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We construct static and mass-shedding limit sequences of hybrid stars, composed of a color flavour

locked (CFL) quark matter core, for a set of equations of state (EOSs). The EOS for the hadronic matter is

obtained using an appropriately calibrated, extended field theoretical based, relativistic mean-field model.

The MIT bag model is employed to compute the EOSs of the CFL quark matter for different values of the

CFL gap parameter in the range of 50–150 MeV with the deconfinement phase transition density ranging

from 4�0 to 6�0 (�0 ¼ 0:16 fm�3). We find that, depending on the values of the CFL gap parameter and

the deconfinement phase transition density, the sequences of stable configurations of hybrid stars either

form third families of the compact stars or bifurcate from the hadronic sequence. The hybrid stars have

masses 1:0–2:1M� with radii 9–13.5 km. The maximum values of the mass-shedding limit frequency for

such hybrid stars are 1–2 kHz. For the smaller values of the CFL gap parameter and the deconfinement

phase transition density, mass-radius relationships are in harmony with those deduced by applying an

improved hydrogen atmosphere model to fit the high quality spectra from compact star X7 in the globular

cluster 47 Tucanae. We observed, for some cases, that the third family of compact stars exist in the static

sequence but disappear from the mass-shedding limit sequence. Our investigation suggests that the third

family of compact stars in the mass-shedding limit sequence is more likely to appear, provided these stars

have maximum mass in the static limit higher than their second-family counterpart composed of pure

hadronic matter.
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I. INTRODUCTION

The suggestion that three-flavor quark matter may be the
ground state of strongly interacting systems [1–3] led to the
postulation that quark stars are possible astrophysical ob-
jects. It was also hypothesized that some compact stars
might be hybrid stars with a core composed of quark matter
and surrounded by a nuclear mantle. The present knowl-
edge of quantum chromodynamics (QCD) at high density
indicates that quark matter might be in a color supercon-
ducting phase. The essence of color superconductivity is
the quark-quark color superconductor [4,5] and is driven
by the Bardeen, Cooper, and Schrieffer (BCS) [6,7] pairing
mechanism. The possible quark color superconducting
phases include the two-flavor color superconductor (2SC)
[8–10], the color-flavor-locked (CFL) phase [11,12], and
the crystalline color superconductor (CCS) [13–15]. The
speculation that color superconducting quark matter is
present in the core of the hybrid stars has triggered many
theoretical investigations.

The hybrid stars with a CFL quark matter core have been
extensively studied. The hadron phase of the hybrid star
matter is described by various models which can be
broadly grouped into (i) nonrelativistic potential models
[16], (ii) nonrelativistic mean-field models [17–20],

(iii) field theoretical based relativistic mean-field models
(FTRMF) [21–23], and the (iv) Dirac-Brueckner-Hartree-
Fock model [24–27]. The CFL quark matter appearing at
the core of hybrid stars is described within the MIT bag
model and the Nambu-Jona-Lasinio (NJL) model. The
studies based on the MIT bag model indicate the existence
of stable configurations of hybrid stars with a CFL quark
matter core [28–30]. Two different situations are encoun-
tered: the hybrid stars with a CFL quark matter core either
form a third family of compact stars separated from the
purely hadronic sequence by an instability region, or bi-
furcate from the hadronic sequence of stars when the
central density exceeds the phase transition density at
which deconfinement of hadrons to CFL quark matter
occurs. The scenario is completely different when the
NJL model is employed to study the hybrid stars with a
CFL quark matter core. Until recently [31–33], it was
shown that the NJL-like model rules out the CFL quark
matter phase at the core because it renders the hybrid star
unstable. Only very recently has it been found that large
enough values of the diquark coupling strength in the NJL
model can yield stable configurations of a hybrid star
containing a CFL quark matter core [34,35].
The stability of the hybrid star with a CFL quark matter

