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The phase-integral approximation devised by Fröman and Fröman is used for computing cosmological

perturbations in the quadratic chaotic inflationary model. The phase-integral formulas for the scalar and

tensor power spectra are explicitly obtained up to fifth order of the phase-integral approximation. We show

that the phase integral gives a very good approximation for the shape of the power spectra associated with

scalar and tensor perturbations as well as the spectral indices. We find that the accuracy of the phase-

integral approximation compares favorably with the numerical results and those obtained using the slow-

roll and uniform-approximation methods.
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I. INTRODUCTION

The study of the spectrum of anisotropies of the cosmic
microwave background radiation and inhomogeneities in
the large scale structure of the Universe provides key
elements in the study of the early universe. The results
reported by WMAP favor inflation [1–3] over other cos-
mological scenarios. The present and future observational
data will permit us to validate and discriminate among
different inflationary models. According to WMAP5 data
the power-law inflation, the hybrid inflation, and quartic
chaotic inflationary models ��4 are ruled out, while the
quadratic chaotic inflationary model m2�2 agreed with the
observational data [1,4].

In order to compare with observations, we should be
able to obtain very accurate results for the predicted power
spectrum of primordial perturbations for a variety of infla-
tionary scenarios. In general, most of the inflationary mod-
els are not exactly solvable and approximate or numerical
methods are mandatory in the computation of the scalar
and power spectra. Traditionally, the method of approxi-
mation applied in inflationary cosmology is the slow-roll
approximation [5], which produces reliable results in infla-
tionary models with smooth potentials, but cannot be im-
proved in a simple way beyond the leading order. Recently,
some authors have applied alternative approximations,
such as the WKB method with the Langer modification
[6–8], the Green function method [9], and the improved
WKB method [10,11].

Habib et al. [12–14] have successfully applied the
uniform-approximation method in the calculation of the
scalar and tensor power spectra and the corresponding
spectral indices for the quadratic and quartic chaotic infla-
tionary models, showing that the uniform approximation
gives more accurate results than the slow-roll approxima-

tion. Casadio et al. [15] have applied the method of com-
parison equation to study cosmological perturbations
during inflation. The comparison method is based on the
uniform approximation proposed by Dingle [16] and
Miller [17] and thoroughly discussed by Berry and
Mount [18].
Recently [19,20], the phase-integral approximation [21–

23] has been applied to the calculation of the power spectra
and spectral indices in the power-law inflationary model,
showing that the phase-integral method gives results which
are comparable or better than those obtained using slow
roll or the uniform approximation. It is the purpose of this
paper to compute approximate solutions for the scalar and
tensor power spectra and their corresponding spectral in-
dices for some chaotic inflationary models with the help of
the phase-integral approximation method. We show that
for the quadratic chaotic inflationary model the fifth-order
phase-integral approximation gives more accurate results
than those obtained using the WKB or uniform-
approximation methods. For the quartic chaotic inflation-
ary model we also obtain very accurate results but we do
not report them since this model is ruled out by the ob-
servational data [1].
The article is structured as follows: In Sec. II we apply

the phase-integral approximation to the chaotic quadratic
inflationary model, we numerically solve the equation
governing the scalar and tensor perturbations, and we
compare the results for the power-spectra obtained using
the phase-integral approach with those computed with the
slow-roll and uniform-approximation methods. In Sec. III
we summarize our results.

II. PHASE-INTEGRAL APPROXIMATION FOR
THE POWER SPECTRUM IN THE �2 CHAOTIC

INFLATION

In this section we discuss the application of the phase-
integral approximation to the computation of the power
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spectrum in the chaotic inflationary 1
2m

2�2 model. We

apply the phase-integral approximation in the study of
the evolution of the mode k equations for the scalar and
tensor perturbations in order to compute the scalar and
tensor power spectra. Using the fifth-order phase-integral
approximation we compute the scalar and tensor power
spectra and their corresponding spectral indices. A detailed
description of the method is given in Refs. [19,20].

A. The model

The chaotic inflationary model was introduced by Linde
[24,25]. He proposed that the preinflationary universe was
chaotic which means that the fields would take different
values in different points of the space following a random
pattern and inflation will occur in virtually any universe
that begins in a chaotic, high energy state and has a scalar
field with unbounded potential energy. The simplest form
of the inflaton potential Vð�Þ in a chaotic model is given by
the quadratic potential

Vð�Þ ¼ 1
2m

2�2; (1)

giving as a result a free scalar field with mass m.

