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Exploring parameter constraints on quintessential dark energy: The inverse power law model
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We report on the results of a Markov chain Monte Carlo analysis of an inverse power law (IPL)
quintessence model using the Dark Energy Task Force (DETF) simulated data sets as a representation of
future dark energy experiments. We generate simulated data sets for a ACDM background cosmology as
well as a case where the dark energy is provided by a specific IPL fiducial model, and present our results in
the form of likelihood contours generated by these two background cosmologies. We find that the relative
constraining power of the various DETF data sets on the IPL model parameters is broadly equivalent to the
DETF results for the wy — w, parametrization of dark energy. Finally, we gauge the power of DETF
“stage 4”° data by demonstrating a specific IPL model which, if realized in the universe, would allow
stage 4 data to exclude a cosmological constant at better than the 3o level.
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L. INTRODUCTION

A host of cosmological measurements indicate that the
universe is undergoing a phase of accelerated expansion.
This has been generally attributed to a significant compo-
nent of smooth energy with a large negative pressure,
referred to as dark energy (DE) and characterized by an
equation-of-state parameter w = % . Current measurements

indicate that about 70% of the density of the universe today
is comprised of this dark energy. Candidates for DE in-
clude a cosmological constant A and a slowly evolving
dynamical scalar field such as quintessence [1]. In quin-
tessence models, the cosmic acceleration is driven by a
scalar field ¢ slowly evolving in some potential V(¢). In
this scenario, the parameters of the potential V(¢) deter-
mine the properties of the dark energy.

In general, all DE models have serious unresolved theo-
retical problems, and one can make the case in different
ways as to which types, if any (i.e. A or quintessence DE),
are best motivated [2,3]. This paper is motivated by the fact
that scalar field quintessence is definitely part of the theo-
retical discussion, and thus it should also be part of the
process whereby we evaluate future dark energy experi-
ments. This paper is the fifth in a series of papers motivated
in this way [4-7]. The inverse power law (IPL) model we
consider here is one of the more popular quintessence
models. One of its attractive features is its “‘tracking”
behavior that makes its predictions independent of the
initial conditions for ¢, assuming that ¢ starts out in the
(rather broad) basin of attraction for tracking. Also, the
behavior of the equation of state in the IPL model tends to
be quite different than for the models considered in our
previous work (see [7] for a unified discussion), so this
makes it an interesting complement to our other work.

Recently, the Dark Energy Task Force (DETF) produced
a report that considered the impact of various projected
data sets (referred to as ‘“‘data models” and representing
future DE observations) on cosmological parameters in a
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standard ACDM cosmological model using the
“wo — w,” parametrization of the dark energy equation
of state [8], w(a) = wy + w,(1 — a), where the scale fac-
tor a = 1 today [9-11]. They assessed the impact of a
given data set using a ‘““figure of merit” (FoM), defined
as the inverse of the area inside the 95% confidence con-
tour in the wy — w, plane for a fiducial ACDM model.
However, as has been pointed out by a number of authors
(e.g., [12]), the two-parameter wy, — w, phenomenological
model is not motivated by an actual physical model of dark
energy and exhibits very different behavior compared with
popular dark energy models. More recently, the Joint Dark
Energy Mission Figure of Merit Science Working Group
(JDEM FoMSWGQ) [13] has expanded and improved upon
the work of the DETF by developing a means for measur-
ing the constraining power of a dark energy experiment
that includes a principal-components approach involving
the redshifts at which each experiment has the power to
constrain w. Our work (represented by this and our com-
panion papers [4-6]) supplements the work of the DETF
and JDEM FoMSWG by assessing the capability of future
experiments to constrain DE by using an equation-of-state
parametrization that is motivated by a physical model of
DE—the well-known IPL quintessence model. This poten-
tial has its own motivations, and is also included here
because it generates a family of functions w(a) that are
quite different than those considered in our other work. Our
work also complements the work of [14,15], which con-
sider generalized classes of scalar field potentials.

This paper is organized as follows. In Sec. II we describe
the features of the IPL quintessence model and its tracking
properties. While most of the focus of this paper is on the
tracking behavior of the IPL. model, we also briefly discuss
the nontracking transient and ‘“‘thawing” behaviors of this
model. In Sec. III we describe how we parametrize the IPL
model for our Markov chain Monte Carlo (MCMC) analy-
sis. In Sec. IVB we present our MCMC analysis and
results using data forecast by DETF to constrain the IPL
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quintessence model around a fiducial ACDM model. In
Sec. IV C we give our MCMC analysis for simulated data
generated from a fiducial IPL model. This allows us to
further ascertain how sensitive future observations may be
to deviations from a cosmological constant, and to assess to
what extent we can exclude the A model if IPL quintes-
sence occurs in nature. In Sec. IV D we briefly discuss our
MCMC analysis of nontracking regions of parameter
space. Finally, we discuss our results and present our
conclusions in Sec. V.