core depends strongly on the values of the deconfinement
phase transition density and the CFL gap parameter, which
are poorly known. In the present work we construct the
static sequences of hybrid stars, with a CFL quark matter
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core, for a set of equations of state (EOSs) obtained for
different values of the CFL gap parameter and the decon-
finement phase transition density. The hadron phase of the
hybrid star is described by using an appropriately cali-
brated extended FTRMF model which includes the contri-
butions from self-interaction and mixed interaction terms
for �, !, and � mesons up to the quartic order. The CFL
quark matter phase is described within the MIT bag model
with an additional parameter that mimics the effect of
including perturbative QCD corrections. Instead of keep-
ing the value of the bag constant as previously done
[28,29], calculations are performed for different values of
the CFL gap parameter at fixed values of the deconfine-
ment phase transition density. This strategy should enable
us to better assess the influence of the CFL gap parameter
on the properties of hybrid stars with a CFL quark matter
core. The CFL gap parameter � is varied in the range of
50–150 MeV by keeping the deconfinement phase transi-
tion density �t fixed in between 4�0 and 6�0 (�0 ¼
0:16 fm�3). For the different values of the CFL gap pa-
rameter considered, the average quark chemical potential
at the deconfinement phase transition density lies in the
range of 375–500 MeV, which is in reasonable agreement
with the predictions of the NJL model.

The paper is organized as follows. In Sec. II we describe,
in brief, the models used to construct the EOSs for the
hadronic phase, the CFL quark phase, and the mixed phase.
In Sec. III we present the results for static and mass-
shedding limit sequences for hybrid stars. In Sec. IV we
state our conclusions.

II. EQUATIONS OF STATE FOR HYBRID STAR
MATTER

We construct the EOS for hybrid star matter, which is
composed of hadrons at low densities, quark matter in the

CFL phase at high densities, and the mixed phase at
intermediate densities. The EOS for hadron matter is ob-
tained within the framework of the extended FTRMF
model. The EOS for quark matter in the CFL phase is
obtained using the MIT bag model. The EOS for the mixed
phase is constructed using the Gibbs conditions. For the
hadron matter at very low densities, �� 0:5�0 fm�3 going
down to � ¼ 6:0� 10�12 fm�3, we use Negele-Vautherin
[36] and Baym-Pethick-Sutherland EOSs [37].

A. Hadron phase

The hadronic phase is described using the extended
FTRMF model, which includes the contributions from
self-interaction and mixed interaction terms for �, !,
and � mesons up to the quartic order. The mixed interac-
tion terms involving the �-meson field enable one to vary
the density dependence of the symmetry energy coefficient
and neutron-skin thickness in heavy nuclei over a wide
range without affecting the other properties of the finite
nuclei [38,39]. The contribution from the self-interaction
of ! mesons plays an important role in determining the
high density behavior of the EOS and, consequently, the
structure properties of compact stars [40,41]. The contri-
butions of self-interactions of � mesons are ignored, as
they affect the ground state properties of heavy nuclei and
compact stars only very marginally [41]. In our recent
work [40] we have obtained several parametrizations of
the extended FTRMF model in such a way that the bulk
nuclear observables and nuclear matter incompressibility
coefficient are fitted well. These different parametrizations
produce different behaviors for the EOSs at high densities.
The energy density of the hadron phase in the extended

FTRMF models is given by
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The pressure of the hadron phase matter is given by
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where M� ¼ M� g�N� is the effective mass of the nu-
cleon, withM being the free nucleon mass. In Eqs. (1) and
(2), �, !, and � represent the meson fields. The g�N, g!N,
and g�N are the meson-nucleon coupling strengths. The
m�,m!, andm� are the masses for the�,!, and �mesons.
The coupling strengths for the self-interaction terms for the
� and ! mesons are denoted by �k, ��, and � . The constants
�� and ��0 represent the coupling strengths for various
mixed interaction terms. The last terms in Eqs. (1) and
(2) give the contributions to the energy density and pres-
sure from leptons, respectively. In Eqs. (1) and (2), �n and
�e represent the chemical potentials for the neutrons and
electrons, respectively. The chemical potentials for the
protons �p and the muons �� can be expressed in terms
of �n and �e using the 	-equilibrium conditions, i.e.,

�n ¼ �p þ�e; (3)

�e ¼ ��: (4)

Once the chemical potentials for the nucleons are known,
their Fermi momenta can be obtained by solving the field
equations for the mesons as given in Ref. [40]. The Fermi
momenta klf for the leptons are obtained as

klf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

l �m2
l

q
: (5)

In addition to the conditions of the	 equilibrium, matter in
the pure hadronic phase is considered to be charge neutral.

