
(6): they have been integrated numerically. The parameter
�1 has been computed exactly and is represented as a
function of the inflaton field in Fig. 1 and compared to
the analytical slow-roll expressions of Eq. (8).

The exact integration confirms the existence of the two
regimes before and after the maximum of �1, at which the
slow-roll conditions can be violated and inflation can even
be interrupted (when �1 � 1) depending on the value of the
parameter�. But there are two important novelties. Firstly,
�max is displaced toward smaller values in the exact treat-
ment compared to its slow-roll value �. Secondly, in the
slow-roll approximation, after the peak, �1ð�Þ decreases
and vanishes for vanishing field. One may think that in-
flation always takes place for �<�max. However, exact
numerical results show that this conclusion is erroneous: �1
does not necessarily become negligible when the field
vanishes (see the plain blue curve). As a consequence,
inflation does not necessarily produce the last 60 e-folds
in the small field regime (�<�max).

From Fig. 1, it is clear that the presence or not of small
field phase of inflation depend on the parameter � (differ-
ence between the dashed and plain curves). In order to
measure the efficiency/existence of this second phase of
inflation, we have plotted in Fig. 2 the number of e-folds
created between �max and � ¼ 0 as a function of �. This
shows that there exists a critical value

�crit ’ 0:32mpl; (9)

under which the number of e-folds generated after �max is
reached is marginal. In this case, the period of inflation
where the observable modes become super-Hubble will
always take place in the large field phase (�>�max)
provided �i >�max. In this case, the potential of hybrid
inflation leads to a chaoticlike inflation, independently of
the way inflation ends. This has important consequences
for the generated spectral index.

2. Scalar spectral index

At first order in slow-roll parameters, the spectral index
of the scalar power spectrum P � can be expressed as

[52,55]

ns � 1 � dP �

d lnk

��������k¼k	
¼ �2�1	 � �2	: (10)

A star means that the quantity is evaluated at Hubble
crossing aH ¼ k	, k	 being a pivot scale in the range of
observable modes.
Recent experimental results from WMAP 5-years [12]

have a best fit at ns ’ 0:96 and disfavor a value of the scalar
spectral index greater than unity at almost 95% confidence
level (CL). From this observation, hybrid models have
recently been considered as disfavored. Indeed, in the

FIG. 2. Number of e-folds created between �max and � ¼ 0 as
a function of �, when slow-roll is not assumed. There exist a
critical value of the parameter � under which a marginal number
of e-folds is generated in the second phase of evolution. Above
the critical value of �, the number of e-folds created in the
second phase of inflation diverges showing the efficiency of the
second phase of inflation when it exists.

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0
1

FIG. 1 (color online). First Hubble-flow parameter �1, function
of the inflaton field, during its evolution started in the large field
phase, in the slow-roll approximation (red dashed and dotted
lines) and from the exact dynamics (blue solid and dot-dashed
lines). The curves correspond to � ¼ 0:1mpl (two top curves),

� ¼ 0:4mpl (two bottom curves, quasisuperimposed). For each

value of �, we observe two phases of evolution at large field and
at small field (compared to �max).
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slow-rolling effective one-field model, as shown at the
previous section, the last 60 e-folds of inflation are realized
in the small field phase characterized by a negative �2 and a
negligibly small �1 which induces necessarily a blue
spectrum.

However, there exist two mechanisms to produce a red
spectrum within the standard hybrid inflation model along
the valley c ¼ 0. There are two ways of forcing the small
field inflation phase not to take place, either by instability
or by violation of the slow-roll condition. In both case, the
consequence is that the spectral index generated is below 1
as represented in Fig. 3. Note that almost any values of the
spectral index can be actually accommodated by the
model, including the best fit for WMAP5 data.

When the critical point of instability is in the large field
phase.—The simplest way to obtain a red spectrum is to
destabilize inflation with the waterfall field at some stage
during the large field phase or at most at the peak, �c �
�max, independently of �. This had been noticed in the
past [14,56], though not often emphasized. For� 
 �max,
the inflaton potential is of the form V ’ m2�2=2 for which
ns < 1. Since in the exact treatment �max <� is shifted to
smaller values, a sufficient condition to have ns < 1 reads

m

M
>

ffiffiffiffiffi
�0

2

s
: (11)

This property still holds when violations of slow-roll are
taken into account.

We would like to emphasize that the value of the inflaton
60 e-folds before the end of inflation, denoted �60, is
necessarily super-Planckian if inflation takes place in the
large field regime, independently of �. If � � �crit, the
slow-roll approximations can be used and with �end ¼

�c ¼ �max ¼ �, it is well-known [14] that the minimum
value of �60 is given by

2��2

m2
pl

�
2 ln

�
�60

�

�
þ

�
�60

�

�
2 � 1

�
¼ Nsucc ¼ 60; (12)

which is always around 3mpl or greater. If � � �crit,

solving numerically the exact field dynamics is required,
and we also found that �60 * 3mpl.

When the second phase never takes place.—Assuming
that the initial value is in the large field phase�i > �max, if
� & �crit, then the small field phase of inflation can never
take place. This is a new way to generate a red spectrum
independently of the critical value�c. Indeed, an excessive
velocity of the field around �max induces a violation of the
(slow-roll) inflation condition (see plain line of Fig. 1).
Thus �60 necessarily lies in the large field regime and the
spectrum is red, independently of the critical value �c.
Notice however that even for � � �crit, one could still
start an inflationary period with �i � �max leading to a
blue-tilted power spectrum. Violation of slow-roll only
prevents this period to occurs after any large field phase.
In this case also, this requires a large initial value of the
inflaton, and a realization of hybrid inflation in a regime
away from the usual limit � � �. This conclusion might
reduce the appeal of the model.

B. Exact two-field dynamics and initial conditions

We now turn to the two-field potential given in Eq. (1) to
study the field dynamics without restricting to the c ¼ 0
valley. In previous works, Tetradis [29], Lazarides &
Vlachos [30] and more recently Mendes & Liddle [31]
studied the space of initial conditions of the fields leading
to successful/unsuccessful inflation for hybrid inflation.
They found that the successful regions for sub-Planckian
initial values are made of a very narrow band along the
c ¼ 0 axis (motivating the one-field approach), together
with some scattered points in the unsuccessful region,
which seemed randomly distributed. In this section, we
explore a larger space of initial conditions and extend
previous studies to super-Planckian initial values. We
show that three different classes of successful trajectories
in field space can be defined, one of them explaining the
origin and the properties of the previously found isolated
points. Finally, we quantify the amount of fine-tuning of
the model by computing the ratio of successful/unsuccess-
ful area and study the effect of varying the parameters of
the potential on our results.

