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We examine dark-energy models in which a quintessence or a phantom field, �, rolls near the vicinity

of a local minimum or maximum, respectively, of its potential Vð�Þ. Under the approximation that

ð1=VÞðdV=d�Þ � 1, [although ð1=VÞðd2V=d�2Þ can be large], we derive a general expression for the

equation-of-state parameter w as a function of the scale factor for these models. The dynamics of the field

depends on the value of ð1=VÞðd2V=d�2Þ near the extremum, which describes the potential curvature. For

quintessence models, when ð1=VÞðd2V=d�2Þ< 3=4 at the potential minimum, the equation-of-state

parameter wðaÞ evolves monotonically, while for ð1=VÞðd2V=d�2Þ> 3=4, wðaÞ has oscillatory behavior.

For phantom fields, the dividing line between these two types of behavior is at ð1=VÞðd2V=d�2Þ ¼ �3=4.

Our analytical expressions agree within 1% with the exact (numerically derived) behavior, for all of the

particular cases examined, for both quintessence and phantom fields. We present observational constraints

on these models.
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I. INTRODUCTION

It has been known for over a decade [1,2] that at least
70% of the energy density in the Universe is in the form of
an exotic, negative-pressure component, called dark en-
ergy (see Ref. [3] for a recent review). The equation of state
of this dark component, defined as the ratio of its pressure
to its density,

w ¼ pDE=�DE; (1)

is observationally constrained to be close to �1. In par-
ticular, constraints on constant w lead typically to w ¼ �1
with �10% accuracy [4–6]. However, a variety of cosmo-
logical paradigms, based on scalar fields, attribute a dy-
namical nature to dark energy, leading to a time-varying w.
The class of models in which the scalar field is canonical is
dubbed quintessence [7–12] and has been extensively
studied in the literature. An alternative approach is phan-
tom dark energy, a component for which w<�1, first
proposed by Caldwell [13]. Such models have well-known
problems [14–17], but nevertheless have also been widely
studied as potential dark-energy candidates [13,18–29].
Finally, since both quintessence and phantom models can-
not lead to a dark-energy equation-of-state parameter that
crosses�1 during cosmological evolution (which might be
the possibility according to observations), the simulta-
neous consideration of both models in a joint scenario,
named quintom, has recently gained significant attention
[30–35].

Given the considerable freedom that exists in choosing
the potential function Vð�Þ of the scalar field, it is useful to
develop general expressions for the evolution of w which

cover a wide range of models. A general result of this type
was derived in [36] for a class of quintessence models in
which w is assumed to be always close to �1 and the
potential is nearly flat. The flatness of the potential is
characterized by two ‘‘slow-roll conditions’’:�

1

V

dV

d�

�
2 � 1; (2)

and

1

V

d2V

d�2
� 1: (3)

For these models, it was shown in [36] that the evolution of
w is described by a unique expression involving only the
present values of �� and w. In [37] this result was ex-

tended to phantom models satisfying (2) and (3), and the
correspondingw dependencewas shown to be described by
the same expression with an overall sign change. Finally,
the extension to the quintom scenario under (2) and (3) was
performed in [38], where a universal expression for w was
also extracted, allowing for the crossing of w ¼ �1.
While the slow-roll conditions (2) and (3) are sufficient

to give w ’ �1 today, they are not necessary. Classes of
models characterized by the validity of (2) alone, i.e.,
without (3), were considered in [39], corresponding, in
particular, to a quintessence field in the vicinity of a local
maximum of its potential. In this case, there is an extra
degree of freedom, namely, the value of ð1=VÞðd2V=d�2Þ,
which describes the curvature of the potential in the vicin-
ity of the maximum. As a result, instead of a single solution
for the evolution ofw one obtains a family of solutions that
depend on the present-day values of �� and w and the

value of ð1=VÞðd2V=d�2Þ at the maximum of the potential.
As expected, this family of solutions includes the slow-roll
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solution of [36] as a special case in the limit where ð1=VÞ�
ðd2V=d�2Þ ! 0. In [40], a similar result was derived for a
phantom field evolving near a minimum of its potential. It
was found that a unique family of solutions, very similar to
the one derived in [39], can be used to approximate the
behavior of w in these models.