B. Quark matter in the CFL phase

The free energy density for quark matter in the CFL
phase is taken to be [42]

�CFLð�;�eÞ ¼ �
quarks
CFL ð�Þ þ�GB

CFLð�;�eÞ
þ�electronð�eÞ; (6)

where � is the average chemical potential for quarks and
�e is the electron chemical potential. The contribution to
Eq. (6) from the quarks is given by
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where u and d quarks are assumed to be massless and the s
quark has the mass ms. The term proportional to �4 in
Eq. (7) corresponds to the QCD inspired correction [43].
The second to last term involving the CFL gap parameter�
is the lowest order contribution from the formation of the
CFL condensate. The last term B is the bag model constant,
which accounts for the energy difference between the
perturbative vacuum and the true vacuum. The number

densities for all three flavors of quarks considered are the
same and can be obtained as

�q ¼ 1
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The contribution to Eq. (6) from the Goldstone bosons
arising due to the breaking of chiral symmetry in the
CFL phase is evaluated using �GB

CFLð�;�eÞ [44],
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The total energy density and pressure for the quark phase
can be calculated as

E QP ¼ �CFLð�;�eÞ þ 3��q þ�eð�e þ ��Þ (13)

and

PQP ¼ ��CFLð�;�eÞ: (14)

It is clear from Eq. (8) that the densities for the u, d, and s
quarks are equal to each other for quark matter in the CFL
phase. Thus, quark matter in the CFL phase is enforced to
be charge neutral. The electrons are present only in the
mixed phase of hadronic and quark matter.

C. Mixed phase

The EOS for the mixed phase composed of hadronic and
CFL quark matter is obtained using the Gibbs conditions.
The Gibbs conditions can be expressed in terms of two
independent chemical potentials, in our case, as

PHPð�n;�eÞ ¼ PQPð�;�eÞ (15)

where �n and �e are the two independent chemical po-
tentials, with �n being the neutron chemical potential. In
the mixed phase the average quark chemical potential� ¼
�n=3, and the local charge neutrality condition is replaced
by the global charge neutrality

��ch
QP þ ð1� �Þ�ch

HP ¼ 0; (16)
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where � is the volume fraction occupied by quark matter in
the mixed phase and �ch is the charge density. It is clear
from Eq. (16) that both hadron and quark matter are
allowed to be charged separately. The energy density EMP

and the hadron density �MP of the mixed phase can be
calculated as [45]

E MP ¼ �EQP þ ð1� �ÞEHP; (17)

�MP ¼ ��QP þ ð1� �Þ�HP: (18)

Once these quantities are determined, we can construct the
complete EOS with the hadron phase, the quark matter
phase, and the mixed phase, and compute the properties of
hybrid compact stars.

III. STRUCTURE OF HYBRID STARS WITH CFL
CORE

We study the properties of the hybrid stars, composed of
a CFL quark matter core, for a set of EOSs obtained for
different values of the CFL gap parameter � and the
deconfinement phase transition density �t. Instead of using
fixed values of the bag constant as is customarily done
[28,29,46], we adjust the bag constant for each value of the
CFL gap parameter to yield the desired value of the phase
transition density. We consider the values of the CFL gap
parameter in the range of 50–150 MeV as estimated and
employed for the studies of hybrid stars [28,35,42,47]. In
Fig. 1 we plot several EOSs for hybrid star matter obtained
for different values of the CFL gap parameter � with �t ¼
4�0–6�0. The EOS for the hadron phase is obtained within
the framework of the extended FTRMF model as discussed

in the preceding section. In Ref. [40] we have obtained
several parameter sets for the extended FTRMF model for
different values of the coupling strength of the !-meson
self-interaction term and the neutron-skin thickness in the
208Pb nucleus, as these are not well determined from the
presently available experimental data. Each of the parame-
trizations is consistent with bulk properties of the finite
nuclei and nuclear matter. In the present work we have
employed the parameter set which corresponds to the
!-meson self-interaction strength � ¼ 0 [Eq. (1)] and a
neutron-skin thickness of 0.2 fm in the 208Pb nucleus. The
choice of � ¼ 0 yields stiff EOSs for hadronic matter at
high densities. The EOSs of CFL quark matter for different
values of � and �t are obtained using strange quark mass
ms ¼ 150 MeV and the constant c ¼ 0:3 in Eq. (7). In