B. Equations of motion

In an inflationary universe driven by a scalar field, the
equations of motion for the inflaton � and the Hubble
parameter H are given by

€�þ 3H _� ¼ �@Vð�Þ
@�

; (2)

H2 ¼ 1

3M2
Pl

�
Vð�Þ þ 1

2
_�2

�
; (3)

where the dots indicate derivatives with respect to physical
time t. In the quadratic chaotic inflationary model Eqs. (2)
and (3) are not exactly solvable in closed form; they can be
solved numerically or using the slow-roll approximation.
In the slow-roll approximation [26] we consider that the

scalar field Vð�Þ varies very slowly 1
2
_�2 � Vð�Þ. Using

this approximation, we obtain that Eqs. (2) and (3) for the
quadratic chaotic inflationary model reduce to [27]

3H _� ’ �m2�; (4)

H ’ m�ffiffiffi
6

p
MPl

: (5)

Using Eqs. (4) and (5) we obtain that, in the slow-roll
approximation, the expansion factor aðtÞ and the inflaton
field �ðtÞ are

�sr ’ �i �
ffiffiffi
2

3

s
mMPlt; (6)

asr ’ ai exp

�
m�iffiffiffi
6

p
MPl

t�m2

6
t2
�
; (7)

where �i is a constant of integration corresponding to the
initial value of the inflaton. Equation (7) shows that the
Universe expands exponentially during inflation The slow-
roll parameter is [9]

�1 ¼
_H

H2
¼ 2M2

Pl

�2
: (8)

The inflationary epoch finishes when �1 ¼ 1, that is �f ¼ffiffiffi
2

p
MPl, when the scalar field starts to oscillate. The massm

of the inflation can be fixed using the amplitude of the
density fluctuations detected byWMAP. In order to fitm to
the observational data, we demand that m ’ 10�6 [3].
The equations of motion (2) and (3) are numerically

integrated in the physical time t. We solve the system of
coupled differential equations (2) and (3) with the help of
the sixth-order Runge-Kutta method [28], which can be
written as

€�þ 3
_a

a
_�þ @Vð�Þ

@�
¼ 0;

_a

a
� ffiffiffi

6
p

MPl½2Vð�Þ þ _�2�1=2 ¼ 0:

(9)

We choose the initial value of the inflaton as �i ¼
15:4MPl. Since the evolution of the inflation � is governed
by a second-order differential equation, we need to fix the

initial value for the velocity of the scalar field _�i, which
can be obtained using the slow-roll approximation (6). The
initial value for ai is chosen as ai ¼ 1, the mass of the
inflaton m2 ¼ 1:89� 10�12M2

Pl. The initial condition has

been selected in order to guarantee enough inflation. In
order to find the number of e-folds, we rewrite the system
of differential equations (9) as

€�þ 3 _N _�þ @Vð�Þ
@�

¼ 0;

_N ¼ ffiffiffi
6

p
MPl½2Vð�Þ þ _�2�1=2:

(10)

We find that the inflation finishes at tf ¼ 1:30�
107M�1

Pl ¼ 3:51� 10�36 s, a result that corresponds to

59.84 e-folds before the scalar field starts to oscillate.
Figure 1 shows the evolution of the scalar field �.
In order to apply the phase-integral approximation to

higher orders it is necessary to calculate the integrals !ðzÞ
in the complex plane; therefore, it is of help to have an
analytic expression for aðtÞ and�ðtÞwhich can be obtained
after fitting the numerical data. We find that aðtÞ and �ðtÞ
take the form

aðtÞ ¼ ai expð�t� �t2Þ; (11)

�ðtÞ ¼ �� �t; (12)
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where � ¼ 8:6551� 10�6MPl, � ¼ 3:1380� 10�13M2
Pl,

� ¼ 15:3992MPl, and � ¼ 1:1201� 10�6M2
Pl. With the

help of the expressions (11) and (12) we obtain that zS is
given by

zSðtÞ ¼ � ai�

ð�� 2�tÞ expð�t� �t2Þ: (13)

Figures 2(a) and 2(b) compare the fitting with the numeri-
cal result and the slow-roll approximations for aðtÞ and
�ðtÞ. The fitting is valid up to t ¼ 5:00� 106M�1

Pl . The

inset is an enlargement of the figure. Figures 3(a) and 3(b)
show the ratio of the fit and slow roll to exact solution for
aðtÞ and �ðtÞ and observe that the fitting better approxi-
mates the numerical result than the slow-roll approxima-
tion; therefore the expressions for the scalar and tensor
perturbations will be constructed using the fitting aðtÞ and
zSðtÞ given by expressions (11) and (13), respectively. If we
use asr and �sr in order to calculate the power spectrum,
the expression we obtain does not approach the exact
result.