More recently, Chiba [41] showed that while conditions
(2) and (3) are sufficient to allow the quintessence version
of the slow-roll conditions to be applied, they are not
necessary. Chiba extended the methodology of Ref. [39]
to provide a more general set of conditions on the potential,
dropping the assumption that the field is close to a local
maximum in the potential, while still assuming that w is
close to �1 throughout the evolution. Interestingly, the
expression derived under these more general conditions
coincides exactly with the expression derived in [39],
indicating the generality of this result.

In this work we extend the techniques developed in [39]
to the ‘‘opposite’’ of the case considered there. In Ref. [39],
the quintessence field was considered to roll near a local
maximum in the potential, so that V 00 > 0. In this paper, we
consider the case for which V00 < 0. This corresponds to a
canonical scalar field rolling close to a minimum of its
potential. For completeness, we also examine the corre-
sponding phantommodel, for which the phantom field rolls
near a maximum of its potential. That is, while in [39,40]
the field rolls away from an unstable potential extremum,
in the present work the field rolls toward a stable extre-
mum. (Recall that phantom fields roll away from local
minima and are attracted by local maxima.) As we will
see, this investigation yields a more complicated dynamics
for the scalar field, which can include oscillations in addi-
tion to slow-roll behavior. For simplicity, we assume that
condition (2) is satisfied, and that the field evolves near an
extremum in the potential, rather than making the more
general assumptions of Ref. [41]. The result can be gener-
alized, in a straighforward way, following the development
of Ref. [41]. We note further than our main result is
mentioned in Ref. [41], although it is not investigated in
detail there.

The plan of our paper is as follows: In Sec. II we
construct the model of scalar field evolution near a stable
potential extremum, and we derive the expression forwðaÞ.
In Sec. III we apply our formula to various potentials,
comparing the results to the exact evolution arising by
numerical integration. We then constrain this general fam-
ily of models with SNIa observations. Our results are
summarized in Sec. IV.

II. FIELD EVOLUTION NEAR A STABLE
POTENTIAL EXTREMUM

We are interested in models where the scalar field
evolves near a stable potential extremum, and thus we
consider a minimally coupled scalar field � in a potential
Vð�Þ, where the field � can be either a canonical or a

phantom one.1 In the following we introduce the usual
" parameter, acquiring the value þ1 for the canonical
case, and�1 for the phantom one. Doing so we can present
our expressions in a general way.
The Euler-Lagrange equation of motion of the field

reads

€�þ 3H _�þ "
dV

d�
¼ 0; (4)

where a is the scale factor and H � _a=a is the expansion
rate. Dots denote derivatives with respect to time and
primes denote derivatives with respect to the field �. In a
flat universe, the expansion rate is linked to the total
density �T via the first Friedmann equation (in units where
8�G ¼ 1) as

H2 ¼ �T=3: (5)

Additionally, the evolution of the scale factor is given by

€a

a
¼ � 1

6
ð�T þ pTÞ; (6)

where pT is the total pressure.
Following [39] we perform the transformation

�ðtÞ ¼ uðtÞ=aðtÞ3=2; (7)

and therefore Eq. (4) becomes

€uþ 3
4pTuþ "a3=2V 0ðu=a3=2Þ ¼ 0: (8)

We consider a universe consisting of pressureless matter
and a scalar field, where the scalar field plays the role of the
dark energy. In order to realistically mimic the observed
dark energy, the scalar field must have w close to �1 and
its energy density must be roughly constant. The total
pressure pT is then simply given by pT � ���0, where

��0 is the present-day density of the dark energy. (In what

follows, a subscript 0 always indicates a present-day
value). Under this approximation, Eq. (8) becomes

€u� 3
4��0uþ "a3=2V0ðu=a3=2Þ ¼ 0: (9)

Since we are interested in applying Eq. (9) to a scalar field
evolving near a local potential extremum at ��, for any �
close �� we use the expansion:

Vð�Þ¼Vð��Þþð1=2ÞV00ð��Þð����Þ2þOðð����Þ3Þ:
(10)