1. Exact two-field dynamics

For two homogeneous scalar fields � and c , the
Friedmann-Lemaı̂tre equations take the form

FIG. 3. Spectral index ns of the power spectrum as a function
of �60, the value of the field 60 e-folds before the end of
inflation. This has been computed for the effective hybrid
potential for � ¼ mpl (full line), � ¼ 0:7mpl (dotted line) and

� ¼ 0:14mpl (dashed line), in the slow-roll approximation. One

can see that almost any value of the spectral index can be
accommodated within hybrid inflation.
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H2 ¼ 8�

3m2
pl

�
1

2
ð _�2 þ _c 2Þ þ Vð�; c Þ

�
;

€a

a
¼ 8�

3m2
pl

½� _�2 � _c 2 þ Vð�; c Þ�;
(13)

while the equations of Klein-Gordon for these scalar fields
read

€�þ 3H _�þ @Vð�; c Þ
@�

¼ 0;

€c þ 3H _c þ @Vð�; c Þ
@c

¼ 0:

(14)

For the numerical integration, instead of using the scale
factor and its time derivative as integration variables, it is
more convenient to use the number of e-folds realized from
the beginning of inflation3 NðtÞ ¼ ln½aðtÞ=ai� and its first
derivative—the Hubble parameter.

2. Classical dynamics and stochastic effects

Considering large values for the fields can induce sto-
chastic (quantum) effects to affect the field dynamics,
described in this paper as purely classical [57,58]. Since
we also consider super-Planckian field values, it is impor-
tant to check that for such values, the dynamics is still
dominated by the classical motion. The stochastic effects
in the full two-field potential have not yet been studied but
the stochastic effects should be very limited. Indeed, the
dynamics that is found is fast-rolling at the beginning,
during which the classical motion will clearly dominate
and then slow-roll in the inflationary valley. When slow-
roll is realized, it is possible to evaluate at what field values
the stochastic effects become relevant by comparing the
classical field fluctuations and the quantum field fluctua-
tions, during a Hubble time. In the valley c ¼ 0, we obtain

H

2�
*

M2
plV

0

V
, �

m2
pl

*
1

2

ffiffiffiffiffiffiffi
3

4�

s
mpl

m
: (15)

Since the values of m used in this paper are well below the
Planck scale, the stochastic effects are expected to be
negligible even for field values of a few Planck scale [58].

3. Exploration of the space of initial conditions

Let us now study the space of initial values [i.e. the
ð�i; c iÞ plane] of the fields that lead to successful inflation.
For simplicity, we have assumed initial velocities to be

vanishing _�i ¼ _c i ¼ 0 as their effect can always be mim-
icked by starting in a different point with vanishing veloc-
ities. Then for each initial conditions, we have integrated
the equations of motion and computed the field values and
the number of e-folds as a function of time. Choosing to

end simulations when inflation is violated would have not
allowed us to study trajectories where inflation is transi-
ently interrupted as it may happen (see Sec. II A 1).
Therefore, we chose to end the numerical integration
when the trajectory is sure to be trapped by one of the
two global minima, because at that point, no more e-folds
will be produced. This is realized when the sum of the
kinetic and potential energy of the fields is equal to the
height of the potential barrier between the vacua, i.e. when

�M4 ¼ 1

2
ð _�2 þ _c 2Þ þ Vð�; c Þ: (16)

We have defined ‘‘successful inflation’’ as a period that
lasts at least for 60 e-folds.4

FIG. 4 (color online). Grid of initial conditions leading to
successful (white regions) and unsuccessful inflation (colored
region), for the original hybrid inflation with � ¼ �0 ¼ 1, m ¼
10�6mpl and M ¼ 0:03mpl. The color code denotes the number

of e-folds realized. Three typical successful trajectories [in the
valley (A), radial (B), and from an isolated point (C)] are added
as well as an unsuccessful trajectory (point D). Also plotted are
the isocurves of �1, in the slow-roll approximation, for �1 ¼
0:022, 0.02, 0.0167 and 0.015 (from left to right).

3ai is the scale factor at the beginning of inflation.

4Note that the number of e-folds required to solve the horizon
problem actually depends on the energy at which inflation is
realized or the reheating temperature [9,59,60]

Nhorizon ¼ 62� lnð1016 GeV=V1=4
end Þ �

1

3
lnðV1=4

end=�
1=4
reh Þ:

Here we will assume that inflation takes place at high energy,
close to the GUT scale.
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Let us mention that our aim here is not to provide the
best fit to the cosmological data but to explore the space of
initial conditions that lead to sufficient inflation within the
hybrid class of models. However, notice that the COBE
normalization can always be achieved by a rescaling of the
potential without affecting the inflaton dynamics.

In Fig. 4 the grid of initial values is presented for the
original hybrid inflation model of Eq. (1). For values of
parameters comparable to those used in [29,31], we have
put in evidence three types of trajectories in the fields space

to obtain successful inflation. An example of each has been
represented in Fig. 4 and identified by a letter A, B, or C
whereas an example of a failed trajectory is identified by a
D. The details of these trajectories are represented in Fig. 5
where the values of the fields for three trajectories are
plotted as a function of the number of e-folds. A more
detailed description of the more interesting type-C trajec-
tory is represented separately in Fig. 6. Each trajectory is
described and explained below.
Trajectory A: along the valley.—This region of success-

ful inflation corresponds to a narrow band along the c ¼ 0
line and is the standard evolution. Trajectories are charac-
terized first by damped oscillations around the inflationary
valley which does not produce a significant number of e-
folds. However once the oscillations are damped, the evo-
lution is identical to the one for the effective one-field
potential and inflation becomes extremely efficient in
terms of e-folds created. This explains the abrupt transition
between the unsuccessful and the successful type-A re-
gions observed in Fig. 4. Indeed, unsuccessful points with
around 10 e-folds created can be found right next to the
white successful region where N 
 60. The difference
between two close points in each region is that for the
successful one, the system just has the right amount of time
for the oscillations to become damped before entering the
global minimum where inflation ends.
For larger initial values of the� field (around and above

the Planck mass), the narrow band of successful inflation
opens up and inflation is always successful (in agreement
with [29,30]. In this region (at the top of Fig. 4), it is always
possible for the oscillations to become damped and for the
efficient regime of inflation to start before the end of
inflation: the fine-tuning on the initial conditions disap-
pears at large values of � for any values of c . This
behavior is similar to the chaotic inflation model, where

FIG. 5. Evolution of the fields � (dashed lines) and c (plain
lines) with the number of e-folds realized, for the trajectories A,
B, and D (from top to bottom) as represented in Fig. 4. The more
interesting type-C trajectory is represented in Fig. 6 below.

FIG. 6. More detailed description of the field values during a
type-C trajectory as defined in Fig. 4. This is a zoom of the
trajectory close to the bottom of the potential. One can notice
that the system quickly rolls down while few e-folds are pro-
duced before ‘‘accidently’’ climbing up the valley. Then it starts
a second efficient phase of inflation like a type-A trajectory.
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[61] super-Planckian values are necessary to have a long
enough inflationary phase.

By comparing the time necessary for the expansion to
damp the oscillations and the time taken by the inflaton to
reach the critical point of instability, an analytical approxi-
mation of the width c w of the narrow successful band has
been proposed in [29],

c w ’
ffiffiffiffiffiffiffiffiffiffiffiffi
3��3

4�0

s
M2

mpl

: (17)

For the parameter values of the Fig. 4, c w � 4� 10�3mpl.

