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We propose a simple dark energy model with the following properties: the model predicts a late-time

dark radiation component that is not ruled out by current observational data, but which produces a

distinctive time-dependent equation of state wðzÞ for z < 3. The dark energy field can be coupled strongly

enough to standard model particles to be detected in colliders, and the model requires only modest

additional particle content and little or no fine-tuning other than a new energy scale of order milli-electron

volts.

DOI: 10.1103/PhysRevD.79.103504 PACS numbers: 95.36.+x, 98.80.Cq

I. INTRODUCTION

Considerable evidence [1,2] has accumulated suggesting
that approximately 70% of the energy density in the
Universe comes in the form of an exotic, negative-pressure
component, called dark energy. (For a recent review, see
[3].)

The equation of state (EoS) parameter is defined as the
ratio of the dark energy pressure to its density:

w ¼ pDE=�DE: (1)

Observations constrain w to be very close to �1. For
instance, if w is assumed to be constant, then necessarily
�1:1 & w & �0:9 [4,5]. If w ¼ �1, the dark energy den-
sity remains constant even though the Universe is expand-
ing. The simplest way of producing a w ¼ �1 component
is through a cosmological constant, or vacuum energy
density. However, as is well known, the energy density
needed to explain the observed acceleration, �4 �
ð10�3 eVÞ4, is considerably smaller than the value of
ð1019 GeVÞ4 (Planck density) predicted from quantum
field theory. This 124-orders-of-magnitude discrepancy is
called the cosmological constant problem.

The fact that the observed vacuum energy also happens
to be just a few times greater than the present matter
density has led to speculations that it might in fact be
evolving with time—only now reaching a value compa-
rable to the matter density. Such a time-varying vacuum
energy is sometimes referred to as quintessence. The sim-
plest way of achieving a time-varying vacuum energy is
through the use of spatially homogeneous canonical scalar
fields [6–10]. In these models, the field typically rolls down
a very shallow potential, eventually coming to rest when it
can find a local minimum.

Quintessence models typically have fine-tuning prob-
lems. For example, since the quintessence redshifts more
slowly than ordinary matter or radiation, the current quin-
tessence dominance can only be explained by fine-tuning
the initial conditions. This problem can be avoided in the
class of so-called ‘‘tracker’’ models, in which the evolution
of the quintessence field is insensitive to the initial con-
ditions. For generic quintessence models, the flatness of the
potential makes any excitations of the field almost massless
�10�33 eV. To provide the necessary vacuum energy den-
sity, the present value of the potential energy should be on
the order of �4 (although there is really no rigorous physi-
cal reason to expect this). The field value �0 today should
therefore be on the order of the Planck mass, i.e.
�0 � 1018 GeV.1 In [17] it was shown that couplings
between quintessence and ordinary matter, even if Planck
suppressed, can lead to long range forces and time depen-
dence in the constants of nature, both of which are tightly
constrained. Reference [18] showed that even Planck-
suppressed thermal interactions between matter and quin-
tessence can significantly alter the evolution of the latter,
leading to a problematic equation of state.
An alternative to a slowly rolling field is a scenario

where the field is stuck in a false vacuum minimum. In
this case, the observed cosmological constant is attributed
to the energy difference between the false and true vacua,
which could either arise from higher order [19,20] or non-
perturbative effects [21]. Other proposals for the origin of
the false vacuum energy are the confining scale of a hidden
SUð2Þ sector [22], Planck-scale suppressed mediation into
a hidden sector of electroweak TeV-scale supersymmetry
breaking [23,24], or the vacuum energy of a hidden sector
which is stuck in a state of equilibrium between phases
[25].
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In many of these quintessence models, the field(s) re-
sponsible for the acceleration have to be almost completely
decoupled from the rest of the Universe.2 This is disap-
pointing, since it suggests that direct detection of quintes-
sence through its interactions with standard model particles
will be extremely challenging, perhaps impossible.

In this paper we present a quintessence scenario in
which the dark energy field can be coupled strongly
enough to standard model particles to be detected in col-
liders, and which allows for a significant time variation in
the equation of state. This time-varying w ¼ wðzÞ has a
characteristic form which depends on only a single pa-
rameter, and can thus be excluded by cosmological obser-
vations in the near future. Our model only requires a singlet
scalar field (or, alternatively, a small gauge sector like
SUð3Þ Yang-Mills theory; other possible realizations are
also briefly outlined at the end of the paper) and a new
energy scale on the order of milli-electron volts.