C. Equation for the perturbations

Since the expansion factor a and the field � exhibit a
simpler form in the physical time t than in the conformal
time �, we proceed to write the equations for the scalar and
tensor perturbations in the variable t. The relation between
t and� is given via the equation dt ¼ ad�. In this case, the
equation for the perturbations can be written as

€u k þ _a

a
_uk þ 1

a2

�
k2 � ð _a _zS þ a€zSÞa

zS

�
uk ¼ 0; (14)

€v k þ _a

a
_vk þ 1

a2
½k2 � ð _a2 þ a €aÞ�vk ¼ 0: (15)

In order to apply the phase-integral approximation, we
eliminate the terms _uk and _vk in Eqs. (14) and (15). We

make the change of variables ukðtÞ ¼ UkðtÞffiffi
a

p and vkðtÞ ¼
VkðtÞffiffi

a
p , obtaining that Uk and Vk satisfy the differential

equations:

€U k þ RSðk; tÞUk ¼ 0; (16)

€V k þ RTðk; tÞVk ¼ 0; (17)

with

RSðk; tÞ ¼ 1

a2

�
k2 � ð _a _zS þ a€zSÞa

zS

�
þ 1

4a2
ða2 � 2a €aÞ;

(18)

RTðk; tÞ ¼ 1

a2
½k2 � ð _a2 þ a €aÞ� þ 1

4a2
ða2 � 2a €aÞ; (19)

where UðkÞ satisfies the asymptotic conditions
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FIG. 2. (a) Evolution of the scale factor a and (b) evolution of
the inflaton � for the chaotic inflationary model 1

2m
2�2. Solid

lines: numerical solution; dashed lines: fitting; dotted lines:
slow-roll approximation. The inset is an enlargement of the
figure.
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Uk ! Ak

ffiffiffiffiffiffiffiffi
aðtÞ

p
zSðtÞ; kt ! 1; (20)

Uk !
ffiffiffiffiffiffiffiffi
aðtÞ
2k

s
exp½�ik�ðtÞ�; kt ! 0: (21)

The asymptotic conditions (20) and (21) also hold for Vk.
We now proceed to write the explicit equations for

quadratic chaotic inflation. From Eqs. (18) and (19), with
Eqs. (11) and (12) we obtain

RSðk; tÞ ¼ k2

a2i
exp½�2tð�� �tÞ�

� ½32�2 þ 9ð�� 2�tÞ4�
4ð�� 2�tÞ2 � 3�; (22)

RTðk; tÞ ¼ k2

a2i
exp½�2tð�� �tÞ� � 9

4
ð�� 2�tÞ2 þ 3�:

(23)

In order to apply the asymptotic condition (21), we use the
relation between � and t, which is given by

� ¼
ffiffiffiffi
	

p
2ai

ffiffiffiffi
�

p exp

���2

4�

��
Erfi

���þ 2�t

2
ffiffiffiffi
�

p
�

þ Erfi

�
�� 2�t0
2

ffiffiffiffi
�

p
��

; (24)

where ErfiðzÞ is the imaginary error function [29]. Since
the conformal time � is defined up to an integration
constant, the lower limit ti of the integral

d� ¼
Z t

ti

dt

aðtÞ ; (25)

is chosen in order to make � ¼ 0 at the end of the infla-
tionary epoch, i.e., ti ¼ 107M�1

Pl . The dependence of� on t
is shown in Fig. 4. We can observe that as

� k� ! 0 ) kt ! 1; (26)

� k� ! 1 ) kt ! 0: (27)

Equations (16) and (17), where RSðk; tÞ and RTðk; tÞ are
given by Eqs. (22) and (23), do not possess exact analytic
solution. In order to solve the differential equations gov-
erning the scalar and tensor perturbations in the physical
time t, we use the fifth-order phase-integral approximation
and compare these results with the slow roll and uniform
approximation.

D. Phase-integral approximation

In order to solve Eqs. (16) and (17) with the help of the
phase-integral approximation, we choose the following
base functions Q for the scalar and tensor perturbations:

Q2
Sðk; tÞ ¼ RSðk; tÞ; (28)

Q2
Tðk; tÞ ¼ RTðk; tÞ; (29)
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where RSðk; tÞ and RTðk; tÞ are given by Eqs. (22) and (23),
respectively. Using this selection, the phase-integral ap-
proximation is valid as kt ! 1, the limit where we should
impose the condition (20), where the validity condition

 � 1 holds. The selection, given in Eq. (28), makes the
first-order phase-integral approximation coincide with the
WKB solution. The base functions QSðk; tÞ and QTðk; tÞ
possess turning points tret ¼ �S ¼ 1:380 96� 106M�1