Fig. 2 we plot the values of the bag constant B1=4 as a
function of � for �t ¼ 4�0 � 6�0. We get somewhat
higher values of B compared to the ones commonly used.
In particular, the value of B increases rapidly with the
deconfinement phase transition density. This is because
stiffness of the EOS for the hadronic matter considered
here increases rapidly with density. Further, as the CFL gap
parameter increases, the value of B increases to keep the
phase transition density unaltered. In Fig. 3 we plot the
values of the average quark chemical potential �t at the
deconfinement phase transition densities �t ¼ 4�0–6�0 as
a function of the CFL gap parameter. For our choice of the
phase transition densities, the values of �t are in the range
of 375–500 MeV, which is in reasonable agreement with
the ones obtained in Refs. [15,34]. The properties of the
static and rotating compact stars resulting from our set of

FIG. 1 (color online). Pressure as a function of energy density
for different values of the CFL gap parameter with hadron to
CFL quark matter phase transition densities �t ¼ 4�0 (left), 5�0

(middle), and 6�0 (right). The EOS for pure hadronic matter is
shown by the black dotted line.
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FIG. 2 (color online). Variations of the bag constant as a
function of the CFL gap parameter at fixed values of hadron to
CFL quark matter phase transition densities 4�0–6�0.
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EOSs are computed using the code developed by
Stergioulas [48].

A. Static sequences

The sequence of static compact stars is obtained by
varying the central energy density �c for a given EOS.
For a stable configuration,

@M

@�c
> 0 (19)

where M is the gravitational mass of the static compact
star. In Figs. 4–6 we plot the mass-radius relationships for
static sequences obtained for various EOSs corresponding
to the different values of the CFL gap parameter � ¼
50–150 MeV with �t ¼ 4�0–6�0. The solid circle on
each of the curves marks the point at which the deconfine-
ment phase transition from hadron to CFL quark matter
occurs. The curves on the left of the solid circles represent
the sequences of the hybrid stars with a CFL quark matter
core. The black dotted line represents the static sequence of
the compact stars composed of pure hadronic matter. The
radius of the hybrid stars decreases with increasing central
energy density. It can be seen that the stable configurations
of hybrid stars with a CFL quark matter core either bifur-
cate from the hadronic sequence or form a different branch,
the so-called third family of compact stars [45,49]. With
�t ¼ 4�0–5�0, the stable configurations of the hybrid stars
exist for all values of the CFL gap parameter considered. In
particular, for � ¼ 50–100 MeV with �t ¼ 4�0, sequen-
ces of stable configurations of the hybrid stars bifurcate
from the hadronic sequence at the central density, exceed-

(  )
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 )

FIG. 5 (color online). Same as Fig. 4, but for the deconfine-
ment phase transition density �t ¼ 5�0.
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FIG. 3 (color online). Variations of the average value of the
quark chemical potential at the phase transition density as a
function of the CFL gap parameter.
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FIG. 4 (color online). Plots for the mass-radius relationships
for the static sequences obtained using fixed values of the CFL
gap parameter � ranging from 50 MeV to 150 MeV with a
deconfinement phase transition density �t ¼ 4�0. The dotted
black line represents the static sequence of compact stars com-
posed of hadronic matter. The solid circle on each of the curves
denotes the end of the mixed phase. The curves on the left of the
solid circles represent the hybrid stars with a CFL core. The dot-
dashed maroon curves are the mass-radius contours deduced
with 90% confidence by fitting the high quality spectra from
the compact star X7 in the globular cluster 47 Tucanae [50].
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ing the one at which the onset of the mixed phase occurs.
For all the other cases with �t ¼ 4�0–5�0, the hybrid stars
belong to the third family of compact stars. When the value
of �t is increased to 6�0, the hybrid stars with a CFL quark
matter core become stable only for � � 125 MeV. We get
the masses for such hybrid stars in the range of 1:0–2:1M�
with radii 9.3–13.5 km.