II. MODEL

Consider a singlet scalar field dark energy with
Lagrangian

L ¼ 1
2ð@��Þ2 � Vð�Þ: (2)

We allow this field to be strongly coupled to standard
model particles. The finite temperature effective potential,
which includes interactions of this field with virtual parti-
cles and the heat bath, can be taken to be similar to the
Higgs potential in the electroweak phase transition (see,
e.g., [27] for a review):

Vð�; TÞ ¼ AþDðT2 � T2
2Þ�2 � ET�3 þ 1

4��
4: (3)

D, E, �, and A are constants. A can be adjusted to give the
correct value of the observed dark energy density when
T ¼ 0. T2 is defined as the temperature where V 00ð� ¼
0Þ ¼ 0. We choose T2 ¼ �, i.e. roughly T2 � 11:6 K, and
assume that it represents a new energy scale in particle
physics. At high temperatures, T � T2, � ¼ 0 is the only
minimum of the potential. As the Universe cools down, an
inflection point appears in the potential at temperature

T� ¼ T2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 9E2=8�D
p

. At lower temperatures, this
splits into a barrier and a second minimum. The critical

temperature T1 ¼ T2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� E2=�D
p

corresponds to the
point where the second minimum is equal in (free) energy
to the � ¼ 0 minimum. At temperatures T < T1, the sec-
ond minimum has lower free energy than the one at� ¼ 0.

The evolution of the potential well with temperature is
shown in Fig. 1.
Let us now consider the dynamics of the dark energy

field. At temperatures T > T1 (which corresponds to
roughly z > 3) the dark energy field remains trapped at
the � ¼ 0 minimum, providing a constant energy density,
which we assume to be slightly higher than �4. As the
temperature approaches T1 and below, a first-order phase
transition is triggered as the field tunnels into the true
vacuum �. The physics of the phase transition is almost
identical to that of the Higgs sector in models of electro-
weak baryogenesis. This transition releases energy in rela-
tivistic modes (i.e., scalar particles of the � field), and
brings the vacuum energy to �. Because the correlation
length of the transition is microscopic, and the relativistic
modes couple weakly to ordinary matter (i.e., more weakly
than photons, perhaps similar to neutrinos), such a transi-
tion is only loosely constrained by observation. The posi-
tive pressure of the radiation, which eventually redshifts
away, causes the effective EoS of the dark energy to vary in
(redshift) time z.
We note that the only important feature of the model

described above is that it has a weakly first-order phase
transition at a temperature of order �, which is natural if
one assumes the dynamics of � to be entirely determined
by that energy scale and dimensionless couplings of order
one. It is an interesting coincidence that this occurs at a
redshift of z� 3 if the temperature of the dark energy field
is similar to that of the standard model particles. This need
not be the case, but it seems a reasonable assumption,
especially if there are non-negligible interactions between
� and ordinary particles, which would enforce thermal
equilibrium at sufficiently high temperatures. When the
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FIG. 1 (color online). An example for the evolution of the
finite temperature effective potential Vð�; TÞ of the dark energy
field, Eq. (3), as the temperature T decreases through the first-
order phase transition region �T1.

2For an entirely different type of dark energy model, which
can have a particle physics signature, see [26]. Here the accel-
eration is provided by mass-varying neutrinos (MaVaNs) which
act as a negative-pressure fluid.
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transition happens at z� 3 the resulting radiation compo-
nent leads to significant and characteristic variation in
wðzÞ. The form of wðzÞ is determined by a single parame-
ter—the energy fraction in relativistic dark radiation
modes just after the phase transition. In some cases, such
as the gauge models discussed below, even this fraction is
calculable from the phase diagram.

Any sector which produces a weakly first-order transi-
tion at a temperature of order � would also suffice. For
example, pure SUðNÞ gauge theories withN > 2 have first-
order deconfinement phase transitions [28] and exhibit
effective potentials like those in Fig. 1, with � an order
parameter for confinement, for example, the Polyakov
loop. Here, the latent heat and fraction of energy in rela-
tivistic modes is calculable via lattice simulation.

We stress that the models discussed do not in any way
explain the existence of the energy scale �, or why it
determines the vacuum energy density today. In particular,
why should the vacuum energies from all the other degrees
of freedom cancel out, leaving the dark energy field to
determine the cosmological constant? One way of explain-
ing this would be to assume that somewhere in the con-
figuration space, outside the region depicted in Fig. 1, the
potential reaches a global minimum Vð��Þ ¼ 0, where the
total vacuum energy (including zero point energies and
radiative corrections from all fields) is exactly zero. That
is, some currently unknown mechanism (Euclidean worm-
holes, quantum gravity, . . .) conspires to make the total
vacuum energy zero at � ¼ ��, implying that the devia-
tion of Vð�Þ from zero is the only vacuum energy.