Pl and

tret ¼ �T ¼ t ¼ 1:381 96� 106M�1
Pl , respectively, for the

mode k ¼ 1:369h Mpc�1. The turning point represents the
horizon. There are two ranges in which to define the
solution. To the left of the turning point 0< t < tret we
have the classically permitted region Q2

S;Tðk; tÞ> 0 and to

the right of the turning point t > tret corresponding to the
classically forbidden region Q2

S;Tðk; tÞ< 0, such as it is

shown in Figs. 5(a) and 6(a).
The mode k equations for the scalar and tensor pertur-

bations (16) and (17) in the phase-integral approximation
have two solutions: For 0< t < tret

upik ðtÞ ¼
c1ffiffiffiffiffiffiffiffi
aðtÞp jq�1=2

S ðk; tÞj cos
�
j!Sðk; tÞj � 	

4

�

þ c2ffiffiffiffiffiffiffiffi
aðtÞp jq�1=2

S ðk; tÞj cos
�
j!Sðk; tÞj þ 	

4

�
; (30)

v
pi
k ðtÞ ¼

d1ffiffiffiffiffiffiffiffi
aðtÞp jq�1=2

T ðk; tÞj cos
�
j!Tðk; tÞj � 	

4

�

þ d2ffiffiffiffiffiffiffiffi
aðtÞp jq�1=2

T ðk; tÞj cos
�
j!Tðzk; tj þ 	

4

�
; (31)

and for t > tret

u
pi
k ðtÞ ¼

c1

2
ffiffiffiffiffiffiffiffi
aðtÞp jq�1=2

S ðk; tÞj exp½�j!Sðk; tÞj�

þ c2ffiffiffiffiffiffiffiffi
aðtÞp jq�1=2

S ðk; tÞj exp½j!Sðk; tÞj�; (32)

vpi
k ðzÞ ¼

d1

2
ffiffiffiffiffiffiffiffi
aðtÞp jq�1=2

T ðk; tÞj exp½�j!Tðk; tÞj�

þ d2ffiffiffiffiffiffiffiffi
aðtÞp jq�1=2

T ðk; tÞj exp½j!Tðk; tÞj�: (33)

Using the phase-integral approximation up to fifth order
(2N þ 1 ¼ 5 ! N ¼ 2), we have that qSðk; tÞ and qTðk; tÞ
can be expanded in the form

qSðk; tÞ ¼
X2
n¼0

Y2nSðk; tÞQSðk; tÞ

¼ ½Y0Sðk; tÞ þ Y2Sðk; tÞ þ Y4Sðk; tÞ�QSðk; tÞ; (34)

qTðk; tÞ ¼
X2
n¼0

Y2nTðk; tÞQTðk; tÞ

¼ ½Y0Tðk; tÞ þ Y2Tðk; tÞ þ Y4Tðk; tÞ�QTðk; tÞ: (35)

In order to compute qSðk; tÞ and qTðk; tÞ, we compute
Y2Sðk; tÞ, Y4Sðk; tÞ, Y2Tðk; tÞ, Y4Tðk; tÞ and the required func-
tions "0Sðk; tÞ, "2Sðk; tÞ, "0Tðk; tÞ, and "2Tðk; tÞ. The expres-
sions (34) and (35) give a fifth-order approximation for
qSðk; tÞ and qTðk; tÞ. In order to compute !Sðk; tÞ and
!Tðk; tÞ we make a contour integration following the
path indicated in Figs. 5(b), 5(c), 6(b), and 6(c)

!Sðk; tÞ ¼ !0Sðk; tÞ þ
X2
n¼1

!2nSðk; tÞ; (36)

t

Q
2
S(k,t)

τS

Q
2
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Q
2
S(k,t)<0
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τS

Γ (t)τS

t
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tτS
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FIG. 5. (a) Behavior of the function Q2
Sðk; tÞ; (b) contour of

integration ��S ðtÞ for 0< t < �S; (c) contour of integration ��S ðtÞ
for t > �S. The dashed line indicates the part of the path on the
second Riemann sheet.
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¼
Z t

�S

QSðk; tÞdtþ 1

2

X2
n¼1

Z
��S

Y2nSðk; tÞQSðk; tÞdt; (37)

¼
Z t

�S

QSðk; tÞdtþ 1

2

X2
n¼1

Z
��S

f2nSðk; tÞdt; (38)

!Tðk; tÞ ¼ !0Tðk; tÞ þ
X2
n¼1

!2nTðk; tÞ; (39)