II. TRACKING QUINTESSENCE

For a homogeneous scalar field in a Friedmann-
Robertson-Walker universe, the evolution of the scalar
field, given by its equation of motion, is described by the
Klein-Gordon equation

$+3H¢+j—;=0 (1)

where the Hubble parameter H is given by the Friedmann
equation (with ¢ and spatial curvature also taken into
account here)

a\2 1 k
w= () =npe et @
where a is the scale factor, Mp = 877G ~(1/2) is the reduced
Planck mass, p,(a) is the radiation background energy
density, p,,(a) is the matter background energy density,
pyla) is the scalar field energy density, and k is the
curvature constant. The energy density and pressure of
the scalar field are

Py =1d* + V(g), 3)

Py =34 — V(o) 4)

where the dots denote derivatives with respect to time.
Equations (1)—(4) enable us to solve for the background
evolution in a quintessence cosmology, once the potential
V(¢) and energy densities of the different components, p,,,,
P, etc., have been assigned. If the scalar field rolls slowly
enough such that the kinetic energy density is much less
than the potential energy density, i.e., the slow-roll limit,
¢ < V(¢), then the pressure Py of the scalar field will
become negative and the field energy will approximate the
effect of a cosmological constant. This indicates that a flat
potential V(¢) is required to give rise to accelerated ex-
pansion [16]. This slow-roll limit corresponds to w, = —

and p 4 = const. It also follows that the equation of state of
quintessence is bounded in the range —1 <wy <1 and is
usually nonconstant. In these models, the dark energy
behaves as a perfect fluid in which the equation of state,
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Py _ 3% —V(9)
Py 3+ V(g)

changes with time and is typically negative when V() is
sufficiently dominant, as expected during the recent epoch
of accelerated expansion. We can see from Eq. (5) that

¢ = 0 corresponds to the limit in which the scalar field is a
cosmological constant with wy = —1.

w

(&)

A. Tracking solutions and behaviors

It has been demonstrated [17,18] that a subclass of
quintessence potentials, including the IPL potential, have
several desirable properties. These include the fact that the
equations of motion of these quintessence models have
attractor-like solutions in the space of trajectories of ¢
(called ““tracking” solutions). A broad set of initial con-
ditions ¢, and ¢, in the early universe (referred to as a
“basin of attraction’’) evolve toward a common attractor
solution giving the same late time evolution of ¢, and thus
allowing the scalar field to induce the present phase of
accelerated cosmic expansion starting from a large range
of initial conditions. The tracking solutions are character-
ized by an almost constant w4, constrained by —1 < wy <
wpg, where wp is the equation of state of the dominating
background fluid component. The tracking behavior allows
the value of the accelerating matter density today to be
determined by parameters in the quintessence potential,
largely independent of the scalar field initial conditions
[19]. We note, however, that although this behavior may
help to explain why the dark energy has come to dominate
in recent times rather than some earlier epoch, it does not
solve the “cosmological constant problem,” especially as
it relates to the zero point energy of the quantum vacuum.

In [18], a function

4%
v
(where the primes denote derivatives with respect to ¢)
was defined for determining whether a particular potential
admits tracker solutions. It was shown that tracking behav-
ior occurs when either of the following two conditions is
met: (a) T’ >%, wg < wp, I' = const (and thus |V7/| de-
creases as V decreases) or (b) I' < 1, %(1 + wp) >wy >

I'= (6)

wpg, I' = const (and thus IVV/I is strictly increasing as V
decreases). The only constraint on the initial energy den-
sity in the tracker is that it be less than or equal to pg , the
initial energy density of the background fluid component
(matter or radiation), and greater than p,, (, the current
matter energy density. This condition is necessary in order
for ¢ to converge to the tracker solution before the present
time [18,20]. On the other hand, solutions of the Klein-
Gordon equation do not converge to tracker solutions for
potentials in which w,, < wy and | ¥ | strictly increases as

V decreases (I'<1), or, equivalently, when I' <1 —
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6+2wp
quantity VV/ is also known as a “‘slow-roll parameter” (e.g.,
[10]) which relates to how fast the field moves in the
potential for so-called ‘“‘slow-roll”” solutions. One upshot
of the above analysis is that one can see that potentials
(such as IPL) tend not to have tracking solutions when and
where they are flat (that is, where V" = V' = 0).

. Note that IVVII gives the slope of the potential. The

B. The inverse power law potential

One of the earliest proposed, simplest, and most widely
investigated scalar field quintessence model is the pure
inverse power law (IPL) model, originally introduced by
Ratra and Peebles [1]. This model was originally put
forward to mimic a time-varying cosmological constant
undergoing dissipationless decay and is motivated by
supersymmetric QCD (see [21] and references therein).
More recently, this potential has been reanalyzed [17,18]
in the context of a scalar field potential driving the current
epoch of cosmic acceleration.

The IPL scalar field potential is self-interacting, mini-
mally coupled to gravity, and given by

_v(M P)“

V=Vl—) .

(%

Values of V,, of order the critical density p. = 3H3M% and
a = O(1) yield cosmological solutions in which the scalar
field can account for the observed cosmic acceleration
today [and typically has current values ¢ = O(Mp)].
Furthermore, a large range of cosmologically realistic
solutions exhibit tracking behavior whereby, after some
initial transient period, many different solutions lock on
to the same attractor solution. This causes the initial con-
ditions for ¢ to be irrelevant for predicting observable
cosmological features and removes the need for tuning of
initial conditions seen in many other quintessence models.