In any case, if one assumes that new physics at the
energy scale � determines the observed cosmological
constant, it is easy to obtain a predictable redshift-
dependent w ¼ wðzÞ together with interesting particle
physics signatures—no fine tuning of parameters is
required.

III. OBSERVATIONAL CONSEQUENCES

A. Astrophysics

As discussed in the previous section, our model pro-
duces a certain amount of dark radiation at redshift z� 3.
This radiation affects the Hubble expansion rate H as well
as the effective equation of state of the dark energy.

Let f denote the fraction of the dark energy that is today
in the form of relativistic modes, and let us assume that the
phase transition occurred at redshift zPT ¼ 3. The Hubble
expansion rate HðzÞ after the phase transition z < zPT can
be written as

H2ðzÞ ¼ H2
0½�m0ð1þ zÞ3 þ�r0ð1þ zÞ4

þ f��0ð1þ zÞ4 þ��0�; (4)

where�m0,�r0, and��0 denote the present-day values of

the density parameters of matter, radiation, and dark en-

ergy. Note that at sufficiently low temperatures the nonzero
mass of the dark radiation (coming, e.g., from the curvature
at the lower minimum in Fig. 1) will be non-negligible and
its energy density will then redshift as ð1þ zÞ3.
Our model superficially resembles other models with a

dark radiation component, such as models with extra rela-
tivistic degrees of freedom or the Randall-Sundrum model
with dark radiation. The difference, of course, is that in our
model the dark radiation arises very late and so is not
subject to the well-known limits from big bang nucleosyn-
thesis or the cosmic microwave background. It was noted
by Zentner and Walker [29] that if one considers only late-
time constraints on extra relativistic degrees of freedom
from SNIa data, the limits are surprisingly weak. Our
results, which we describe now, agree with this conclusion,
even with the addition of more recent SNIa data.
In Fig. 2 we construct a likelihood plot for the parame-

ters �m0 and f. We choose ��0 ¼ 0:7 and marginalize

over the present value of the Hubble parameter H0 using
the recent Type Ia Supernovae standard candle data
(ESSENCEþ SNLSþ HST) from [5]. Clearly, the SNIa
data do not rule out a sizable fraction of the dark energy
today being in relativistic modes.
It is easy to derive an analytic expression for wðzÞ in this

model. Taking pDR, �DR to be the dark radiation pressure
and density, and p�, �� to be the scalar field pressure and

density, we have w ¼ ðpDR þ p�Þ=ð�DR þ ��Þ. But

pDR ¼ �DR=3 and p� ¼ ���, leading to

wðzÞ ¼ ð1=3Þfð1þ zÞ4 � 1

fð1þ zÞ4 þ 1
: (5)

As an example of the possible strong late-time variation of
wðzÞ predicted by this model, in Fig. 3 we plot w vs z for
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FIG. 2 (color online). Likelihood contour for the parameters f
and �m0. The yellow (light) region is excluded at the 2� level
and the orange (darker) region is excluded at the 1� level. The
red (darkest) region is not excluded at either confidence level.
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f ¼ 0:01; e.g., the parameter choice f ¼ 0:01, �m0 ¼
0:28 is conservative, it is not excluded at 1� by the SNIa
data. The pressure of the relativistic component increases
the effective EoS of the dark energy component with
increasing redshift. Note that, in our model, the shape of
the w vs z curve is fixed once f is fixed.

Another diagnostic for dark energy models is the evolu-
tion in the w-w0 phase plane [30], where w0 � aðdw=daÞ
and a ¼ 1=ð1þ zÞ is the scale factor. From (5), we find
that

w0 ¼ ð1þ wÞð3w� 1Þ: (6)

Note that the relationship between w0 and w is independent
of f. This means that all of these models evolve along the
same evolutionary track in the w-w0 plane; the value of f
simply determines where the model sits on this evolution-
ary path at the present time.

In the terminology of [30], these are ‘‘freezing’’ quin-
tessence models, since w decreases with time to w ! �1.
However, Eq. (6) predicts behavior that is distinct from
standard freezing quintessence models. For them, [30]
suggested the bound w0 > 3wð1þ wÞ, whereas our model
always hasw0 < 3wð1þ wÞ. In this respect, it more closely
resembles the barotropic models discussed in
Refs. [31,32]. This result arises from the fact that we
have a two-component dark energy model. In terms of
the evolution of the equation of state, our model resembles
the barotropic ‘‘wet dark fluid’’ model proposed in [33,34],
with the important difference that the dark radiation in our
model appears only at late times.