This provides a good fit of the width of the inflationary
valley at small � � mpl. This successful band is so thin

that quantum fluctuations would have an amplitude large
enough to shift the field c outside the successful band [29].
For larger initial values of �, it is also possible to provide
an analytical fit of the limit successful/unusuccessful.
Figure 4 suggests that the limit�limðc Þ is a linear function.
From a given set of initial conditions ð�i; c iÞ, the total
number of e-folds generated depends almost only on the
value � ¼ �hit at which the oscillations in c become
damped and the slow-roll starts in the valley. The reason
is that a type-A trajectory rolls faster before �hit and thus
does not generate many e-folds before the valley. As a
consequence, the limit between successful and unsuccess-
ful regions necessarily follows the unique trajectory for
which �hit becomes large enough to generate exactly 60 e-
folds by slow-roll in the valley. As a result, using the slow-
roll approximation, the slope of the limit is simply given by
the gradient of the potential

� ¼ @Vð�; c Þ=@�
@Vð�; c Þ=@c ’ �0�c

�c 2 þ �0�2
; (18)

where the approximated expression is valid when mass
parameters are small c 
 maxðm;m=�0Þ. Given one point
of the transition line, for example, (1, 1), we can check that
the slope of the limit is� ’ 0:5 for the parameters of Fig. 4.

Trajectory B: radial.—Enlarging the space of initial
conditions to super-Planckian values shows another region
where successful inflation is automatic. It is observed for
super-Planckian initial values of the auxiliary field c
beyond a few Planck mass, in a way reminiscent to the
chaotic scenario. In this case, the trajectory is called radial
and the 60 e-folds are realized mostly before reaching the
valley or the global minima.

From the �-axis to larger values of c i, the number of e-
folds realized increases slowly (see Fig. 4). Therefore, this
limit between the two regions is smooth unlike the limit
with A-type trajectories described at the previous para-
graph. Increasing �i, the critical value of c i leading to
enough inflation decreases slowly, because inflation is
radial and the trajectory longer. To describe this limit
more precisely, we have plotted the isocurves of �1 in
Fig. 4) in the two-fields slow-roll approximation. We can

see that this limit follows one of these isocurves, namely
�1 ’ 0:0167. This observation can be understood using a
kinematic analogy [60] as long as �2 is negligible. This
critical value of �1 can be computed analytically, by study-
ing the easiest trajectory of this kind at�i ¼ 0. In this case,
the effective potential is dominated by �c 4, and the critical
c i is obtained by requiring a phase of inflation of exactly
Nsuc ¼ 60 e-folds. We find

c ic ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

pl

�
Nsuc

s
� 4:37mpl: (19)

At this value, the corresponding first Hubble-flow parame-
ter �1c reads

�1c ’ 1

Nsuc

� 0:0167: (20)

Trajectory C and D: isolated successful points and
unsuccessful points.—Previous works [29,31] pointed out
the presence of unexplained successful isolated points in
the central unsuccessful region. In this paragraph, we
justify their existence, study their properties and quantify
the area they occupy.
Let us first describe the D-type trajectories that are

unsuccessful. As shown in Fig. 5, in these cases, the system
quickly rolls down the potential to one of the global
minima of the potential during which only a few e-folds
are created. What is then the difference between the D-type
and the C-type trajectories plotted in Fig. 6 ? The fields roll
towards the bottom of the potential with sufficient kinetic
energy and, after some oscillations close to the bottom of
the potential, the momentum is ‘‘by chance’’ oriented
toward the inflationary valley. Thus the system goes up
the valley until it looses its kinetic energy and then starts
slow-rolling back down the same valley producing inflation
with a large number of e-folds. Note that there are more of
these points in a band under the limit of type-A trajectories.
This is because, at higher�i, there are more chances to find
a trajectory where the momentum at the bottom of the
potential is oriented toward the inflationary valley.
High resolution grids and zooms on peculiar regions of

Fig. 4 show that these apparently random isolated points
form actually a complex structure. Some of it, for small
initial conditions, is visible in Fig. 7. The points are or-
ganized in long thin lines, or croissants. The points that
seem isolated actually belong to structures that a better
resolution would show continuous. Some of our biggest
structures can be identified also in [29] but are not recov-
ered in [31] where only isolated points were found. This
may be explained by the need of a higher resolution to
resolve the structures. A detailed analysis of trajectories
shows that for each continuous successful region corre-
sponds a unique number of crossings the� ¼ 0 axis by the
trajectory before climbing up and going back down the
inflationary valley along the c ¼ 0 direction.
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For each of these type-C trajectories, we can identify the
point (that we will call the ‘‘image’’) on the inflationary
valley at which the velocities of the fields become (quasi)
null. We show the robustness of the previous description of
the type-C trajectories, by observing that all these images
are in the successful narrow band responsible for the type-
A trajectories. More precisely, the images obtained popu-
late exactly the narrow band of width c w as described in
Eq. (17). As a conclusion each successful point in the
unsuccessful region corresponds to a point in the narrow
successful band. The identification between the isolated
points and their images in the inflationary valley is repre-
sented in Fig. 7, when restricting ourselves positive initial
field values. Using the analogy with optical anamorphosis,
we can say that the observed structures of type-C initial
conditions generates by anamorphosis the successful nar-
row band around the inflationary valley. In this analogy, the
potential plays the role of the optical instrument used to
create the meaningful image. The trajectories of the light
rays on the optic device are then replaced by the field
trajectories to create a meaningful image (in the valley)
from the apparently senseless patterns of successful initial
conditions.

Let us elaborate a little more on the properties of the
images in Fig. 7. Since the potential is invariant under� !
��, there exist two different inflationary valleys, one
going toward �> 0 and one going �< 0. Some of these
type-C initial conditions give rise to inflation thanks to the
first valley when the others will realize inflation in the
second. Obviously the two situations are equivalent and

symmetric, just like the value of the initial conditions that
could be taken in the negative planes (with�i < 0 or c i <
0 or both). It is clear that these additional planes contain
identical patterns and some of these initial conditions
would populate as well the inflationary valley represented
above. Moreover, the set of images in the valley repre-
sented in Fig. 7 is not of constant width as it should be for
another reason. The initial conditions represented are re-
strained below Mpl but the structures observed continue at

larger values. The trajectories starting with these larger
values of �i would have the momentum to climb up the
valley more and populate the higher part of the set of
images.