It has been shown that the following relation is main-
tained on the attractor solutions [1,17,22]:

(N

v 9 a(l +a)
d¢* 2

(1 — w))H> 8)

The second derivative of the potential gives the scalar field
mass which today is given by my = V'(¢,) = %. The
tiny value of this mass (m, ~ 107%* eV) is due to the
requirements that V(¢) slowly varies with the field value
and that the current value of V(¢) be consistent with
observations [22]. When the scalar field potential is about

to dominate, we use Friedmann’s equation, H> ~#.

2
Then, if wy and a are of order unity, Eq. (8) indicates

that the value of the quintessence field at the present time is
of order of the Planck mass [23].

The power law index a > 0 determines the shape of the
potential as well as the value of w, today. The slope and
curvature of the IPL potential are given by
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We can see that smaller «’s lead to a more flat potential,
which will in turn lead to more slowly evolving behavior
for ¢ (and thus values of w closer to —1). Larger values
of « lead to a steeper potential slope, causing more evolu-
tion for ¢ and its energy density, and also values of wy
larger than —1.

Smaller values of ¢; as well as larger values of « lead to
a steeper initial potential slope and larger values of V(¢;).
This means that the scalar field will start rolling from
higher up on the potential and will roll faster, even for
cases where the dark energy is initially dominant and « is
correspondingly large, leading to greater evolution of the
dark energy density. The quantities V,, and « are the two
free parameters in the potential. In some supersymmetric
QCD realizations of the IPL. model [21], « is also related to
the number of flavors and colors, and can take on a con-
tinuous range of values « > 0 [24]. For & — oo (but with
p ¢ still subdominant), the scalar field energy density scales
like that of the dominant background. Potentials of this
type also possess the following phenomenological prop-
erty: they yield w, values which automatically decrease to
negative values at the beginning of matter domination [25].
Given that the energy density of each component evolves
as

V(o). (10)

p; q3+w) (11)

(with i standing for the radiation, matter, or scalar field
component), quintessence will eventually come to domi-
nate the universe even if it begins as a subdominant
constituent.

The IPL potential is one of a large class of quintessence
models with what has been referred to as “‘runaway scalar
fields [17,20] whose tracker solutions begin from some
initial ¢, and ¢, and share some of the following general
features: The field rapidly converges to a point on the
potential where V' ~ H?, where the Hubble parameter H
is determined by p,, and p,. As the universe expands and H
decreases, ¢ moves down the potential so as to maintain
the condition V" =~ H?. The universe enters a tracking
phase where p 4 catches up to the background density pg
when m} decreases to of order H* and so ¢y~ Mp
[16,18]. Thus, the distinctive feature of these tracker fields
is that the evolution of the scalar fields is controlled by p,,
and p, rather than evolving independently according to its
own potential. This controlled evolution continues until ¢
finally surpasses the point where critical damping via
Hubble expansion occurs. Then the field’s own potential
energy is sufficient to freeze the field and cause p, to

103004-3



YASHAR, BOZEK, ABRAHAMSE, ALBRECHT, AND BARNARD

eventually overtake p,, and p,, driving the universe into a
phase of cosmic acceleration.

Figure 1 illustrates how the shape of the IPL potential is
changed by selecting three different « values for a fixed V.
The value of ¢; determines where on the potential the
scalar field starts to evolve. The present field value ¢, of
order of the Planck mass Mp, is reached from a broad range
of initial conditions ¢; and ¢,, with the only important
condition being that ¢; << Mp [26], which is consistent
with the discussion concerning tracking in Sec. II A and the
more detailed discussion and criteria regarding attractor
solutions given in [17,18]. The lower panel of Fig. 1 shows
the corresponding evolution of the equation of state. For
fixed values of ¢; and V|, we see that larger values of «
correspond to w curves with larger amplitudes and which
have larger values today, i.e., deviate more from a cosmo-
logical constant (w = —1) at the present time. As @ — O,
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FIG. 1 (color online). IPL potentials (top panel) and w(z)
evolution (lower panel) for different « values (dashed-dotted
line: @ = 0.05; dashed line: @« = 0.01; and solid line: « = 0.1).
For all curves V, = 0.38 and ¢; = 10730, Smaller values of «
lead to flatter potentials and smaller V().
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the equation of state more and more mimics the behavior of
A at late times with w — —1. The IPL model has been
categorized by [27] as a ““‘cooling” or “freezing”” model in
which w > —1 initially but with w then decreasing towards
—1 as the scalar field rolls down the potential.

For cases in which radiation or matter is dominant and
the contribution of p, to the expansion of the universe is
neglected, the Klein-Gordon equation gives exact tracking
solutions for the evolution of ¢ for the IPL model, as well
as the following time-independent relations between I, the
power law index «, and the equation-of-state parameter
[17,18],
wp —2('=1)  awp—2

1+20C—1) a+?2’
where I' =1 + é > 1 from Eq. (6) for the IPL potential,
and wp is the equation of state of the fluid component

dominating the background. So, during the era of radiation
domination, with wy = 1

Wy = (12)

3 b
a—6
=— 13
"o 3(a +2) (13)
and during the era of matter domination, with wp = 0,
-2

= . 14
Ve a+2 (14)

We also note here that, as in the case of all tracker poten-
tials, the tracker solution for the IPL. model is approached
differently for different initial conditions. For example, in
what is referred to as the “overshoot” case, p4 ; begins
from a value greater than the tracker solution value.
Assuming that ¢ is released from rest, the dynamics of
the scalar field starts with an early kinetic phase (> > V)
in which w — 1 so that p, < a~° [from Eq. (11)] and V
decreases very rapidly as ¢ runs downhill. Since the
kinetic energy is too large for ¢ to join the tracker solution
as ¢ rolls further down the potential, ¢ will overshoot the
tracker solution. The field will then freeze (as will V and
VV/) as w, rushes towards —1. Finally, when ¢ rejoins the
tracker solution, ¢ will run downhill again and w, will
increase from — 1, briefly oscillate, and then settle into the
tracker value [18].