¼
Z t

�T

QTðk; tÞdtþ 1

2

X2
n¼1

Z
��T

Y2nTðk; tÞQTðk; tÞdt; (40)

¼
Z t

�S

QTðk; tÞdzþ 1

2

X2
n¼1

Z
��T

f2nTðk; tÞdt; (41)

where

f2nSðk; tÞ ¼ Y2nSðk; tÞQSðk; tÞ; (42)

f2nTðk; tÞ ¼ Y2nTðk; tÞQTðk; tÞ: (43)

The functions f2nSðk; tÞ and f2nTðk; tÞ have the following

functional dependence:

f2Sðk; tÞ ¼ Aðk; tÞðt� �SÞ�5=2; (44)

f4Sðk; tÞ ¼ Bðk; tÞðt� �SÞ�11=2; (45)

f2Tðk; tÞ ¼ Cðk; tÞðt� �TÞ�5=2; (46)

f4Tðk; tÞ ¼ Dðk; tÞðt� �TÞ�11=2; (47)

where the functions Aðk; tÞ and Bðk; tÞ are regular at �S and
the functionsCðk; tÞ,Dðk; tÞ are regular at �T. With the help
of the functions (44)–(47) we compute the integrals for!2n

up to N ¼ 4 using the contour indicated in Figs. 5(b), 5(c),
6(b), and 6(c). The expressions for !2n permit one to
obtain the fifth-order phase-integral approximation of the
solution to the equations for scalar (16) and tensor (17)
perturbations. The constants c1, c2, d1, and d2 are obtained
using the limit kt ! 0 of the solutions on the left side of the
turning point (30) and (31), and are given by the expres-
sions

c1 ¼ �ic2; (48)

c2 ¼ e�ið	=4Þffiffiffi
2

p e�i½k�ð0Þþj!0S
ðk;0Þj�; (49)

d1 ¼ �id2; (50)

d2 ¼ e�ið	=4Þffiffiffi
2

p e�i½k�ð0Þþj!0T
ðk;0Þj�: (51)

In order to compute the scalar and tensor power spectra, we
need to calculate the limit as kt ! 1 of the growing part of
the solutions on the right side of the turning point given by
Eqs. (32) and (33) for scalar and tensor perturbations,
respectively,

PSðkÞ ¼ lim
�kt!1

k3

2	2

��������
upik ðtÞ
zSðtÞ

��������
2

; (52)

PTðkÞ ¼ lim
�kt!1

k3

2	2

��������
vpi
k ðtÞ
aðtÞ

��������
2

: (53)

t

Q
2
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τT

Q
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FIG. 6. (a) Behavior of Q2
Tðk; tÞ; (b) contour of integration

��T ðtÞ for 0< t < �T; (c) contour of integration ��T ðtÞ for t >
�T. The dashed line indicates the part of the path on the second
Riemann sheet.
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E. Uniform approximation

We want to obtain an approximate solution to the dif-
ferential equations (16) and (17) in the range where
Q2

Sðk; tÞ and Q2
Tðk; tÞ have a simple root at tret ¼ �S and

tret ¼ �T, respectively, so that Q2
S;Tðk; tÞ> 0 for 0< t <

tret and Q2
S;Tðk; tÞ< 0 for t > tret as depicted in Figs. 5(a)

and 6(a). Using the uniform-approximation method
[13,18–20], we obtain that for 0< t < tret we have

Ukðk; tÞ ¼
�
�lðk; tÞ
Q2

Sðk; tÞ
�
1=4fC1Ai½��lðk; tÞ�

þ C2Bi½��lðk; tÞ�g; (54)

Vkðk; tÞ ¼
�
�lðk; tÞ
Q2

Tðk; tÞ
�
1=4fC1Ai½��lðk; tÞ�

þ C2Bi½��lðk; tÞ�g; (55)

2

3
½�lðk; tÞ�3=2 ¼

Z tret

t
½Q2

S;Tðk; tÞ�1=2dt; (56)

where C1 and C2 are two constants to be determined with
the help of the boundary conditions (21). For t > tret

Ukðk; tÞ ¼
���rðk; tÞ
Q2

Sðk; tÞ
�
1=4fC1Ai½�rðk; tÞ� þ C2Bi½�rðk; tÞ�g;

(57)

Vkðk; tÞ ¼
���rðk; tÞ
Q2

Tðk; tÞ
�
1=4fC1Ai½�rðk; tÞ� þ C2Bi½�rðk; tÞ�g;

(58)

2

3
½�rðk; tÞ�3=2 ¼

Z t

tret

½�Q2
S;Tðk; tÞ�1=2dt: (59)

For the computation of the power spectrum we need to
take the limit kt ! 1 of the solutions (57) and (58). In this
limit we have

uuak ðtÞ !
Cffiffiffiffiffiffiffiffiffiffiffi
2aðtÞp ½�Q2

Sðk; tÞ��1=2

�
�
1

2
exp

�
�
Z t

�S

½�Q2
Sðk; tÞ�1=2dt

�

þ i exp

�Z t

�S

½�Q2
Sðk; tÞ�1=2dt

��
; (60)

vua
k ðtÞ !