4. Dependencies on the parameters

The grid of initial conditions, and therefore the propor-
tion of successful points in a given range of initial values
naturally depend on the values of the parameters of the
potential. Three physical quantities are of interest to study
these evolutions: the width of the inflationary valley, pro-

portional to M
ffiffiffiffiffiffiffiffiffiffi
�=�0p

, its length controlled by the critical

value�c ¼ M
ffiffiffiffiffiffiffiffiffiffi
�=�0p

, the depth of the global minima of the
potential given by V0 / �M4, and the gradient of the
potential � ’ �0=ð�þ �0Þ.
Evolution of the limit of A-type trajectories.—At small

�, a smaller � induces a narrower inflationary valley, and
therefore fewer successful initial conditions. At large �,
the slope � in Eq. (18), is mostly a function of the coupling
constants. For a smaller value of �, the slope of the limit

FIG. 7 (color online). Structure of the successful ‘‘anamorphosis points’’ (in red/grey) together with their images (in black) defined
by the point of the trajectory at which the velocities of the fields vanish. The structure in grey can be seen as the anamorphosis of the
patterns of successful inflation in black. In this analogy the trajectories of the light on the optic device in order to create a meaningful
image are replaced by the trajectories of the system in field space to create a meaningful image (in the valley) from the apparently
senseless grey patterns. This is obtained for M ¼ 0:03mpl, m ¼ 10�6mpl, � ¼ �0 ¼ 1.
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increases. For smaller value of �0, the slope of the limit is
reduced as represented on Fig. 8. This effect is due to the
potential now dominated by the �c 4 term, depending less
on �. Thus the velocity in the c direction is enhanced
compared to the � one.

As long as the mass squared m2 is subdominant com-
pared to �0c 2, its variation do not affect the properties of
the initial condition plane. Increasing the mass m above
this limit increases the velocity in the� direction and tends
to spoil the slow-roll evolution in the inflationary valley. As
already described in Sec. II A 1, this violation of the slow-
roll conditions in the valley imposes for inflation to occur
in the large field phase. In the space of initial conditions,
the narrow successful band then disappear together with
the type-C trajectories. Finally the unsuccessful region
takes an elliptic form as represented in Fig. 9, with a

smooth transition between successful and unsuccessful
regions. The model becomes comparable to the sum of
two chaotic inflation models and we recover the feature of
these models: it is almost unavoidable to have super-
Planckian initial values of the fields to realize a sufficiently
long inflation.
Evolution of the amount of C-type trajectories.—A simi-

lar explanation can be given to justify the absence of
isolated points for small values of �0 (see Fig. 8). Even
though the width of the valley is larger, the potential is then
dominated by the �c 4 term and the �-component of the
velocity becomes small. Thus the chances for the system to
climb up the valley are suppressed. For larger values of the
parameters M and �, these isolated points also disappear,
because the two minima of the potential are deeper, and

FIG. 8 (color online). Grid of initial conditions, for hybrid
potential with M ¼ 0:03mpl, m ¼ 10�6mpl, � ¼ 1, �0 ¼ 0:1.

FIG. 9 (color online). Grid of initial conditions and example
trajectories for the hybrid model, with m ¼ M ¼ 10�3mpl, � ¼
1, �0 ¼ 10�2.

TABLE I. Percentage of successful points in grids of initial conditions, for different values of parameters, when restricting to �i,
c i � Mpl. The third column represents the area of the whole successful initial condition parameter space over the total surface. The

fourth column represents the surface of the successful space only located in isolated points, over the total surface. This allows to
visualize the importance of these isolated points. For several of these sets of values for the potential parameters, the grid of initial
conditions is represented in the body of the paper. When it is the case, the number of the figure is given in column 5.

Model Values of parameters Successful points (%) Anamorphosis points (%) Figure

Hybrid M ¼ 0:03mpl, m ¼ 10�6mpl, � ¼ �0 ¼ 1 17.4 14.8 4

Hybrid M ¼ 0:06mpl, m ¼ 10�6, � ¼ 1, �0 ¼ 1 11.3 5.5

Hybrid M ¼ 0:03mpl, m ¼ 10�5mpl, � ¼ �0 ¼ 1 17.4 14.8

Hybrid M ¼ 0:03mpl, m ¼ 10�6mpl, � ¼ 0:1, �0 ¼ 1 15.5 14.1

Hybrid M ¼ 0:03mpl, m ¼ 10�6mpl, � ¼ 1, �0 ¼ 0:1 2.8 <0:1 8

Hybrid M ¼ m ¼ 10�3mpl, � ¼ 1, �0 ¼ 10�2 0 0 9
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there is a larger chance for the system to get trapped in
them without climbing up the inflationary valley. These
results are summarized in Table I below.

Quantification of successful initial conditions.—We end
this section by quantifying what proportion of the initial
condition space give rise to inflation for hybrid inflation,
for various values of the parameters, including the propor-
tion of points in the anamorphosis. Our results are repre-
sented in Table I, where the quantification is first made
restricting the amplitude of the fields below the reduced
Planck mass. From this table, we can see that unless �0 is
very small, or M is close to Planckian values, the hybrid
model possesses about 15% of initial conditions that leads
to successful inflation. For this percentage to be translated
into a probability of realizing inflation, one would need a
measure in the probability space. If this measure was to be
flat, the successful initial conditions should not be consid-
ered as fine-tuned but simply subdominant when fields are
restricted to sub-Planckian values.

From Fig. 4, it is obvious that if we do not require that
the fields are smaller than the reduced Planck mass, the
proportion of successful initial conditions will tend toward
100%. Therefore, we have also realized the same quanti-
fication with the requirement�i, c i � 5mpl and found that

the percentage of successful initial conditions raise to 72%
for the parameter values of Fig. 4.

III. INITIAL CONDITIONS FOR EXTENDED
MODELS OF HYBRID INFLATION

In this section, we will study the properties of initial
conditions leading to successful inflation for three hybrid-
type models of inflation and study how generic the prop-
erties observed for the original model are. The models are
the smooth, and shifted hybrid inflation both in global
SUSY and SUGRA, and radion inflation.

A. Motivations for smooth and shifted hybrid inflation

Following the original inflation model, a supersymmet-
ric formulation, the F-term hybrid inflation, has been
proposed by [17]. In this case, the inflaton field � is
replaced by a superfield S, and the Higgs field c is re-

placed by a pair of Higgs superfields ��, � nontrivially
charged under a symmetry group5 G whereas S is assumed
to be a gauge singlet of G. The only superpotential, invari-
ant under G and under an R-symmetry6 and containing
only renormalizable terms reads [17]

WF ¼ 	Sð�þ�� �M2Þ: (21)

It gives rise to a scalar potential similar to Eq. (1), the
coupling constants � and �0 being replaced by 	. This

potential possesses the same features with the inflationary

valley along ��,� ¼ 0, this valley being destabilized when

one of the superfields ��, � becomes tachyonic. The field
develops a nonvanishing vev which leads to the breaking of
G. Topological defects can be produced during this break-
ing, depending on G. They can be cosmic strings [20]
which would be in agreement with the most recent CMB
data [62–64], provided that their effect on the CMB is
subdominant [65]. But they could also be monopoles or
domain walls and then be in contradiction with observa-
tions [66].
To be able to implement hybrid inflation at any symme-

try breaking, it has been proposed two extensions of the
F-term model: the smooth [39] and the shifted [42] hybrid
inflation. They are both based on the idea of shifting the
inflationary valley away from c ¼ 0. As a consequence
the symmetry G is broken during or before inflation, and
thus any topological defect formed during this breaking are
diluted away by inflation. This is achieved by introducing
nonrenormalizable terms in the potential [39,42] and im-
posing an additional discrete symmetry for the superpo-
tential [39].
As detailed in the introduction, if these models are

considered realistic, that is if the scalar potential is as-
sumed to be originated from SUSY or SUGRA, it is not
safe to consider super-Planckian fields. It can also be safe
to study these models beyond super-Planckian fields if they
originate from other frameworks where nonrenormalizable
corrections are controlled or prevented.