In the “undershoot” case, py; begins from a value
much smaller than the tracker solution value, and ¢ is
once again released from rest. This corresponds to the
kinetic energy density being very small and ¢, V, and VV/
being approximately constant or “frozen” as the universe
evolves. Then, as in the overshoot case, w ® reaches close to
—1, py = const, and pp is decreasing. The value of w
then increases from —1 as ¢ once again runs downhill.
After a few oscillations, We will then rejoin the tracker
solution until p, becomes the dominant component in the
universe.

Figures 2—4 depict the evolution of w, for the IPL. model
during these various regimes. With little sensitivity to the

103004-4



EXPLORING PARAMETER CONSTRAINTS ON ...

exact value of V|;, @ will determine the amplitude of the w
curve and the value of wy = w(z = 0) = —1 as long as
¢; <K Mp. For given values of «, ¢; determines when the
scalar field joins the tracker solution and how long it
follows the tracking solution (Fig. 3). As is pointed out
in [28], we also find that for the smaller values of « that we
focus on in this work (e.g., & =< 1), the smaller « is, the
later the tracker is reached for a given initial value of ¢
(Fig. 4). With regards to V), we find that while increasing
(decreasing) the value of V| leads to corresponding in-
creases (decreases) in wpg = %iﬂ at z = 0 (where h =
%), as expected, it leads to very small (essentially negli-
gible) decreases (increases) in the value of w, and essen-
tially no change in the tracking solutions or tracking
behavior. When the scalar field has tracking solutions,
different values of ¢; lead to similar values of, for ex-
ample, —0.9 > wy, > —1, with w — —1 and Q,, — 0 as
a — oo. There will be essentially no dependence of ¢; <K
M p on either the present dark energy equation of state or
the present contribution of dark energy to the total energy
density of the universe (as illustrated in Fig. 3).

C. The nontracking case

It is possible to find nontracking cosmological solutions
for IPL quintessence. If ¢p; ~ Mp, then ¢ will follow the
tracker solution for only a very brief period of time or not
exhibit tracking behavior at all. In our computational algo-
rithms, for example, we find that tracking solutions do not
strictly exist and thus tracking behavior does not strictly
occur for, roughly, all ¢; = 1075 when @ < 1 and 0.25 <
Vo = 0.45. Moreover, for some instances in which —1.5 =
log,o(¢p;) = —0.3, w = —1 initially but then increases
towards —1 > wy > —0.9, for example, as for the case of
thawing models and behaviors [27,29,30]. Examples of
this nontracking thawing-like behavior of the equation of
state for ¢, = 10! for @ = 0.2 and 0.1 can also be seen
(dashed-dotted curves) in Figs. 2 and 3. Nontracking initial
conditions for the IPL model as well as possible connec-
tions between the quintessence field and the inflation field
(the inflaton) [31], which are beyond the scope of this
work, are discussed in some detail in [32] and references
therein. Like [32], and as we discuss further in Sec. IV B,
we also find that for cases where ¢; — Mp and the field
has not joined the tracker by the present epoch, the range of
acceptable values of a increases significantly as w in-
creases. For values of log,,(¢;) roughly between —5 and
—1, wy leaves its tracking phase with matter and enters a
transient phase (see Fig. 3) before exhibiting thawing
behavior for log;o(¢;) = —1.5.

D. The transition from tracking to acceleration

For most of this work, we focus on cosmological solu-
tions that exhibit tracking at early times. Out of respect for
big bang nucleosynthesis [33] and other standard consid-
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FIG. 2 (color online). An illustration of how the evolution and
tracking behavior of w as a function of the scale factor a is
affected by different values of «, V), and ¢,;. The a scale is
logarithmic here in order to show behavior on all time scales.

erations, there must be an early epoch of radiation domi-
nation where p4 < p, and redshifts as [1,34]

Py * a—(4a/(2+a)). (15)

It is possible in this case to find an exact solution to the
Klein-Gordon equation for which

¢ o a4/(2+a), (16)

and it can be shown that this solution is an attractor [1].
During matter domination, the attractor is also character-
ized by the scalar field evolving as

¢ o a3/(2+oz)’ (17)
-0.8 T T T T T T T ——
6,=107%
: = 107%°
-085F - g
: o= 1015
i _.6,=107"
=z 09 g
E -5
, 6,=10
-0.95
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20 -18 -16 -14 -12 -10 -8 -6
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FIG. 3 (color online). Examples of how the evolution and
tracking behavior of w as a function of the scale factor a is
affected by different values of ¢, for given values of V, and «.
For all curves, V, = 0.38 and @ = 0.1. These examples illustrate
how different values of ¢; lead to the same values of the
equation-of-state parameter today. The a scale is logarithmic
here in order to show behavior on all time scales.
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FIG. 4 (color online). This figure depicts the evolution and
tracking behavior of w as a function of the scale factor a for
different values of a for given values of V, = 0.38 and ¢; =
1073%. As long as ¢; < Mp, a will determine w, and the
amplitude of the w(a) curves. In addition, the smaller « is, the
later the tracker is reached for a given ¢;. The a scale is
logarithmic here in order to show behavior on all time scales.