Cffiffiffiffiffiffiffiffiffiffiffi
2aðtÞp ½�Q2

Tðk; tÞ��1=2

�
�
1

2
exp

�
�

Z t

�T

½�Q2
Tðk; tÞ�1=2dt

�

þ i exp

�Z t

�T

½�Q2
Tðk; tÞ�1=2dt

��
; (61)

whereC is a phase factor. Notice that Eqs. (60) and (61) are

identical to Eqs. (32) and (33) obtained in the first-order
phase-integral approximation. Using Eqs. (11) and (13)
and the growing part of the solutions (60) and (61) one
can compute the scalar and tensor power spectrum using
the uniform-approximation method,

PSðkÞ ¼ lim
�kt!1

k3

2	2

��������
uuak ðtÞ
zSðtÞ

��������
2

; (62)

PTðkÞ ¼ lim
�kt!1

k3

2	2

��������
vua
k ðtÞ
aðtÞ

��������
2

: (63)

We also use the second-order improved uniform approxi-
mation for the power spectrum [14],

~P S;TðkÞ ¼ PS;TðkÞ½��ð �
S;TÞ�; (64)

where �
S;T is the turning point for the scalar or tensor

power spectrum and

��ð
Þ � 1þ 1

12

þ 1

288

� 139

51840

þ � � � : (65)

F. Slow-roll approximation

The scalar and tensor power spectra in the slow-roll
approximation to second order are given by the expressions
[9,30]

Psr
S ðkÞ ’

�
1þ ð4c� 2Þ�1 þ 2c�1 þ

�
3c2 þ 2c� 22

þ 29	2

12

�
�1�1 þ

�
3c2 � 4þ 5	2

12

�
�2
1

þ
�
�c2 þ 	2

12

�
�2

��
H

2	

�
2
�
H
_�

�
2
��������k¼aH

; (66)

Psr
T ðkÞ ’

�
1þ ð2c� 2Þ�1 þ

�
2c2 � 2c� 3þ 	2

2

�
�21

þ
�
�c2 þ 2c� 2þ 	2

12

�
�2

��
H

2	

�
2
��������k¼aH

;

(67)

where b is the Euler constant, 2� ln2� b ’ 0:7296 and
ln2þ b� 1 ’ 0:2704, and

�1 ¼
_H

H2
¼ 1

1þ 2N�
; (68)

�2 ¼ 1

H

d�1
dt

¼ 2

ð1þ 2N�Þ2
; (69)

�n � 1

Hn _�

dnþ1�

dtnþ1
! �1 ¼ �2 ¼ 0: (70)

COMPUTATION OF INFLATIONARY COSMOLOGICAL . . . PHYSICAL REVIEW D 79, 103502 (2009)

103502-7



The spectral indices in the slow-roll approximation are

nsrS ðkÞ ’ 1� 4�1 � 2�1 þ ð8c� 8Þ�21 þ ð10c� 6Þ�1�1;

(71)

nsrT ðkÞ ’ �2�1 � 2�21 þ ð2�� 2Þ�2: (72)

The expressions (66), (67), (71), and (72) depend ex-
plicitly on time. In order to compute the scalar and tensor
power spectra we need to obtain the dependence on the
variable k. For a given value of k (0:0001 Mpc�1 � k �
15 Mpc�1) we obtain t� from the relation k ¼ aH. Thus,
for each k one obtains a value of t that we substitute intoN�
and Eqs. (66), (67), (71), and (72).

G. Numerical solution

We integrate on the physical time t the Eqs. (16) and (17)
governing the scalar and tensor perturbations using the
predictor-corrector Adams method of order 12 [28], and
solve two differential equations, one for the real part and
another for the imaginary parts Uk and Vk. Two initial
conditions are needed in each case UkðtiÞ, U0

kðtiÞ, VkðtiÞ,
and V 0

kðtiÞ, which can be obtained from the third-order

phase-integral approximation. We start the numerical in-
tegration at ti calculated at 25 oscillations before reaching
the turning point tret [31]. We call this procedure ICs phi3.
Figures 7–9 compare the numerical solution with the fifth-
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FIG. 7. (a) ReðukÞ and (b) ReðvkÞ versus the number of e-folds
for the chaotic inflationary model 12m

2�2. Solid lines: numerical

solution (ICs phi3); dashed lines: fifth-order phase-integral ap-
proximation.