B. Smooth inflation

1. The potential in SUSY

Smooth inflation has been introduced by Lazarides and
Panagiotakopoulos [39]. It assumes that the superpotential

is invariant under a Z2 symmetry under which � �� !
�� ��. This forbids the first term in the F-term super-
potential of Eq. (21) but allows for one nonrenormalizable
term7 [39]

Wsm ¼ 	S

�
�M2 þ ð ���Þ2

M2
pl

�
: (22)

In the context of global supersymmetry, the scalar potential
reads [39]

VsmðS;�; ��Þ ¼ 	2

���������M2 þ ð ���Þ2
M2

pl

��������
2

þ 4	2jSj2 j�j2j ��j2
M4

pl

ðj�j2 þ j ��j2Þ; (23)

5They are assumed to belong to two complex conjugate
representations.

6This R-symmetry is a Uð1Þ symmetry under which � and ��
have opposite charges and S and W have identical charges.

7Note that our choice of setting the renormalization scale to
the reduced Planck mass is arbitrary. In general, we can write
Wsm ¼ 	S½�M2 þ ð ���Þ2=�2�, � corresponding to the scale of
new physics.
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where we denote by the same letter the superfields and their
scalar components. Two real scalar fields � and c can be

defined as the relevant components of the S, �, �� fields
such that the fields are canonically normalized

� � ffiffiffi
2

p
ReðSÞ; c � 2Reð�Þ ¼ 2Reð ��Þ; (24)

and the potential becomes [39]

Vsmð�; c Þ ¼ 	2

�
M2 � c 4

16M2
pl

�
2 þ 	2�2 c 6

16M4
pl

: (25)

This potential contains a flat direction c ¼ 0, but it is a
local maximum. The global minima are obtained for non-
vanishing values of c : they define two distinct inflationary
valleys, along

c ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�6�2 þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4 þ 4

9
M2M2

pl

svuut
: (26)

Note that these inflationary valleys progressively shift
away from c ¼ 0 as � evolves towards 0.

2. Space of initial conditions

In a previous study by Lazarides et al. [32], an explora-
tion of the space of initial conditions leading to sufficient
inflation was performed, with a low resolution. This ex-
ploration led to a conclusion opposite to the one found for
the nonsupersymmetric hybrid inflation model: most of the
space was found to be successful. Therefore, smooth hy-
brid inflation seems a good laboratory to test the validity of
the results we found at the previous section. We performed
the exploration of the space of initial conditions, for a
higher resolution, and for a larger range of initial field
values and parameter values. Imposing �i, c i � Mpl, we

computed the proportion of successful initial conditions
and the proportion of isolated successful points away from
the inflationary valleys.

Our study, also extended to super-Planckian values of
the fields, always reveals a structure similar to that of the
original model. We observe (see for e.g. Fig. 10) a narrow
band of fine-tuned successful initial conditions along c ¼
0, a triangular unsuccessful region, and successful areas
for large initial values of one or both of the fields.
Anamorphosis is also present, leading to isolated success-
ful patterns in the unsuccessful region. For the values of the
parameters quoted in Ref. [32], that is with a mass scale of
order 10�5mpl, they occupy most of the space of initial

condition as shown on Fig. 10. We find almost 80% of
initial conditions below the reduced Planck mass to be
successful.

We have also studied how this grid evolves with the
parameters of the potential. We first observe that the
amount of successful initial conditions is independent of
the coupling constant 	 (it only scales the potential or the
CMB spectrum), but only depends on the mass scale M.

This analysis shows a strong dependency with the value of
M, the amount of successful initial conditions ranging from
15% to almost 80% when M ranges from 10�2 and 10�5.
For M below the GUT scale, 1016 GeV, the quantification
of successful initial conditions is larger than 50%, provid-
ing a good mechanism to produce inflation without fine-
tuning of initial conditions. As a conclusion, we confirm
the qualitative results of [32], and we note that they depend
on the values of potential parameters. We note also that
most of the successful initial conditions are isolated, that is
located outside of the inflationary valleys: they form an
anamorphosis like in the hybrid inflation model. These
results are summarized in the Table II at the end of this
section.

3. Supergravity corrections

The smooth hybrid inflation is based on a superpotential
that contains a nonrenormalizable term, with a cutoff scale
chosen at the reduced Planck mass. In addition, in our
study we consider field values that are non-negligible
compared to Mpl, sometimes above. Therefore, to extend

the domain of validity of the model, supergravity correc-
tions (introducing corrections proportional to negative
powers of Mpl) should be taken into account. We remind

the reader that outside of the domain of validity of the
model (whether in SUSYor in SUGRA), the model is still
studied but considered as an effective model derived from
some frameworks in which super-Planckian field values
can safely be considered (see introduction).

FIG. 10 (color online). Grid of initial conditions for smooth
inflation, using the values of the parameters of [32]: 	 ’ 10,M ’
2:3� 10�5mpl.
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Assuming supergravity with a minimal Kähler potential,

K ¼ Kmin ¼ j�j2 þ j ��j2 þ jSj2; (27)

the scalar potential reads,

Vsm
SUGRAðS;�; ��Þ ¼ 	2Exp

�
Kmin

M2
pl

����������
ð ���Þ2
M2

pl

�M2

��������
2
�
1� jSj2

M2
pl

þ jSj4
M4

pl

�

þ jSj2
M4

pl

����������
ð ���Þ2
M2

pl

�M2

��������
2þ4j�j2j ��j2

�
ðj�j2 þ j ��j2Þ þ 4�2 ��2

�ð ��	�	Þ2
M2

pl

�M2

�
þ c:c:

��
: (28)

This potential is in agreement with [41], though all terms have here been kept since in our study, fields are not necessarily
small compared to the Planck mass. We define again the inflaton and waterfall fields like in Eq. (24), and we obtain the full
potential in SUGRA,

Vsm
SUGRAð�; c Þ ¼ 	2Exp

�
�2 þ c 2

2M2
pl

���
M2 � c 4

16M2
pl

�
2
�
1� �2

2M2
pl

þ �4

4M4
pl

þ�2c 2

4M4
pl

�
þ �2c 6

16M4
pl

�M2�2c 4

4M4
pl

þ �2c 8

64M6
pl

�
:

(29)

SUGRA corrections induce a steeper potential in the
large field regime. We have studied for this last potential
the space of initial condition leading to enough inflation
and compared the results to the SUSY case. We
observe two properties of the space of initial con-
ditions. First, at low initial field values, the initial con-
dition space is mostly unchanged because the correction

are small. In particular, the patterns of isolated suc-
cessful initial conditions still exist and are as numerous.
This can be understood because even if SUGRA correc-
tions induce higher velocities for the fields, the anamor-
phosis mechanism can take place just as easily: the fields
fast-roll down the potential, oscillate more around the
bottom and sometimes climb up one of the inflationary

TABLE II. Percentage of successful points in grids of initial conditions, for different models and values of parameters, when
restricting to �i, c i � Mpl. The third column represents the area of the whole successful initial condition parameter space over the

total surface. The fourth column represents the surface of the successful space only located in isolated points, over the total surface.
Some of these sets are represented in the body of the paper, the relevant figure being reported in last column.