1Note that in principle the w<�1 phase can be realized in
modified-gravity models [42–44], without the need of insertion
of ghost fields. In fact, a negative kinetic energy is not a
necessary requirement either, since a negative derivative of
pressure with respect to kinetic energy would be adequate
[45]. However, in this work we restrict ourselves to a ‘‘field’’
realization of the phantom phase, introducing a field with a
negative kinetic term, since this is the simplest approach and it
allows for a convenient treatment of the evolution. Although not
covering the whole class of phantom models, such a considera-
tion can still be instructive.
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Substituting the above relation into Eq. (9), and imposing
Vð��Þ ¼ ��0 we obtain the following differential equation

for the field evolution:

€u� ½ð3=4ÞVð��Þ � "V 00ð��Þ�u ¼ 0: (11)

This is essentially the same equation derived previously in
Ref. [39].

In this work we examine cosmological evolution near a
stable potential extremum that is either a canonical field
(" > 0) near a local minimum [V 00ð��Þ> 0], or a phantom
field (" < 0) near a local maximum [V00ð��Þ< 0]. Thus, in
both cases of interest "V00ð��Þ> 0 and therefore the fol-
lowing analysis can be performed in a unified way.

Defining

k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=4ÞVð��Þ � "V 00ð��Þ

q
; (12)

we obtain the general solution of Eq. (11) as

u ¼ A sinhðktÞ þ B coshðktÞ; (13)

where A and B are arbitrary constants. Note that this
solution holds for k being either real or imaginary, where
in the latter case the hyperbolic functions are straightfor-
wardly replaced by trigonometric ones. Hence, we can
simply use the earlier results of Ref. [39].
Defining

t� � 2=
ffiffiffiffiffiffiffiffiffiffiffi
3��0

q
¼ 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Vð��Þ

q
; (14)

and taking �ðt ¼ 0Þ ¼ �i, we obtain

� ¼ �i

kt�

sinhðktÞ
sinhðt=t�Þ ; (15)

and the equation-of-state parameter, wðaÞ, is given by (see
Ref. [39] for the details)

1þ wðaÞ ¼ ð1þ w0Þa�3
½

ffiffiffiffiffiffiffiffiffiffi
��0

q
kt� cosh½ktðaÞ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1���0Þa�3 þ��0

q
sinh½ktðaÞ��2

½
ffiffiffiffiffiffiffiffiffiffi
��0

q
kt� coshðkt0Þ � sinhðkt0Þ�2

; (16)

where w0 is the present-day value of wðaÞ, and tðaÞ and t0
can be derived from

tðaÞ ¼ t�sinh
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
��0a

3

1���0

�vuut (17)

and

t0 ¼ t�tanh
�1ð

ffiffiffiffiffiffiffiffiffiffi
��0

q
Þ: (18)

Note that in (16) the " parameter has been simplified in
favor of w0 which is obviously smaller than �1 for the

phantom while it is larger than �1 for the quintessence
case.
Following Ref. [39], we now introduce the constantK �

kt�. In terms of the potential, K can be written as

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "

4V 00ð��Þ
3Vð��Þ

s
: (19)

In terms of K we can finally express the evolution of w in
the following form:

1þ wðaÞ ¼ ð1þ w0Þa3ðK�1Þ ½ðFðaÞ þ 1ÞKðK � FðaÞÞ þ ðFðaÞ � 1ÞKðK þ FðaÞÞ�2
½ð��1=2

�0 þ 1ÞKðK ���1=2
�0 Þ þ ð��1=2

�0 � 1ÞKðK þ��1=2
�0 Þ�2 ; (20)

where FðaÞ is given by

FðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð��1

�0 � 1Þa�3
q

: (21)

[Note that FðaÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ðaÞ

q
, where��ðaÞ is the value of

�� as a function of redshift, so that Fða ¼ 1Þ ¼ ��1=2
�0 .]