corresponding to energy density evolving as
Py a—(3a/(2+a)). (18)

As long as Z—d’ < 1, these expressions provide a very good

approximation to the behavior of the IPL quintessence field
[19,35]. In other words, the tracking regime itself is strictly
valid only when the expansion of the universe is dominated
by matter. Then, at later times, when p, starts to make a
significant contribution to the cosmic expansion rate, the
value of wy in Eq. (12) starts to diverge from its tracker
value, as do ¢(a) and p,(a), such that the scalar field
mimics the behavior of a cosmological constant today
(with w = —1), consistent with current observations. So,
we can see that p, in the attractor solution decreases less
quickly than p,, and p,, which allows us to realize the
following behavior: Deep in the era of radiation domina-
tion, p, is small enough to satisfy constraints from stan-
dard models for big bang nucleosynthesis and the
formation of the light elements, but p, does eventually
become large enough today (with w — —1) so that the
universe undergoes accelerated expansion and acts as if it
has a cosmological constant, but one that slowly varies
with time and position [36].

E. Current constraints

From an observational standpoint, if we require w to be
roughly consistent with current observational constraints,
say, for example, —1 =w = —0.8 [37-40], then the
power law index o must be roughly in the range 0 = o =
0.5, yielding a shallow potential shape. The quintessence
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equation of state in the current epoch abandons the tracking
regime because the dark energy is now the dominant
component. However, the shallow potential shape makes
wq not far from the tracking one in Eq. (14), differing
typically at the 10% level [26,41].

Various combinations of data [including CMB, baryon
acoustic oscillation (BAO), type Ia supernovae (SNe Ia),
and weak gravitational lensing (WL) observations] have
been used to constrain the slope of the IPL potential,
finding o = 1-2 (e.g., [24,42-55]), so that flatter poten-
tials seem to be favored by the data. Recently, for example,
Ref. [43] found 0.7 = « = 0.8 in an MCMC analysis of
the IPL potential when assuming that the energy scale of
the potential is that of a cosmological constant (i.e., Vy =
A* = 107% GeVY), QO = ’;—‘f’ varies in the range 0.1-0.9,
and £ = 0.70. In many instances our combinations of
stage 2 simulated data sets (see Sec. [V) place substantially
tighter constraints on «a than do real data sets used by
various authors in their analyses of the IPL model (e.g.,
[48-55]). A number of authors (e.g., [33,56,57]) have
argued that such small values of « lead to smaller basins
of attraction and thus some degree of fine-tuning and
dependence on initial conditions for the IPL. model. We
have observed, however, that for the realistic cosmologies
that we consider for this work, there remains a substantial
basin of attraction: We can vary the initial conditions over a
very large range of values with the end results for (), ,, for
example, still being physically acceptable [57].

Other authors (e.g. [17,18,57]) have also explored a
variety of issues associated with tracking properties and
solutions for this model. They considered theoretical con-
straints relating to, for example, equipartition initial con-
ditions between quintessence and the remaining fluid
components which argue for larger values of a [18,32].
However, in our work we have focused for the most part on
realistic families of cosmological solutions that are broadly
consistent with observational constraints (i.e., « =< 1) and
which also include IPL tracking properties and behaviors
that give the model its conceptual appeal. We also note that
[24] has found that, while « is tightly constrained, IPL
models with 0.25 < (),, =< 0.4 remain viable, and [48-51]
have recently shown that various sets and combinations of
data can not yet completely rule out slowly evolving dark
energy described by the IPL. model.

The real appeal of IPL models from our point of view is
that they offer an interesting class of non-A cosmologies
with some degree of theoretical motivation. Thorough
discussions of the basin of attraction (as well as the still
outstanding cosmological constant problem) are key to a
fundamental understanding of the ultimate importance one
might give to the IPL model. We regard such discussions as
too poorly developed at this point to give them much
weight in the very phenomenological analysis in this paper.
For our purposes, it is good enough that a large range of
initial conditions can converge to a common solution,
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thereby avoiding to a substantial degree the fine-tuning of
initial values of ‘Z—j and w [32].

III. PARAMETRIZATION OF THE INVERSE
POWER LAW MODEL

As a general rule, MCMC analysis requires a careful
choice of the model parameters to be varied. Poor parame-
ter choices and degeneracies between parameters can slow
the rate of convergence and mixing of the Markov chain,
reducing the overall efficiency by which the Markov chain
explores a parameter space. For the IPL potential, V =

VO(%)“, the obvious choices of potential parameters to be

varied are ¢;, @, and V. When we carried out our MCMC
analysis of data forecast by the DETF to constrain the IPL
quintessence model around a fiducial ACDM model, we
chose our fiducial value for V,, (in units of 4?) to be 0.38,
which is the value of the dark energy density today for a
cosmological constant. We chose to make V,; a model
parameter in our MCMC analysis rather than keeping it
fixed because other choices of V|, could provide equivalent
cosmological solutions, and we were also interested in
ascertaining how the MCMC exploration of the parameter
space and its ability to constrain the other parameters
would be affected by varying V,, as well.