8 10 12 14 16

e-folds

0.00

2.00

4.00

6.00

Im
(u

k)

τS

(a)

8 10 12 14 16

e-folds

0.00

2.00

4.00

6.00

Im
(v

k)

τT

(b)

FIG. 8. (a) ImðukÞ and (b) ImðvkÞ versus the number of e-folds
for the chaotic inflationary model 12m

2�2. Solid lines: numerical

result (ICs phi3); dashed lines: fifth-order phase-integral ap-
proximation.
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FIG. 9. (a) jukj and (b) jvkj versus the number of e-folds for
the chaotic inflationary model 1

2m
2�2. Solid lines: Numerical

result (ICs phi3); dashed lines: fifth-order phase-integral ap-
proximation.
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order phase-integral approximation for ReðukÞ, ImðukÞ,
jukj, ReðvkÞ, ImðvkÞ, and jvkj. The figures are plotted
against the number of e-foldsN. The solid lines correspond
to the numerical solutions (ICs phi3), and the dashed lines
correspond to the fifth-order phase-integral approxima-
tions. In each case the turning points �S and �T are in-
dicated with an arrow. We stop the numerical computation
of PSðkÞ and PTðkÞ at t ¼ 5:00� 106M�1

Pl , after the mode

leaves the horizon, where uk=zS and vk=a are approxi-
mately constant. Notice that the expressions for fitting
(11) and (12) are valid in the aforementioned time scales;
therefore we can use them for computing the scalar PSðkÞ
and tensor PTðkÞ power spectra.

H. Results

For the chaotic 1
2m

2�2 inflationary model, we want to

compare the scalar and tensor power spectra and the spec-
tral indices for different values of k calculated using the
third- and fifth-order phase-integral approximation with
the numerical result (ICs phi3), the first- and second-order
slow-roll approximation and the first- and second-order
uniform-approximation method. First we analyze the re-
sults for the scalar PSðkÞ and tensor PTðkÞ power spectra
shown in Figs. 10 and 12.
Table I shows the value of PSðkÞ, PTðkÞ, nSðkÞ, and nTðkÞ

using each method of approximation at the WMAP pivot
scale. It can be observed that the best value is obtained with

0.0001 0.001 0.01 0.1 1 10
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P
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0.746

0.736

FIG. 10. PSðkÞ for the chaotic inflationary 1
2m

2�2 model. Thin
solid line: numerical result (ICs phi3); dot-dashed line: third-
order phase-integral approximation; dashed line: fifth-order
phase-integral approximation; thick solid line: first-order
phase-integral approximation, WKB, and first-order uniform
approximation; dashed double-dots line: second-order improved
uniform approximation; double-dashed dot line: second-order
slow-roll approximation; dotted line: first-order slow-roll ap-
proximation. The inset is an enlargement of the figure.

TABLE I. Value of PSðkÞ, PTðkÞ, nSðkÞ, and nTðkÞ obtained with different approximation methods for the chaotic inflationary model
1
2m

2�2 for the mode k ¼ 0:05 Mpc�1.

numa phi3b phi5c sr1d sr2e phi1,f WKB,g ua1h ua2i

PSðkÞ � 10�11 8.330 0 8.341 9 8.328 7 8.228 2 8.229 9 7.494 6 8.275 2

PTðkÞ � 10�12 1.610 9 1.613 2 1.610 6 1.604 7 1.604 9 1.448 6 1.600 4

nSðkÞ 0.960 473 0.960 472 0.964 73 0.960 700 0.960 491 0.960 453 0.960 486

nTðkÞ �0:019 965 �0:019 982 �0:019 965 �0:019 650 �0:019 948 �0:020 000 �0:019 984

aNumerical.
bThird-order phase-integral approximation.
cFifth-order phase-integral approximation.
dFirst-order slow-roll approximation.
eSecond-order slow-roll approximation.
fFirst-order phase-integral approximation.
gWKB approximation.
hFirst-order uniform approximation.
iSecond-order improved uniform approximation.
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FIG. 11. Relative error for PSðkÞ for the chaotic inflationary
1
2m

2�2 model. Dot-dashed line: third-order phase-integral ap-

proximation; dashed line: fifth-order phase-integral approxima-
tion; thick solid line: first-order phase-integral approximation,
WKB, and first-order uniform approximation; dashed double-
dots line: second-order improved uniform approximation; dotted
line: first- and second-order slow-roll approximation. The inset is
an enlargement of the figure.
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the fifth-order phase-integral approximation. It should be
noticed that the slow-roll approximation works well since
the parameters �1, �2, and �n are small.