As a point related to our analysis, we consider the
possibility that our Universe has exited the false vacuum
in recent times, i.e. all of the dark energy has recently been

dumped into relativistic modes, which will eventually
redshift away. This would be the case if the dark energy
field went through a first-order phase transition of the type
considered above, but into the true V ¼ 0 vacuum and not
into another metastable vacuum. This scenario also arises
in the ‘‘accelerescence’’ model considered in [24]. Let z�
be the redshift time of this phase transition, when the
vacuum energy is instantaneously (relative to cosmological
time scales) converted into radiation. The Hubble parame-
ter is therefore given by

H2ðzÞ ¼ H2
0½�m0ð1þ zÞ3 þ�r0ð1þ zÞ4

þ��0ð1þ zSðz� � zÞÞ4�; (7)

where SðxÞ is the Heaviside step function. Using the SNIa
data, Fig. 4 is a likelihood plot for the parameters�m;0 and

z�. We find that z� is tightly constrained by the data, with
the maximum z� allowed being �0:1 at 2�. Thus, if the
Universe has already exited the vacuum energy epoch, it
did so very recently.

B. Particle physics

An interesting feature of our scenario is that the dark
energy field can be coupled relatively strongly to standard
model particles. This makes it possible, in principle, for
this kind of dark energy to be detected in colliders.3

The simplest model we considered, comprised of a
singlet scalar �, has some challenges, as a direct coupling
between � and the Higgs boson operator HyH cannot be
excluded. This would lead to significant radiative correc-
tions to the � potential parameters, making the model
somewhat unnatural. However, if this fine-tuning is
ignored, the �-H coupling would provide for direct pro-
duction of � particles at colliders.
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FIG. 3 (color online). w vs z for the choice f ¼ 0:01, which
along with, e.g., a conservative �m0 ¼ 0:28 is not excluded at
the 1� level by the SNIa data (see Fig. 2).

3The proposed dark energy field � (dark radiation) has very
small mass �meV and might be produced by thermal reactions
in stars. The energy loss argument for globular-cluster stars or
red giants sets some strict limits on its coupling to the standard
model, similar to constraints on the axion decay constant [35].
E.g., an Oð1Þ Yukawa coupling of a scalar field � to quarks q
induces, in one loop, an effective dimension-5 coupling to
photons ��ðF��Þ2=4�mq; this coupling would cause globular
clusters to lose energy (into � modes) more quickly than is
actually observed, unless suppressed by a quark mass scalemq >
107GeV, thus disallowing such a coupling to any standard model
fermions. On the other hand, if the dark energy field obeys a Z2
symmetry � ! ��, or if � is the glueball field of some addi-
tional SUðNÞ gauge theory (with interpolating dimension-4
operatorG��G

��) coupled to the standard model via messengers
mq, the induced effective interaction with photons has higher
dimension; dimension-6 interactions ��2ðF��Þ2=4�m2

q can al-
ready avoid the energy-loss constraints for helium-burning stars
(Tcore � 108K) if mq * 20 GeV, thereby allowing coupling of
the dark energy field to weak-scale standard model particles.
These astrophysical constraints do not significantly hinder de-
tection of our proposed dark energy field � at particle colliders,
which provide energies � Tcore and produce weak-scale parti-
cles abundantly.
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Our alternative model uses a pure SUðNÞ gauge theory
sector (N > 2) with strong coupling scale ���. This
model requires no fine-tuning and the fraction of energy
in relativistic modes after the phase transition can in prin-
ciple be calculated from simulations of the SUðNÞ theory.
Glueballs of this sector would be light excitations with
mass of order�; the phase transition temperature would be
at least a few times the glueball mass. The glueballs could
couple to standard model particles via higher dimension
operators such as

G2
��Osm; (8)

where G is the SUðNÞ field strength and Osm a (Lorentz
scalar) standard model operator such as HyH, �qq, etc.

If we wish to ensure that there exists a point in the
configuration space where the vacuum energy vanishes
exactly, one must add some extra degrees of freedom.
For example, a colored scalar �, whose potential Vð�Þ
has positive second derivative at � ¼ 0 and a global
minimum at some nonzero value, would suffice (see
Fig. 5). Note, this likely requires a nonrenormalizable
potential (i.e., with �6 term).