We have not found a need to reparametrize the IPL
parameters to the extent that has been done, for example,
in [5,6] for the Albrecht-Skordis or exponential potential
quintessence models. We did, however, find it necessary to
place bounds on some of the potential parameters in order
to prevent the MCMC algorithm from infinitely stepping
into divergent directions of parameter space and thus never
converging to a stationary probability distribution. Another
reason we placed bounds on the potential parameters was
to prevent the MCMC algorithm from spending possibly
large amounts of computer time exploring uninteresting
regions of parameter space that may be completely incon-
sistent with observational and theoretical constraints.

We placed a lower bound of 0 on «, as a > 0 is required
for the pure IPL model that we consider [22]. Given that
the DETF data used in the first part of our MCMC analysis
are modeled around a cosmological constant, the most
probable values of a will be those in which « approaches
zero. From Eq. (7) we see that as ¢; — Mp any value of «
will lead to the same value of the potential V(¢) for a given
Vo. However, since « largely controls the shape of the
potential [as well as the amplitude of w(a)] and thus the
evolution of the dark energy density and w o, we find that
the simulated data sets place sufficient constraints on « to
prevent the MCMC chain from infinitely stepping into
divergent directions in the & — ¢; and V) — ¢, parameter
spaces, even when ¢; — Mp. This renders a stringent
upper bound on « unnecessary.

We can also see from Eq. (7) that ¢; can take on any
value and lead to solutions indistinguishable from a cos-
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mological constant as a — 0. This degeneracy leads to a
divergent direction in the & — ¢; space, where ¢; can be
arbitrarily large or small. Also, the simulated data sets do
not constrain ¢; nearly as tightly as a due to the fact
(previously discussed in the context of attractor solutions)
that a broad range of ¢; values can lead to the same ¢, and
wy and thus have little effect on the evolution of the dark
energy density. Because of this effect, it is necessary to
choose some cutoffs on ¢; so that these infinite directions
are bounded.

As discussed in Sec. IIB we have parametrized our
potential in a way that gives cosmologically realistic solu-
tions where V(¢) approaches the value of the dark energy
density today when ¢ = M p. With this in mind, we impose
an upper bound of Mp on ¢; which helps avoid solutions
with uninterestingly low values of p, as well as solutions
that are dominated by transients. We also note here that,
given that the main thrust of our work involves an MCMC
analysis of the regions of parameter space associated with
tracking, we have selected or filtered out nontracking
parameter values in the algorithms used to generate like-
lihood contours from the MCMC chains by implementing
in our algorithms the criteria for tracking solutions (as
discussed in Secs. IIA and IIB) and, specifically, the
“equation of motion” discussed in [18]. Thus, all of the
error contours displayed and discussed in Secs. IV B and
IV B correspond to portions of the parameter space asso-
ciated with tracking (i.e., parameter values corresponding
to attractor solutions of the Klein-Gordon equation).
Incidentally, we have found that for a typical stage 2
MCMC chain generated from a ACDM model, for ex-
ample, about 90% of points stepped to by the chain corre-
spond to parameters with tracker solutions, whereas the
other 10% correspond to nontracking (transient and thaw-
ing) parameters.

Regarding a lower bound on ¢;, we recall from Sec. Il B
that we must have ¢p; << Mp so that the present field value,
@ (of order Mp), is reached from a very broad range of
initial conditions. This ensures that the tracking properties
and solutions that make this model appealing are still
included and valid within the parameter space explored
in our MCMC analysis. If the lower bound on ¢; is too
large, ¢; may reach the tracking phase only at very late
times or only by the present time (or not at all), leading to a
small basin of attraction and fine-tuning problems. We find
that placing a lower bound of ¢; = 1072 in our MCMC
analysis gives reasonable results by ensuring that, on the
one hand, the tracking solutions and properties are in-
cluded in the parameter space explored by the MCMC
analysis (i.e., there is a larger basin of attraction and ¢, =
M p) but, on the other hand, an appropriate cutoff or bound
has been placed on a divergent direction in the a — ¢;
space that may not otherwise be constrained by the data
(and thus possibly preventing the MCMC chains from
coming to equilibrium).
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The above lower bound is not well suited for examining
the finer details of nontracking transient and thawing re-
gions of parameter space (where ¢p; — Mp). In chains with
a lower bound of 10~2° or smaller on ¢,, the part ( = 10%)
of the chain that shows nontracking and thawing IPL
solutions is not sufficiently well populated to show the
full structure of the probability distribution. In order to
allow the MCMC algorithm to step more frequently in
these parameter space regions and so better converge (as
discussed in [4]) on a well-resolved probability distribution
for the nontracking and thawing regions of the parameter
space, we have also carried out an MCMC analysis with a
lower bound of —3 placed on log;y(¢;) [see Sec. IVD].