For comparison, in Figs. 4–6 we plot contours (dot-
dashed/maroon lines) in the mass-radius plane, which are
deduced with 90% confidence, by fitting the high quality
spectra from the compact star X7 in the globular cluster 47
Tucanae [50]. These spectra were fitted within an improved
hydrogen atmosphere model, which also accounts for the
variations in the surface gravity with mass and radius of the
compact stars. These M� R contours indicate that a com-
pact star with canonical mass 1:4M� should have a radius
in the range of �13–17 km, whereas a compact star with
canonical radius 10 km has a mass �2M�. The compact
stars composed of only hadronic matter can satisfy either
the constraint on the radius at the canonical mass or the
constraint on the mass at the canonical radius [50]. Our
results for the � ¼ 50–75 MeV with �t ¼ 4�0–5�0 are
bounded by the dot-dashed maroon contours over a broad
range of masses and radii. For these cases, compact stars
with canonical mass 1:4M� have radii 13.5 km and are
composed of only hadronic matter. But, compact stars with
radii around the canonical value 10 km have masses close
to 2M� and are hybrid stars with a CFL quark matter core.
We also plot the M� R curves obtained using the con-

straints imposed by the discoveries of the kHz quasiperi-
odic oscillations (QPOs) [51] and the x-ray transient XTE
J1739-285 [52]. The frequency of the innermost stable
circular orbit (ISCO) inferred from the QPOs limits the
mass of the nonrotating compact stars to be

M � 2200 Hz


ISCO

M�: (20)

The values of 
ISCO are in the range of 1220–1310 Hz. The
compact star radius must be smaller than the ISCO, which
implies [51]

R � 19 500 Hz


ISCO

km: (21)

Radii limits for masses less than the upper limit scale with

M1=3. The discovery of XTE J1739-285 suggests that it
contains a compact star rotating at 1122 Hz. This imposes
the constraint on the maximum radius of a nonrotating
compact star with mass M [53],

Rmax � 9:63

�
M

M�

�
1=3

: (22)

We see that the hybrid stars with M � 1:4M� satisfy the
constraint as expressed by Eq. (22). It is also found in
Refs. [54,55] that the mass of the compact star rotating
with 1122 Hz is equal to or larger than 1:4M�.
In Table I we give the values of the maximum masses

with corresponding central energy densities and radii for
the hadronic and the hybrid stars obtained using different
values of the � and �t. It may be noted that, for a given �
and �t, the central energy density for the maximummass of
the hadronic star corresponds to the one at which the onset
of the mixed phase occurs (see also Fig. 1). The values of
maximum mass 1:7–2:1M� for the hybrid stars are con-
sistent with the currently measured maximummass 1:76�
0:20M� of PSR J0437-4715 [56] obtained by the precise
determination of the orbital inclination angle. We note that,
for �t ¼ 5�0, the maximummass of the hybrid stars with a
CFL core are nearly equal to their second-family counter-
part composed of hadrons. The hybrid stars with a CFL
core are smaller by about 30% compared to their second-
family counterpart. Thus, the hybrid stars with a CFL core
are expected to rotate significantly faster in comparison to
the hadronic stars. We also remark that our results for the
mass-radius relationship are somewhat similar to the ones
obtained using the NJL-like model [34,35], for the hybrid
stars composed of a CFL or CCS quark matter core.

B. Mass-shedding limit sequences

In Fig. 7 we plot the relationship between the mass and
the circumferential equatorial radius Req for the mass-

shedding limit sequences obtained for the EOSs corre-
sponding to different values of � and �t. The portions of
the curves to the left of the solid circles represent the
hybrid stars with a CFL core. The cross symbol (� ) on

(   )

(   )

(
  )

FIG. 6 (color online). Same as Fig. 4, but for the deconfine-
ment phase transition density �t ¼ 6�0. The inset highlights the
appearance of third families of compact stars for the CFL gap
parameter � � 125 MeV.
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the different curves marks the maximum mass of the
hybrid star. For �t ¼ 5�0 with � ¼ 50 and 75 MeV, the
third family of compact stars with a CFL core disappears
from the mass-shedding limit sequence, though they exist
in the static sequence as can be seen from Fig. 5. A similar
situation is encountered for � � 125 MeV with �t ¼ 6�0