Model Values of parameters Successful points (%) Isolated points (%) Figure

Hybrid M ¼ 0:03mpl, m ¼ 10�6mpl, � ¼ �0 ¼ 1 17 15 4

Hybrid M ¼ 0:06mpl, m ¼ 10�6, � ¼ 1, �0 ¼ 1 11 6

Hybrid M ¼ 0:03mpl, m ¼ 10�5mpl, � ¼ �0 ¼ 1 17 15

Hybrid M ¼ 0:03mpl, m ¼ 10�6mpl, � ¼ 0:1, �0 ¼ 1 16 14

Hybrid M ¼ 0:03mpl, m ¼ 10�6mpl, � ¼ 1, �0 ¼ 0:1 3 <1 8

Hybrid M ¼ m ¼ 10�3mpl, � ¼ 1, �0 ¼ 10�2 0 0 9

Smooth M ¼ 10�2mpl, 	 ¼ 1 16 9

Smooth M ¼ 10�3mpl, 	 ¼ 1 53 49

Smooth M � 2:37� 10�5mpl, 	 � 10:3 78 60 10

Smooth SUGRA M ¼ 10�2mpl, 	 ¼ 1 29 17

Smooth SUGRA M ¼ 10�5mpl, 	 ¼ 1 70 70

Shifted M ¼ 0:1mpl, 	
2 ¼ 1, 
 ¼ 0:1m�2

pl 6 <1 12

Shifted M ¼ 10�2mpl, 	
2 ¼ 1, 
 ¼ 0:1m�2

pl 15 14

Shifted M ¼ 10�2mpl, 	
2 ¼ 1, 
 ¼ 1m�2

pl 14 13

Shifted SUGRA M ¼ 0:1mpl, 	
2 ¼ 1, 
 ¼ 0:1m�2

pl <1 <1
Shifted SUGRA M ¼ 10�2mpl, 	

2 ¼ 1, 
 ¼ 0:1m�2
pl 13 12

Shifted SUGRA M ¼ 10�2mpl, 	
2 ¼ 1, 
 ¼ 1m�2

pl 13 12

Radion c 0 ¼ 10�2mpl, � ¼ 10�3, f ¼ 1mpl <0:1 <0:1
Radion c 0 ¼ 10�2mpl, � ¼ 10�4, f ¼ 1mpl 9.4 9.4

Radion c 0 ¼ 10�2mpl, � ¼ 10�5, f ¼ 1mpl 25.6 24.8 13
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valleys. When the fields slow-roll back down the valleys,
enough inflation is generated. We note that the probabil-
ities to realize inflation this way are higher in SUGRA
than in SUSY and the total and can be as high as 70%
for small values of M. Second, the steepness of the poten-
tial induces a violation of slow-roll for radial trajectories
leading first to a smaller probability to realize inflation
directly starting in the inflationary valleys because they
become more narrow. Second we do not observe automatic
successful inflation at large super-Planckian initial field
values and similar patterns of isolated points are observed
instead.

C. Shifted inflation

1. The potential

The shifted inflation model, proposed by Jeannerot et al.
[42], is similar to the smooth inflation model, but the
additional Z2 symmetry of smooth inflation is not imposed
anymore. Thus the superpotential reads

Wsh ¼ 	S

�
�M2 þ ���� 


ð ���Þ2
M2

pl

�
: (30)

This gives rise to the following F-terms contributions to
the scalar potential, in the context of global supersymmetry

VshðS;�; ��Þ ¼ 	2

����������M2 þ ���� 

ð ���Þ2
M2

pl

��������
2

þ jSj2ðj ��j2 þ j�j2Þ
��������1� 2


���

M2
pl

��������
2
�
;

(31)

where we have used the same letter to denote the super-
fields and their scalar component. We can define the rele-

vant fields �c and c as the components of �� and � that

generate the breaking of the group G. We can define the
inflaton and waterfall fields like in Eq. (24) so as to vanish
the D-term contributions to the potential and to have
canonical kinetic terms. The effective scalar potential
then becomes [42],

Vshð�; c Þ ¼ 	2

�
c 2

4
�M2 � 


c 4

16M2
pl

�
2

þ 	2

4
�2c 2

�
1� 


c 2

2M2
pl

�
2
: (32)

In the limit of negligible
, one recovers the same potential
as for the original hybrid model with � ¼ �0 ¼ 	, that is
with a valley of local minima at c ¼ 0. As 
 increases,
two symmetric valleys appear, parallel to the central one as
represented in Fig. 11.
These new inflationary valleys get closer to the central

one as 
 gets larger. The central valley corresponds to a
local minima at large �. It becomes, as � rolls toward 0, a
local maxima at which point, two additional valleys ap-
pear. Assuming a large � field initially, inflation can be
realized along one of the three valleys. Several trajectories
for various initial conditions are represented on Fig. 12 to
illustrate this. Inflation stops when the fields oscillate and
settle in one of the global minima of the potential.

2. Space of initial conditions

Grids of initial conditions leading or not to inflation have
been computed; one of them is represented in Fig. 12 for

10 5 0 5 10

5

0

5

10

15

ln
V

sh
if

te
d

m
pl

4

FIG. 11. Cut of the logarithm of the shifted potential
Vshð�; c Þ, at � ¼ 2mpl, for M ¼ 0:1mpl, 	 ¼ 1, and 
 ¼
10�3m�2

pl (plain line), 
 ¼ 10�2m�2
pl (dotted line), 
 ¼

10�1m�2
pl (dashed line). Notice the appearance of multiple infla-

tionary valleys, whose number and positions depend on the
parameter 
. They also depend on the value of �.

FIG. 12 (color online). Grid of initial conditions leading or not
to inflation, for the shifted potential with M ¼ 0:1mpl, 	 ¼ 1,

and 
 ¼ 10�2m�2
pl . Some trajectories in field space have been

represented to identify where local maxima and minima are.
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one set of parameters. It corresponds to one cut of the
potential in Fig. 11 (dotted line).

For a small coupling 
 (say of order 10�3), if we restrict
ourselves to values of the waterfall field smaller than 5mpl,

we obtain a space of initial conditions similar to the
original hybrid case (see Fig. 4), with a triangular shaped
region of unsuccessful inflation surrounded by successful
regions at higher values of the fields.