Expression (20) is identical in form to the expression for
wðaÞ for a quintessence field near a local maximum [39] or
phantom near a local minimum [40] (and see Ref. [41] for
the derivation of this expression for more general cases).
However, the crucial difference lies in the definition of K

[Eq. (19)]. In the cases considered in Refs. [39,40], K was
always real since "V00ð��Þ< 0 (in the present language).
In the case we are considering here, for which "V 00ð��Þ>
0,K can be real or imaginary (see also [41]), corresponding
to "V 00=V < 3=4 or "V00=V > 3=4, respectively. Further,
for the special case of K ¼ 0, Eqs. (15) and (20) are no
longer valid; instead we have

� ¼ �i

t�

t

sinhðt=t�Þ (22)

and

1þ wðaÞ ¼ ð1þ w0Þa�3
½

ffiffiffiffiffiffiffiffiffiffi
��0

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1���0Þa�3 þ��0

q
sinh�1ð

ffiffiffiffiffiffiffiffiffiffiffiffi
a3��0

1���0

r
Þ�2

½
ffiffiffiffiffiffiffiffiffiffi
��0

q
� sinh�1ð

ffiffiffiffiffiffiffiffiffiffiffiffi
a3��0

1���0

r
Þ�2

: (23)
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Now consider the behavior of the scalar field for the
three cases of interest, K2 > 0, K ¼ 0, and K2 < 0. When
K2 > 0, the functional form of Eq. (20) for quintessence
evolution near a potential minimum (or phantom evolution
near a local maximum) is identical to the form for the
evolution of quintessence near a maximum (or phantom
near a minimum) given in Refs. [39,40], or for the evolu-
tion described in Ref. [41]. However, the crucial difference
is that in the previously considered cases, we have K > 1,
while for the case considered here, we have instead 0<
K < 1 (the special case K ¼ 1 is discussed in Ref. [41]).
Therefore, although qualitatively the behavior of wðaÞ is

similar to that in Refs. [39–41], i.e., wðaÞ decreases mono-
tonically, there are significant quantitative differences.
When K¼0, we can no longer use Eq. (20), but

Eq. (23) gives an evolution for wðaÞ that is qualitatively
similar to the K2>0 case, i.e., a slow monotonic decrease
in w.
Finally, when K2 < 0, wðaÞ is oscillatory. While

Eq. (20) is formally valid [and gives a real expression for
wðaÞ] in this case, the oscillatory behavior becomes more
transparent by writing K ¼ it��, where � is real, and
simplifying Eq. (16) to a more intuitive form (see also
Ref. [41]):

1þ wðaÞ ¼ ð1þ w0Þa�3
½

ffiffiffiffiffiffiffiffiffiffi
��0

q
�t� cos½�tðaÞ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1���0Þa�3 þ��0

q
sin½�tðaÞ��2

½
ffiffiffiffiffiffiffiffiffiffi
��0

q
�t� cosð�t0Þ � sinð�t0Þ�2

: (24)

The behavior of �ðaÞ for several different values of K is
illustrated in Fig. 1.

The quantity K can be physically interpreted as a mea-
sure of the sharpness of the curvature of the potential at its
extremum. From the definition of K [Eq. (19)] we note that
in order for K to be real, jV 00j=V is small, implying a ‘‘flat’’
potential. The field evolves in a slow, friction-dominated
manner [with the Hubble parameter acting as the friction
coefficient according to Eq. (4)], asymptotically coming to
rest at the potential extremum (minimum for quintessence
and maximum for phantom). On the other hand, an imagi-
nary K requires a large jV 00j=V, implying a sharp curvature
of the potential at the extremum, which allows for oscil-
lations since the friction term can be overcome.

It is important to note that we fix the minimum value of
the potential to be at the level of the cosmological constant,
so the evolution is still potential-energy dominated (i.e.,
w ’ �1) as the field oscillates around the extremum. These
oscillatory solutions are therefore very different from the

ones usually considered in oscillating dark-energy models
[46–51], where the potential minimum is fixed at V ¼ 0,
and w oscillates between �1.