IV. MCMC RESULTS AND ANALYSIS

A. General approach

Following the approach taken by the DETF, we gener-
ated ““data models” or simulated data sets for future SNe
Ia, BAO, WL, and CMB (PLANCK) observations. These
considerations of DE projects follow developments in
“stages™: Stage 2 represents ongoing projects that are
relevant to dark energy; stage 3 consists of medium-cost,
near-term, currently proposed projects (such as BAO, SNe
Ia, and WL surveys with 4-meter class telescopes using
photometric redshifts); stage 4 consists of the Joint Dark
Energy (Space) Mission, Square Kilometer Array, and/or
Large Survey Telescope (LST) [8]. “Optimistic”’ and
“pessimistic’” versions of the same data models give differ-
ent estimates of systematic errors. Additional information
on the specific DETF data models is given in Appendix A
of [4] and the technical appendix of the DETF report [8].
We excluded the DETF galaxy cluster data models in our
work because the extension of the DETF calculations to
our analysis is not straightforward, especially in regards to
estimates of systematic errors [4—6,58].

We have generated two sets of data models. One type is
generated around a cosmology with a cosmological con-
stant, consistent with DETF stage 2, 3, and 4 SNe Ia, WL,
BAO, and CMB data models. The other set of data models
is built around an IPL fiducial model which was chosen to
be consistent with simulated stage 2 data based on a
cosmological constant cosmology. We then use a MCMC
algorithm to map the likelihood around each fiducial model
(ACDM and IPL) via a Markov chain of points in parame-
ter space, starting with the fiducial model and moving to a
succession of random points in space using a Metropolis-
Hastings stepping algorithm. The technical details of our
MCMC algorithm are presented in Appendix B of [4] and
references therein. In this way we can, for example, ana-
lyze the parameter space of IPL quintessence in the light of
DETF data models and evaluate the likelihood function of
the parameters of our model. Once the Markov chains of
our models in parameter space have been computed, we
can extract likelihood contours from the distribution of
models and display them as projected 2D likelihood con-
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tour plots. This can then give us a picture of the shape of
the likelihood region of all the parameters in our models in
the whole multidimensional parameter space if we were to
plot likelihood contours for each pair of parameters in the
parameter space. In all plots in this paper, we show 68.27%
(1o),95.44% (20), and 99.73% (30) confidence contours,
which consist of points where the likelihood equals
e~ (230/2)  =(617/2) and ¢~(18/2) of the maximum value
of the likelihood, respectively. We have constructed these
plots by marginalizing over all of the cosmological pa-
rameters, ,,, W, Wg, ®,, h, 8, ng, n§ (as defined by the
DETF), and the various nuisance and/or photometric red-
shift parameters, which take into account uncertainties and
errors in the simulated data. The nuisance and photometric
redshift parameters are described and explained in detail in
[4,8].

B. Cosmological constant fiducial model

In this section we present the results of our MCMC
analysis for the combined simulated data sets generated
around a ACDM cosmology. We list the values of the free
parameters for our ACDM fiducial model (with energy
density and V|, in units of 4> and ¢; in reduced Planck
units) in Table I. (The IPL parameters given generate a
cosmological constant.)

We note that h’(a = 1) = w,, + ®, + w; + wpg, with
recent observations providing a prior constraint of & =
0.72 = 0.008 [59]. Also, w,, the radiation energy density,
is not a free parameter for our calculations but is fixed by
the CMB temperature (and the standard assumption of
three massless neutrinos) [8].

Stage 2 combines SNe la, WL, and CMB data models
but does not include BAO data models. Stages 3 and 4
additionally include the BAO data models as well. As
discussed in Sec. IV A we project our probability distribu-
tions into 2D spaces given by pairs of the IPL parameters
(i.e., the V) — a, Vy — ¢, and ¢p; — « planes).

The likelihood contours in the V, — a plane, with all
nontracking parameter values [log,o(¢) = —6] excluded,

TABLE I. Fiducial parameter values (energy densities in units
of h?) for the ACDM model.

WpE 0.3796
®,, 0.146

Wy 0.0

wp 0.024

o, 4.16 X 1073
ng 1.0

n 0.00001
O¢ 0.87

h 0.72

@ 0.0

b 1075

Vo 0.38
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for stage 2 and the optimistic versions of stage 3 photo-
metric, stage 4 space, and stage 4 ground LST combined
data are shown in Fig. 5. In all cases the error contours
show the expected trend of the IPL potential to approach a
cosmological constant as & — 0 (and also corresponding
to where the slope of the potential goes to 0). The vertical
axis where @ = 0 corresponds to A. Therefore, the value of
V(¢y) = V, on the vertical axis represents A or the dark
energy density wpg for &« = 0. However, along the lines of
the discussion in Sec. III of [6] for the Albrecht-Skordis
model and as discussed in this paper in Sec. II B, we must
also keep in mind that the parameter V|, does not have a
significant effect on the equation of state of dark energy.
Moreover, for a > 0, V) is no longer identical to wpgy =
O)DE(Z = O)

For small values of «, there is a spread in V) in the V|, —
« space. Since these values of « are consistent with A or a
nonevolving dark energy, the spread in V, is essentially a
measure of how well the experiments are measuring wpg .
The spread or uncertainty in V|, for all « is also a result of
uncertainties on measurements of (), o. Larger values of a
correspond to larger values of w(w > —1) and thus values
of w that deviate more and more from the equation of state
for A as « increases, possibly up to values of « that
correspond to detectable differences from A. The smallest
values of V|, correspond to the largest values of «, which in
turn correspond to the largest values of the equation of state
(and hence those values of w deviating the most from what
we expect for a cosmological constant). As the value of «
increases, we see that the likelihood contour in Fig. 5 has
an overall downward curved shape. This is due to the fact
that the slope of the potential becomes steeper for increas-
ing values of «, which leads to greater evolution of the dark
energy density and larger values of w, that deviate more
and more from —1. The reduction in the V, direction
reflects improving constraints with increasing stage num-
ber on the dark energy density. As a specific quantitative