(see also Fig. 6). In Table II, we give the values of the

central energy density, radius, and Kepler (mass-shedding)
frequency fK at the maximum mass for the hadronic and
hybrid stars corresponding to different � and �t. The
values of the Keplerian frequency at the maximum hybrid
star mass are in the range of 1.7–2 kHz, whereas the
Keplerian frequency at the maximummass for the hadronic
stars is �1 kHz.
We now examine several cases for which the third

family of compact stars with a CFL core appears in the
static sequence, but disappears from the mass-shedding
limit sequence. We observe that, for these cases, the maxi-
mum mass of the third family of compact stars is lower
than their second-family counterpart. In Fig. 8, we have
plotted the mass-shedding limit sequences (upper panel)
and the static sequences (lower panel) for � ¼ 150 MeV
with �t ranging from 5�0 to 6�0. We clearly see that the
third family of compact stars tends to disappear beyond
�t > 5:5�0. Strikingly, at �t ¼ 5:5�0, the maximum
masses of the second and third families of compact stars
are nearly equal in the static limit. We find a similar out-
come for the other cases (not shown here). Thus, it seems
there exists a critical value of �t for a given � beyond
which the third family of compact stars with a CFL core
tends to disappear with an increase in �t. Below the critical
value of �t, such hybrid stars in the nonrotating limit have
maximum mass higher than their counterpart composed of
hadronic matter. These results are substantiated by the
earlier calculations performed using different EOSs
[34,57,58]. The EOS used in Ref. [34] yields a third family
of compact stars in the static as well as in the mass-
shedding limit sequences. For this EOS, the maximum
mass of the compact star belonging to the third family is
larger by about 0:1M� compared to its second-family
counterpart. On the other hand, for the EOSs used in
Refs. [57,58], the third family of compact stars exists in
the static limit and disappears from the mass-shedding
limit sequences. For these EOSs, the maximum masses
of the second and third families of compact stars are nearly
equal. In Ref. [57], the maximum masses for the second
and third families of compact stars are found to be 1:57M�

(   )

(   )

(
  )

FIG. 7 (color online). Relationship between the mass M and
the circumferential equatorial radius Req for mass-shedding limit

sequences for different values of the CFL gap parameter and the
phase transition densities 4�0 (upper panel), 5�0 (middle panel),
and 6�0 (lower panel). The curves to the left of the solid circles
represent the hybrid stars with a CFL core. The cross symbol
(� ) on the different curves marks the maximum mass of the
hybrid star.

TABLE I. The maximum mass of hybrid stars with a CFL core and hadron stars in the static limit, and the corresponding central
energy density and radius obtained for different values of the CFL gap parameter � and the deconfinement phase transition density �t.

Hadron stars Hybrid stars

�t � (MeV) � (1015 g=cm3) M M� R (km) � (1015 g=cm3) M M� R (km)

50 0.721 1.63 13.49 2.716 2.12 10.57

4�0 100 0.642 1.45 13.52 2.863 2.05 10.16

150 0.512 1.04 13.48 3.244 1.97 9.42

50 0.873 1.94 13.34 2.863 1.96 10.53

5�0 100 0.808 1.83 13.42 3.072 1.89 10.10

150 0.690 1.62 13.55 3.663 1.80 9.28

50 1.032 2.10 13.15 	 	 	 	 	 	 	 	 	
6�0 100 0.959 2.04 13.24 	 	 	 	 	 	 	 	 	

150 0.850 1.88 13.38 4.071 1.69 9.30
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and 1:55M�, respectively. In Ref. [58], the maximum
masses for the second and third families of compact stars
are 1:36M� and 1:38M�, respectively.

C. Critical rotation frequency

We have computed the values of the maximum, or
critical, rotation frequency fcrit for the stable configura-
tions of hybrid stars with a CFL core. The stable configu-

rations of the compact stars rotating at a given frequency f
satisfy �

@M

@�c

�
f
> 0: (23)

Equation (23) is satisfied only for f � fcrit. To locate the
critical frequency we first obtained the variation in the
mass as a function of �c at fixed frequencies in steps of
50 Hz. Then, for an appropriate interval of the frequency,
the calculations were repeated by varying the frequency in
steps of 5 Hz to determine the value of fcrit. In Figs. 9 and
10 we plot the M� Req curves at fixed values of the

rotational frequency. The black solid lines represent the
results obtained at f ¼ fcrit. For clarity, we mainly focus
on the regions of the M� Req curves corresponding to the

sequences of the hybrid stars which are relevant in the
present context. In this region, the value of Req decreases

with an increase in �c. The results presented in Fig. 9

TABLE II. The central energy density, radius, and Kepler frequency at the maximum mass for the hybrid stars with a CFL core and
hadron stars obtained for different values of the CFL gap parameter � and the deconfinement phase transition density �t.