III. COMPARISON TO EXACT SOLUTIONS

In this section, we compare our analytic expression for
the evolution of w to the numerically computed exact
evolution for a few different models. In each case we
have a perfect-fluid dark matter and a dark-energy compo-
nent attributed to a quintessence (" ¼ þ1) or a phantom
(" ¼ �1) field �. For the quintessence case, we consider
three different potentials which have local minima, and we
use the corresponding inverted potentials for the phantom
case. Our purpose is not to propose these toy models as
specific possibilities for the dark energy, but rather to test
the accuracy of our approximation against a variety of
different possibilities.
The PNGB model [52], has a potential given by

Vð�Þ ¼ ��0 þ "M4½1� cosð�=fÞ�; (25)

whereM and f are constants. (For recent discussions of the
PNGB model in the context of dark energy, see, e.g.,
Refs. [53–55] and references therein). Other models with
a local potential minimum include the Gaussian potential,

Vð�Þ ¼ ��0 þ "M4½1� e��2=�2�; (26)

and the quadratic potential

Vð�Þ ¼ ��0 þ "V2�
2; (27)

where � and V2 are constants. We set initial conditions
deep within the matter-dominated regime. The value of the
potential at the extremum, ��0, is chosen to be equal to the

energy of the cosmological constant. The initial velocity of
the field is taken to be zero.
As discussed above, our formalism applies to models for

which (2) is satisfied, but (3) is not. The initial value of the
field �i determines the accuracy of the first slow-roll

0 0.2 0.4 0.6 0.8 1
−0.02

0.02

0.06

0.10

a

φ(
a)

 

 

K2=0

K2=−10

K2=−20

FIG. 1 (color online). The evolution of the scalar field � as a
function of the scale factor a, for the indicated values of K, as
defined in Eq. (19).
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condition (2) at the initial time. To push our formalism to
its limits, we choose �i to a value for which�

1

V

dV

d�

�
2

a!0
& O½1�:

For smaller �i of course, the agreement is better.
We have examined three types of curvature of the po-

tential at the extremum, characterized by K. The flat re-
gime is represented by 0 	 K2 < 1, where w evolves in a
slow monotonic manner, and K2 ¼ 0 represents a limiting
case of this behavior. The ‘‘curved’’ regime is represented
by �1<K2 < 0 in which w eventually oscillates. In this
regime, we have considered the cases of K2 ¼ �10 and
K2 ¼ �20 for each model.

In Figs. 2–7, the evolution of w from (23) (for K2 ¼ 0)
or (24) (for K2 < 0) is shown in comparison to the exact

0 0.2 0.4 0.6 0.8 1.0
−1.00

−0.99

−0.98

−0.97

a

w

K2=−10

K2=0

K2=−20

FIG. 3 (color online). The evolution of w for quintessence in a
PNGB potential for three different values of K2. The solid blue
curves indicate the exact evolution and the red dashed curves
indicate the analytic prediction.

0 0.2 0.4 0.6 0.8 1
−1.07

−1.06

−1.05

−1.04

−1.03

−1.02

−1.01

−1

a

w K2=−10

K2=−20

K2=0

FIG. 5 (color online). The evolution of w for a phantom in a
quadratic potential for three different values of K2. The solid
blue curves indicate the exact evolution and the red dashed
curves indicate the analytic prediction.

0 0.2 0.4 0.6 0.8 1.0
−1.00

−0.98

−0.96

−0.94

a

w

K2=−10

K2=−20

K2=0

FIG. 2 (color online). The evolution of w for quintessence in a
quadratic potential for three different values of K2. The solid
blue curves indicate the exact evolution and the red dashed
curves indicate the analytic prediction.

0 0.2 0.4 0.6 0.8 1.0
−1

−0.99

−0.98

−0.97

a

w

K2=0

K2=−20

K2=−10

FIG. 4 (color online). The evolution of w for quintessence in a
Gaussian potential for three different values of K2. The solid
blue curves indicate the exact evolution and the red dashed
curves indicate the analytic prediction.