At larger values of c , around the new inflationary valley
(the shifted one) at a positive c , a second triangular shaped
unsuccessful region is observed in addition. For example,
for
 ¼ 10�3m2

pl, this shifted valley is located at c ¼ 9mpl

(at � ¼ 2mpl). Unlike the central one, the shifted valley is

too steep to generate inflation when the fields start inside it.
Thus no line of successful initial conditions along the
valley is observed. Successful inflation is only realized
when starting sufficiently far from the valley, when the
potential becomes flatter around c 2 ½3; 8�mpl (see

Fig. 11).
If we increase 
, the shifted valley gets closer to the

c ¼ 0 one. As a consequence, the two unsuccessful re-
gions become closer as well, with interferences between
them, as shown in Fig. 12.

The shape of the first unsuccessful region is modified
because the presence of the second valley renders some

unsuccessful trajectories successful. We have represented
some examples of such trajectories in Fig. 12. Finally, note
that if this model is not considered as an effective model for
which fields can be super-Planckian, in the limit of small 

this model reduces to the original hybrid one. Conclusions
concerning the relative area of successful points are then
the same. For larger values of 
 though, the new band of
successful inflation can appear even below the reduced
Planck mass and increase the probability of successful
inflation. These results are summarized in Table II.

3. Supergravity corrections

Let us discuss, as for the smooth hybrid model, the
effects of embedding the model in supergravity to study
the robustness of our conclusions under nonrenormalizable
corrections. As discussed in the introduction, we remind
the reader that neither supersymmetry nor supergravity is a
valid framework for describing super-Planckian fields and
in this regime, the models studied are considered as effec-
tive models. However supergravity corrections allow to
extend the domain of validity up to Planckian-like field
values.
The supergravity corrections to the shifted potential are

computed assuming again a minimal Kähler potential and
we obtain,

Vsh
SUGRAðS;�; ��Þ ¼ 	2Exp

�
Kmin

M2
pl

���������� ����M2 � 

ð ���Þ2
M2

pl

��������
2
�
1� jSj2

M2
pl

þ jSj4
M4

pl

�

þ jSj2ðj�j2 þ j ��j2Þ
���������1� 2


���

M2
pl

��������
2þ 1

M4
pl

�������� ����M2 � 

ð ���Þ2
M2

pl

��������
2
�

þ 2
jSj2
M2

pl

�
� ��

�
1� 2


� ��

M2
pl

��
��	�	 �M2 � 


ð ��	�	Þ2
M2

pl

�
þ c:c:

��
: (43)

By defining the inflaton and the waterfall field to be the canonically normalized real part of the fields S,�, and �� like in the
SUSY case, we obtain the effective 2-field potential,

Vsh
SUGRA ¼ 	2Exp

�
�2 þ c 2

2M2
pl

���
c 2

4
�M2 � 


c 4

16M2
pl

�
2
�
1� �2

2M2
pl

þ �4

4M4
pl

�

þ�2c 2

4

�
1� 


c 2

2M2
pl

þ 1

M2
pl

�
c 2

4
�M2 � 


c 4

16M2
pl

��
2
�
: (34)

These corrections affect at large initial values of the fields
the dynamic of inflation. At super-Planckian initial values,
the exponential term dominates and the potential become
too steep for inflation to be automatically realized like in
the SUSY case. However, the anamorphosis (or type-C)
trajectories still exist and are still the main origin of
successful inflation. We have computed for several sets
of the parameters the percentage of successful initial con-
ditions taking into account these corrections. We do not
find significant modifications compared to the SUSY case
except at large mass scale, where the steepness of the

potential prevents from inflation to be successful in the
valleys. These results are summarized in Table II.

D. Radion assisted gauge inflation

1. Motivations

As mentioned in the introduction, the ‘‘radion inflation’’
model [24] belongs to the class of gauge inflation models
[45–47]. The main motivation of these models is to gen-
erate a sufficiently flat inflaton potential protected by
gauge symmetries because the inflaton field is part of a
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gauge field. As a consequence, it is safe to consider super-
Planckian values for the inflaton field. Because its potential
is similar to the (smooth) hybrid one, this model is also
interesting to determine how generic the properties of
initial conditions observed for other models are, for differ-
ent types of models, originating from different high energy
frameworks.

2. The potential

In the simplest version of these models, an effective five-
dimensional universe is assumed, one of the dimension
being compactified with a radius8 R. In the gauge inflation
model, a gauge symmetry is assumed together with a gauge
field ðA�; A5Þ. The inflaton field is proportional to the phase
� of aWilson-loop wrapped around the compact dimension
� ¼ H

dx5A5. The full inflaton field is constructed with the
symmetry breaking scale f of the gauge symmetry � �
f�. Its potential is flat at tree level but at one-loop, takes the
form of an axionlike potential

Vð�Þ / 1

R4
cosð�=fÞ: (35)

The potential is protected from nonrenormalizable op-
erators, suppressed by powers of 1=R, while nonperturba-
tive quantum gravity corrections can be suppressed
[46,47]. Another motivation concerns the initial homoge-
neity of the inflaton field, necessary for inflation to start.
Finally, since the inflaton is a phase, one can show [44] that
the probability to have a sufficiently homogeneous distri-
bution of the field is quite large.

The ‘‘radion assisted’’ gauge inflation differs from stan-
dard gauge inflation by assuming a varying radius of the
extra-dimension R, around a central value R0. The ‘‘ra-
dion’’ field is defined by9 c � ð2�RÞ�1 and is subject to a
potential for which R0 is assumed to be the minimum (for
the late time stability of the extra-dimension). The simplest
way to implement this stabilization is to use a Higgs-type
potential for c . By expanding, at first order, the potential
of Eq. (35), and by adding the Higgs-type sector, the full
scalar potential reads [24]

Vð�; c Þ ¼ 1

4

�2

f2
c 4 þ �

4
ðc 2 � c 2

0Þ2; (36)

where c 0 ¼ ð2�R0Þ�1. This potential is similar to the
hybrid potential discussed in the last section. It is flat for
c ¼ 0 which corresponds to a global maxima. For a given
�, the minima of the potential are located in the valleys

hc i2 ¼ c 2
0

1þ�2=ð�f2Þ : (37)

More than 60 e-folds of inflation can take place in these
throats.

3. Space of initial conditions

Regarding the allowed parameter space that can be
studied, since c is the inverse of the radius of an extra-
dimension and quantum gravity effects are expected to
dominate when the field gets larger than the five dimen-
sional Planck mass. Thus super-Planckian values of c or
c 0 should not be taken into account if one does not
consider the potential of Eq. (36) as an effective model.
For the first set of values of the parameters (c 0 ¼ 10�2mpl,

f ¼ mpl, � ¼ 10�5), the grid of initial conditions is very

similar to the hybrid case, with a triangular unsuccessful
region, and a generic successful inflation at larger values of
the fields (see Fig. 13 below).
Many successful trajectories also appear in the unsuc-

cessful area (type-C trajectories), for sufficiently small
values of �. We observe a slightly higher successful area,
compared to the hybrid case: for �i, c i <Mpl, more than

20% of the points are successful. Grids for different values
of the parameter M show a behavior similar to the hybrid
model. However, varying � has a major impact on the
amount of type-C trajectories as shown in Table II. In
particular we do not find a significant amount of successful
initial conditions for the choice of parameters of [24]

FIG. 13 (color online). Grid of initial conditions for radion
potential, with c 0 ¼ 10�2mpl, f ¼ 1mpl, � ¼ 10�5.