Hadron stars Hybrid stars

�t � (MeV) � (1015 g=cm3) M M� R (km) fK (Hz) � (1015 g=cm3) M M� R (km) fK (Hz)

50 0.721 2.09 18.84 1028 2.383 2.48 13.95 1698

4�0 100 0.642 1.84 19.06 953 2.665 2.38 13.21 1803

150 0.512 1.32 19.24 801 2.934 2.29 12.18 1993

50 0.873 2.45 18.25 1158 	 	 	 	 	 	 	 	 	 	 	 	
5�0 100 0.808 2.32 18.51 1107 2.842 2.17 13.44 1687

150 0.690 2.08 18.95 1019 3.339 2.05 12.20 1889

(   )

(   )

(
  )

(
  )

FIG. 8 (color online). Plots for the mass-shedding limit se-
quences (upper panel) and the static sequences (lower panel) for
the CFL gap parameter � ¼ 150 MeV with a deconfinement
phase transition density �t ¼ 5�0–6�0. The parts of the curves
to the left of the solid circles in the upper and lower panels
represent the sequences of hybrid stars with a CFL quark matter
core.

( )

( ) ( )

(
)

FIG. 9 (color online). Plots for the mass vs the circumferential
equatorial radius Req at fixed values of the rotational frequency.

The black solid lines represent the results obtained at the critical
frequencies fcrit. For f > fcrit, third families of compact stars do
not exist. The values of �t and � considered are such that they
yield a third family of compact stars in the static as well as in the
mass-shedding limit sequences.
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correspond to the cases for which a third family of compact
stars exists in the static as well as in the mass-shedding
limit sequences. In Fig. 10, we consider the cases for which
a third family of compact stars exists in the static limit but
disappears from the mass-shedding limit sequences. We
see that the value of fcrit, for the cases presented in Fig. 9,
are larger than the highest observed rotation frequency
1122 Hz. The value of fcrit ’ 775–900 Hz for the cases
presented in Fig. 10. For �t ¼ 4�0, the value of fcrit
increases from 1370 Hz to 1805 Hz as the CFL gap
parameter � increases from 50 MeV to 150 MeV. It may
be pointed out that the situation analogous to that of Fig. 10
is encountered in Refs. [57,58], but the value of fcrit is
about 350–650 Hz.

In Table III, we summarize the properties at the maxi-
mummass of the hybrid stars with a CFL core rotating with
critical frequency. We compare the values of �cðfcritÞ as
given in this table with the maximum [�cð0Þ] and the
minimum [�0cð0Þ] energy densities at the center of stable
configurations of nonrotating hybrid stars. In the last two
columns of Table III we give the values of @�1 and @�2,
calculated as

@�1 ¼ 1� �cðfcritÞ
�cð0Þ (24)

and

@�2 ¼ 1� �0cð0Þ
�cð0Þ : (25)

The values of �cð0Þ and �cðfcritÞ are taken from the sixth
and fourth columns of Tables I and III, respectively. It is
clear from the values of @�1 that the central energy density
�cðfcritÞ is smaller than �cð0Þ by 25%–30%. The values of
@�2 are noticeably larger for the cases considered in Fig. 9
than those of Fig. 10. For �t ¼ 4�0 with � ¼ 150 MeV,
we get @�1 ¼ 0:25 and @�2 ¼ 0:62. We would like to add
that the EOS used in Ref. [58] yields @�2 ’ 0:4, for which a
third family of compact stars disappears from the mass-
shedding limit sequence but exists in the static limit. It thus
appears that @�2 & 0:4 disfavors the appearance of a third
family of compact stars in the mass-shedding limit se-
quence even if it exists in the static limit. It may be noted
that the values of fcrit (Table III) are lower than the Kepler
frequency (Table II) for the cases considered in Fig. 9. We
would like to point out that the value of fcrit for a given
EOS represents the maximum rotation frequency for which
the stability condition as given by Eq. (23) is satisfied,
whereas the mass-shedding limit sequences cannot be
subjected to Eq. (23). Along these sequences, the rotation
frequency corresponds to the Kepler frequency which in-
creases with the central energy density. This leads to values
of the Kepler frequency at a maximum mass higher than
the fcrit for a given EOS.