An exactly vanishing potential energy at some point in
the configuration space is a generic feature of many theo-
ries with global supersymmetry [36]—the vacuum energy
is zero precisely at the supersymmetric points. While this
fact does not explain away the cosmological constant term
in the Einstein-Hilbert action, it may have something to do
with the existence of an absolute minimum with small or
vanishing energy density. In the supersymmetric frame-

work, a presently nonzero and positive vacuum energy can
be explained by the fact that the Universe is currently
sitting at a metastable vacuum of the field theory, and its
difference to a supersymmetric vacuum gives the present
positive vacuum energy density �4. Examples of super-
symmetric theories with such metastable vacua can readily
be given either as simple Wess-Zumino models (e.g. [37])
or in terms of supersymmetric gauge theories which pro-
vide an ultraviolet framework for (O’Raifeartaigh-like)
metastable supersymmetry breaking [38]. Furthermore,
the dynamics for the Universe to initially be stuck in a
metastable vacuum in the course of its cooling with only
subsequent transition to the absolute supersymmetric mini-
mum has been confirmed [39] and the lifetime of such
metastable vacua has been considered.
The phenomenologically plausible scale for electroweak

supersymmetry breaking of 1 TeV � � is much too large
to directly account for the observed vacuum energy in the
way just outlined. Nevertheless, supersymmetry might be
invoked to provide for an absolute zero of the energy, at
least in the sector containing the dark energy dynamics
itself. By small modifications to the toy models described
in the previous paragraph (changing parameters, or adding
one or two new chiral superfields) it is furthermore possible
to build dark energy sectors, containing just a small num-
ber of chiral superfields (possibly arising as effective fields
[38]), with two slightly nondegenerate metastable vacua of
energy �� along with a supersymmetric minimum,
thereby giving a natural explanation for an absolute zero
energy and also exhibiting the interesting dynamics of dark
energy and recent dark radiation of our models (2).
The dark energy sector is likely to feel electroweak

supersymmetry breaking, at least through gravitational
effects [24], and is therefore not expected to be perfectly
supersymmetric. If this mediation happens only through
gravitational interactions, the terms induced in the dark
energy sector are naturally of the correct order of magni-

FIG. 5 (color online). Potential energy surface for a gauge
theory, where � is an order parameter for confinement
(Polyakov loop) and � a colored scalar field. For N > 2,
SUðNÞ models will have a first-order confinement-
deconfinement transition as the temperature is lowered.
However, at zero temperature the deconfined phase (� ¼ � ¼
0) is not necessarily metastable.
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FIG. 4 (color online). Likelihood contour for the parameters
�m0 and z�, the redshift at which the Universe has exited the
false vacuum and entered the true vacuum, releasing the energy
of the cosmological constant into relativistic modes. The yellow
(light) region is excluded at the 2� level, and the orange (darker)
region is excluded at the 1� level. The red (darkest) region is not
excluded at either confidence level.
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tude ð1 TeVÞ2=MPl � 10�3 eV�� to provide for energy
differences in the dark sector of the size of the observed
cosmological constant. Furthermore, a slight modification
of the first model of [24], e.g. addition of an m�2 term to
the superpotential of the dark sector, generically yields
three non-degenerate metastable vacua of energy �m�
�, again yielding our scenario of dark radiation along with
dark energy. If it is implemented in nature, there could be
dark radiation according to (4) as well as dark energy of
order � present. And unlike in the model in [24], this
scenario would cosmologically be detectable not solely
in the very far future (billions of years from now), but
could be confirmed, rejected, or constrained already in the
foreseeable future through comparison of the more pre-
cisely measured past expansion rate of the Universe (for
0:1< z < 3) to our predictions for the equation of state
wðzÞ as Fig. 3.

IV. CONCLUSIONS

We have discussed a class of dark energy models which
have interesting cosmological as well as collider signa-
tures. In these models, a first-order phase transition at

redshift z� 3 releases energy in relativistic modes (dark
radiation) leading to a characteristic time dependence in
the effective dark energy equation of state. We have shown
that such models are consistent with SNIa data, and are
relatively easy to construct as extensions to the standard
model.
As an interesting and important side issue, we consid-

ered the possibility that the Universe might have recently
(at redshift z ¼ z�) exited the false vacuum phase and
entered the true vacuum, converting all of the dark energy
into relativistic modes. We show that the SNIa data places
tight constraints on z�, restricting it to z� � 0:1 or less at
the 2� confidence level.
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