8The effective four-dimensional (reduced) Planck mass is
related to the five-dimension Planck massM5 byM

2
pl ¼ 2�RM3

5 .9In our simulations below, we allowed the c field to take
negative values because the symmetries of the potential allow to
redefine the field as jc j � ð2�RÞ�1, so that the length of the
extra-dimension stays positive.
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(c 0 ¼ 10�2mpl, f ¼ 1mpl, � ¼ 10�3). We also observe a

transition between the successful and unsuccessful region
less abrupt (see Fig. 13). This is due to the fact that at small
inflaton field, the potential slightly differs from the hybrid
potential: the slope of the potential is slightly more steep
and the same amount of e-folds requires a larger variation
of field values.

Our results on the proportion of successful initial con-
ditions for all models are summarized in the Table II below,
when restricting to initial fields values below the reduced
Planck mass. For comparison the results for the original
hybrid model are recalled. Two percentages are given:
first the total number of successful initial field values
(column 3) and the number of initial conditions that are
scattered in the initial condition space, outside of the infla-
tionary valley(s) (column 4). For these cases, the realiza-
tion of inflation is called in this paper anamorphosis: the
system fast-rolls down the potential, oscillates around the
bottom of the potential, climbs up one of the valleys and
slow-rolls down along it as if it started in the valley. When
relevant, the number of the figure representing the space of
initial field values is given in column 5.

From the different grids of initial values for the various
models studied in this paper, it is obvious that if we do not
require that the fields are smaller than the reduced Planck
mass, the proportion of successful initial conditions will
tend toward 100% except when considering models in
SUGRA. Therefore, we have also conducted the same
quantification with the requirement �i, c i < 5mpl. The

results are given in Table III below. This quantification
has been computed only to give an information about how
fast the proportion of successful initial conditions increases
when the space of allowed initial values is enlarged.

IV. CONCLUSIONS

Hybrid inflation is a class of models of inflation moti-
vated by high energy physics. In these models, the inflaton
field is assumed to be coupled to a Higgs-type auxiliary
field that ends inflation by instability, when developing a
nonvanishing expectation value. Two of its main well-
known problems—the blue spectrum of the nonsupersym-
metric version of the model and the fine-tuning of the
initial conditions of the fields—are reanalyzed.

First, we found that the original hybrid model can gen-
erate a red spectrum by two means. As well-known, one
way to have inflation takes place in the large field phase is
to have the waterfall ending inflation in that phase. This
requires a constraint on the critical value of the inflaton
triggering the waterfall. We found a new criteria on the
mass scale � so that a violation of the slow-roll conditions
ensures the nonexistence of the small field phase of infla-
tion. In both cases, the spectral index generated is less than
unity (see Fig. 3). However, we show that this requires in
both cases a large initial value of the inflaton (>mpl), and

therefore a realization of hybrid inflation in a regime away
from the limit � � �. This conclusion might reduce the
appeal of this model.
When considering the full two-field potential, it was

found [29–31] that the original models suffer from a fine-
tuning of the initial values of the fields to generate a
sufficiently long inflationary phase. The space of success-
ful inflation was thought to be composed of a extremely
narrow band along the inflationary valley and some ‘‘iso-
lated scattered points’’ which seemed randomly distributed
and of null measure [31]. It was therefore considered that
these models suffered from some naturalness problem.
We have numerically integrated the exact equations of

motion of both fields and studied in details the space of
initial conditions. The study has been conducted for four
different models of hybrid-type inflation in various frame-
works: the original nonsupersymmetric model (Sec. II), its
extensions smooth and shifted hybrid inflation in global
supersymmetry and supergravity and the ‘‘radion assisted’’
gauge inflation (Sec. III). As expected, we found that for
sufficiently large initial values of the fields (Planckian-like
or super-Planckian), enough e-folds of inflation are gener-
ated (see for e.g. Fig. 4). This behavior is similar to the one
of chaotic inflation [61]. We also studied the shape of the
unsuccessful region and its dependence on the potential
parameters: this property holds for any values of the pa-
rameters and all the models we considered, except when
embedded in supergravity. Consequently, the first way to
solve the fine-tuning problem of initial conditions for
hybrid models is to formulate them in a framework for
which it is safe to consider Planckian-like or super-
Planckian initial values for the fields. This can be safe or
problematic, depending on the framework used to build the
model as detailed in the introduction.
Even if the considered model is formulated in a frame-

work where the fields cannot safely be super-Planckian, the
unsuccessful region of initial conditions contains success-
ful subregions. They correspond to special trajectories for
which the velocity in field space becomes oriented along
the inflationary valley after some oscillations at the bottom
of the potential. Therefore the system climbs up the valley
before slow-rolling back down, generating enough infla-
tion. We find that these points form a complex structure, as
represented in Fig. 7. They can be seen as the anamorphosis

TABLE III. Percentage of successful points in grids of initial
conditions of length 5mpl, for each model and some standard

values of the parameters.

Model Values of parameters Successful (%)

Hybrid M ¼ 0:03, m ¼ 10�6, � ¼ �0 ¼ 1 72

Smooth M � 2:37� 10�5mpl, 	 � 10:3 92

Shifted M ¼ 10�2mpl, 	
2 ¼ 1, 
 ¼ 10�2m�2

pl 73

Radion c 0 ¼ 10�2mpl, � ¼ 10�3, f ¼ 1 76
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of the standard inflationary valley, and explain most of the
successful initial conditions when restricting to sub-
Planckian fields. The relative area that these points occupy
is typically of order of 15% for the original hybrid model.
This value can go up to 25% for radion inflation and even
above 70% for smooth inflation, even though these results
depend on the values of the parameters of the potential (see
Table II). Moreover, even when supergravity corrections
are included, these trajectories still exist, their proportion
stays similar and they represent even more of the success-
ful initial conditions. We would like to note that these
percentages allow us to claim that the fine-tuning on hybrid
inflation is less severe that found in the past. However, to
translate this into an amount of fine-tuning for the model, it
is necessary to compute a measure of the probability space.
This is left for an extension of this work [67].

Several other questions remain open and are extensions
of this work. We plan on investigating more deeply the
statistical properties of the anamorphosis regions of the
plane of initial conditions as well as the effects of initial
velocities on this plane [68]. The study of the supersym-
metric versions of hybrid inflation, the F-term [17] and D-
term [15,16] models are also left for a future study. These

models could have a different dynamics from the models
studied here since radiative corrections generate poten-
tially important corrections to the tree level potential [69].
Finally, our results illustrated that the successful realiza-

tions of hybrid inflation are not necessarily by fast-roll
toward the inflationary valley as usually assumed but also
radially (type-B trajectories), and in that sense chaoticlike.
Some aspects of the phenomenology of these purely two-
field trajectories (power spectrum, generation of non-
Gaussianities, stochastic effects, reheating, impact on to-
pological defect formation) are still unknown and should
be studied.
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