0 0.2 0.4 0.6 0.8 1
−1.07

−1.06
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−1.04

−1.03

−1.02

−1.01

−1.00

a

w

K2=0

K2=−20

K2=−10

FIG. 6 (color online). The evolution of w for a phantom in a
PNGB potential for three different values of K2. The solid blue
curves indicate the exact evolution and the red dashed curves
indicate the analytic prediction.
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evolution for the three different models, and the differentK
regimes described above. The agreement, in all three cases,
between our analytic approximation and the exact numeri-
cal evolution is excellent, with errors �w & 0:01 in all
cases. This result indicates that our expressions for wðaÞ
for our three cases of interest can be considered ‘‘generic’’
expressions that apply to a wide range of possible quintes-
sence and phantom models.

Finally, in Figs. 8–10, we use our analytic approxima-
tion [Eqs. (23) and (24)] to construct a �2 likelihood plot
for w0 and��0 for the three choices of K

2 using the recent

type Ia supernovae standard candle data (ESSENCEþ

SNLSþ HST from [6]). We have exploited the fact that
our expressions for wðaÞ for quintessence and phantom
models have the same functional form, allowing us to
produce a likelihood plot that is continuous across w0 ¼
�1. However, it is important to note that in these figures,
the dashed line at w0 ¼ �1 divides two distinct models.
Clearly, these models are not ruled out by current super-
nova data.

0 0.2 0.4 0.6 0.8 1.0
−1.07

−1.06

−1.05

−1.04

−1.03

−1.02

−1.01

−1.00

a

w
K2=0

K2=−20

K2=−10

FIG. 7 (color online). The evolution of w for a phantom in a
Gaussian potential for three different values of K2. The solid
blue curves indicate the exact evolution and the red dashed
curves indicate the analytic prediction.

Ωφ0

w
0

0.6 0.64 0.68 0.72 0.76 0.8
−1.5

−1.3

−1.1

−0.9

−0.7

K2=−20

FIG. 10 (color online). Likelihood plot from SNIa data for the
parameters w0 and ��0, for quintessence and phantom models

with generic behavior described by Eq. (24), with K2 ¼ �20,
where K is the function of the curvature of the potential at its
extremum given in Eq. (19). The light (yellow) region is ex-
cluded at the 2� level, and the darker (orange) region is excluded
at the 1� level. The darkest (red) region is not excluded at either
confidence level.

Ωφ0

w
0

0.6 0.64 0.68 0.72 0.76 0.8
−2

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

K2=0

FIG. 8 (color online). Likelihood plot from SNIa data for the
parameters w0 and ��0, for quintessence and phantom models

with generic behavior described by Eq. (23), with K2 ¼ 0, where
K is the function of the curvature of the potential at its extremum
given in Eq. (19). The light (yellow) region is excluded at the 2�
level, and the darker (orange) region is excluded at the 1� level.
The darkest (red) region is not excluded at either confidence
level.

Ωφ0

w
0

0.6 0.65 0.7
−1.6

−1.4

−1.2

−1.0

K2=−10

FIG. 9 (color online). Likelihood plot from SNIa data for the
parameters w0 and ��0, for quintessence and phantom models

with generic behavior described by Eq. (24), with K2 ¼ �10,
where K is the function of the curvature of the potential at its
extremum given in Eq. (19). The light (yellow) region is ex-
cluded at the 2� level, and the darker (orange) region is excluded
at the 1� level. The darkest (red) region is not excluded at either
confidence level.
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IV. CONCLUSIONS

Using techniques previously applied in [39–41], we have
derived a general expression for the evolution of w, which
is valid for a wide class of quintessence and phantom dark-
energy models in which the field is rolling close to a stable
local potential extremum (i.e., a minimum for the quintes-
sence and a maximum for the phantom case, respectively).
Such models provide a mechanism to produce a value of w
that is close to �1. We have tested our expression against
the (numerically determined) exact evolution for three
different representative models and in each case it repli-
cated the exact evolution studied with an accuracy greater
than 99%. A comparison between our generic approxima-
tion and the observational data indicates that these models

are allowed by SNIa data for a variety of values of the
potential curvature parameter K defined in Eq. (19).
Finally, we note that the case considered here, in which

V00 > 0 for quintessence (and V00 < 0 for phantom models)
leads to a much richer set of behaviors than the previously
examined case of V 00 < 0 for quintessence (and V 00 > 0 for
phantom models). In the case examined here, we see three
very different regimes, depending on the sign of K2.
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