IV. CONCLUSIONS

We construct static and mass-shedding limit sequences
of hybrid stars for a set of EOSs obtained for different
values of the CFL gap parameter and the deconfinement
phase transition density. The hybrid stars considered are
composed of CFL quark matter at the core, nuclear matter
at the crust, and a mixed phase in the intermediate region.
The hadronic part of the EOS is obtained using an appro-
priately calibrated, extended field theoretical based, rela-
tivistic mean-field model. The EOSs of quark matter in the
CFL phase corresponding to different values of the CFL
gap parameter and the deconfinement phase transition
density are obtained using the MIT bag model with an

TABLE III. Properties at the maximum mass of hybrid stars with a CFL core rotating at the
critical frequency as obtained for different values of the CFL gap parameter � and the
deconfinement phase transition density �t. The values of @�1 and @�2 are obtained using Eqs.
(24) and (25).

�t � (MeV) fcrit (Hz) � (1015 g=cm3) M (M�) Req (km) @�1 @�2

50 775 2.160 2.01 11.58 0.25 0.35

5�0 100 1125 2.205 1.98 11.49 0.28 0.45

150 1540 2.685 1.94 11.30 0.27 0.55

6�0 150 905 2.951 1.74 10.62 0.28 0.30

( ) ( )

(  )(  )

(
 )

FIG. 10 (color online). Same as Fig. 9, but the values of �t and
� considered are such that they yield a third family of compact
stars in the static sequences which disappears from the mass-
shedding limit sequences.
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additional parameter that mimics the effect of including
perturbative QCD corrections. The CFL gap parameter
ranges from 50–150 MeV, with the deconfinement phase
transition density ranging from 4�0–6�0 (�0 ¼
0:16 fm�3).

We find the existence of stable configurations of static
hybrid stars for all the different values of the CFL gap
parameter considered with the deconfinement phase tran-
sition density 4�0–5�0. For the cases with CFL gap pa-
rameters in the range 50–100 MeV with a deconfinement
phase transition density 4�0, the sequences of stable con-
figurations of hybrid stars bifurcate from the hadronic
sequence when the central density exceeds the one at
which the onset of the mixed phase occurs. In all the other
cases, the stable configurations of hybrid stars form the
third family of compact stars. When the deconfinement
phase transition density is increased to 6�0, the stable
configurations of hybrid stars exist only for CFL gap
parameters � � 125 MeV. For the CFL gap parameters
in the range 50–75 MeV with deconfinement phase tran-
sition density 4�0–5�0, the mass-radius relationship over a
broad range of masses and radii is in harmony with those
deduced by applying an improved hydrogen atmosphere
model to fit the high quality spectra from compact star X7
in the globular cluster 47 Tucanae. The values of the

maximum mass 1:7–2:1M� for the hybrid stars are con-
sistent with the currently measured maximummass 1:76�
0:20M� of PSR J0437-4715 [56].
We find for several cases that the third family of compact

stars disappears from the mass-shedding limit sequences,
though they appear in the corresponding static sequences.
Our investigation suggests that the third family of compact
stars is more likely to appear in the mass-shedding limit
sequence, provided they have a maximum mass in the
static limit higher than their counterpart composed of
pure hadronic matter. Further, we have calculated the
quantity @�2 [Eq. (25)] obtained using the minimum and
the maximum values of the central energy densities for the
stable configurations of the static hybrid stars. The values
of @�2 are less than 0.4 for the cases in which a third family
of compact stars disappears from the mass-shedding limit
sequences but exists in the static limit. Except for these
cases, the values of the critical rotation frequency for the
hybrid stars with a CFL core are larger than the highest
observed frequency 1122 Hz. The relationship between the
values of �2 and the disappearance of the third family of
compact stars from the mass-shedding limit sequences as
observed in the present work is only preliminary. To estab-
lish this relationship, more investigations must be carried
out using a wide variety of EOSs.
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