Figures 11 and 13 show the relative error with respect to
the numerical result that is obtained using the expression

error rel : PS;TðkÞ ¼
½Papprox

S;T ðkÞ � Pnum
S;T ðkÞ�

Pnum
S;T ðkÞ � 100: (73)

The first-order phase-integral approximation, the WKB,
and the first-order uniform approximation give the same
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FIG. 13. Relative error for PTðkÞ for the chaotic inflationary
1
2m

2�2 model. Dot-dashed line: third-order phase-integral ap-

proximation; dashed line: fifth-order phase-integral approxima-
tion; thick solid line: first-order phase-integral approximation,
WKB, and first-order uniform approximation; dashed double-
dots line: second-order improved uniform approximation; dotted
line: first- and second-order slow-roll approximation. The inset is
an enlargement of the figure.
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FIG. 15. nTðkÞ for the chaotic inflationary 1
2m

2�2 model. Thin
solid line: numerical result (ICs phi3) and fifth-order phase-
integral approximation; dot-dashed line: third-order phase-
integral approximation; thick solid line: first-order phase-
integral approximation, WKB, and first-order uniform approxi-
mation; dashed double-dots line: second-order improved uni-
form approximation; double-dashed dot line: second-order slow-
roll approximation; dotted line: first-order slow-roll approxima-
tion. The inset is an enlargement of the figure.
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FIG. 12. PTðkÞ for the chaotic inflationary 1
2m

2�2 model. Thin
solid line: numerical result (ICs phi3); dot-dashed line: third-
order phase-integral approximation; dashed line: fifth-order
phase-integral approximation; thick solid line: first-order
phase-integral approximation, WKB, and first-order uniform
approximation; dashed double-dots line: second-order improved
uniform approximation; double-dashed dot line: second-order
slow-roll approximation; dotted line: first-order slow-roll ap-
proximation. The inset is an enlargement of the figure.
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FIG. 14. nSðkÞ for the chaotic inflationary 1
2m

2�2 model. Thin
solid line: numerical result (ICs phi3) and fifth-order phase-
integral approximation; dot-dashed line: third-order phase-
integral approximation; thick solid line: first-order phase-
integral approximation, WKB, and first-order uniform approxi-
mation; dashed double-dots line: second-order improved uni-
form approximation; double-dashed dot line: second-order slow-
roll approximation; dotted line: first-order slow-roll approxima-
tion. The inset is an enlargement of the figure.

CLARA ROJAS AND VÍCTOR M. VILLALBA PHYSICAL REVIEW D 79, 103502 (2009)

103502-10



result, and deviate from the numerical result in 10%. The
second-order improved uniform approximation gives an
error of 0.6%. With the first- and second-order slow-roll
approximations we have an error of 1% for PSðkÞ and of
0.4% for PTðkÞ. Using the third-order phase-integral ap-
proximation the error gives 0.15%, whereas the fifth-order
phase integral reduces to 0.015% in both cases. Figures 14
and 15 show the results for the spectral indices nSðkÞ and
nTðkÞ, respectively.

III. CONCLUSION

The results reported in this article show that, in com-
parison with other approximation methods, the phase-
integral approach gives very good results for the scalar
and tensor spectra in the quadratic inflationary model. The
phase-integral approximation gives very accurate results as
soon as the integral
ðz; z0Þ is small. Figures 7–9 show that
the phase-integral approximation fails in the vicinity of the
turning point�
 range where the 
 integral diverges. The
selection of the base function QðzÞ guarantees that 
 � 1
far from the turning point at any order of approximation.
Since the scalar and tensor power spectra as well as the
spectral indices are evaluated as �k� ! 0, the limit is

taken far from the horizon (turning point); therefore their
computation is not affected by the presence of the turning
point.
Since the WKB method can be regarded as a first-order

approximation of the phase-integral approximation with
Q2ðzÞ ¼ RðzÞ, it should be expected that the phase-integral
method works in those cases where the WKBmethod gives
good estimates and slow roll fails. That is the case where
inflation is generated by a chaotic potential with a step
[15,32]. The good agreement between the numerical re-
sults and those obtained with the phase-integral approxi-
mation shows that the phase-integral method is a very
useful approximation tool for computing the scalar and
tensor power spectra in a wide range of inflationary
scenarios.
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