Stage 2 Stage 3 Photo Optimistic
0.5 0.5
0.4 0.4
g & g \
0.3 0.3 Sy
0'20 0.1 02 03 04 0'20 0.1 02 03 04
o o
Stage 4 Ground LST Optimistic Stage 4 Space Optimistic
0.5 0.5
0.4 0.4
2 N 2 N
0.3 0.3
0'20 0.1 02 03 04 0'20 0.1 02 03 04
o o
FIG. 5. Vy— a 1o (68.27%), 20 (95.44%), and 30 (99.73%)

confidence regions for DETF optimistic combined ACDM data
models.
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example of this, we see from the stage 4 error contours in
Fig. 5 that the extrema of the range of V|, values deviate
from the fiducial value by less than 20% when o = 0.1 and
by less than 5% when a = 0. The shrinking in the «
direction corresponds to increasing constraints on devia-
tions from a cosmological constant.

Figure 6 depicts likelihood contours in Vi, — log;o(¢;)
space, where, again, all nontracking transient and thawing
parameter values have been removed. As noted in Sec. III,
we imposed 1072° < ¢,/Mp < 1. Since a large range of
initial values of the scalar field (¢; < Mp) are generally
washed out by the tracking behavior, we can see from the
contours that there is very little dependence of the dark
energy density today on ¢; << Mp. Once again, the spread
in V, values is essentially a measure of how well the
experiments are measuring the dark energy density at the
present time. The error contours also show a slight trend
toward an increasing range of acceptable values of ¢;
which possess attractor solutions as V|, decreases, which
is associated with greater « values and thus greater dark
energy evolution. The sections of the overall parameter
space depicted in these figures also tend to disfavor larger
values of a, or, equivalently, disfavor larger departures
from a cosmological constant and thus more dark energy
evolution. We once again note a reduction in the V|, direc-
tion with increasing stage number, indicating the improv-
ing constraints that the data place on the dark energy
contribution to the total energy density of the universe
today.

The likelihood contours in the log;o(¢;) — a (Fig. 7)
space are clearly seen to shrink in the a direction with
increasing stage number, once again showing improving
constraints on the amount of dark energy evolution and on
deviations from a cosmological constant from stage 2 to
stage 3 and from stage 3 to stage 4. This corresponds to a
greater disfavoring of larger values of o with successive

Stage 2 Stage 3 Photo Optimistic
0.4 jgut 0.4
>° >°
0.3 0.3 :
0.2 0.2
-20 -15 -10 -5 0 -20 -15 -10 -5 0
log, (4) log, ,(6)
Stage 4 Ground LST Optimistic Stage 4 Space Optimistic
0.4 0.4
> 03 > 03
0.25
0.2 0.2
-20 -15 -10 -5 0 -20 -15 -10 -5 0
log, () log, ,(9)

FIG. 6. V, —logo(¢p;) 1o (68.27%), 20 (95.44%), and 30
(99.73%) confidence regions for DETF optimistic combined
ACDM data models.
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g g
0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
o o
Stage 4 Ground LST Optimistic Stage 4 Space Optimistic
0 0
—~ ~ -5
= <
2 -10 2 -10
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-15
-20 -20
0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
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FIG. 7. logo(¢;) — a lo (68.27%), 20 (95.44%), and 3o

(99.73%) confidence regions for DETF optimistic combined
ACDM data models.

stages of data. We also see in Fig. 7 a very slight trend
toward an increasing range of acceptable values of ¢,
possessing attractor solutions as « increases. This corre-
sponds to the trend of a larger range and upper limit for ¢,
having attractor solutions for smaller values of V, dis-
cussed in regards to Fig. 6.

The trend described above in Fig. 7 is related to the fact
that the largest values of ¢;, from which the attractor is
joined before the present time, occur on the flatter portions
of the potential where w, is closer to —1 in recent times
and today, and the curvature and slope of the potential are
smaller. Since « controls the steepness of the potential,
changes in « have less of an effect on the flatter parts of the
potential where ¢ is larger and V(¢,), V(¢,), and V(¢p;)"
are smaller [as can also be seen in Egs. (8)—(10)]. So, when
the scalar field tracks the background evolution on flatter
portions of the potential, we expect a slight increase in the
range of acceptable (tracking) ¢; values as « increases.

Overall, as found by the DETF, successive stages of data
do better at constraining the evolution of dark energy. As
can be seen in the likelihood contours above and as was
also found for the case of the Albrecht-Skordis model [6],
the IPL potential parameters appear to be somewhat better
constrained by the DETF stage 4 LST ground data models
than by the DETF stage 4 space data models. This reflects
the fact that ground and space data are sensitive to slightly
different features of the dark energy evolution.

C. Inverse power law fiducial model

We next evaluate the power of future experiments by
assuming that the dark energy in the universe can actually
be described by the inverse power law model rather than a
ACDM fiducial model. For our fiducial IPL model, we use
a=0.14, ¢, =107, and V, = 0.31. The remaining
parameters of the IPL fiducial model are the same as those
used in the fiducial ACDM model. Our IPL model fiducial
values (given in Table II with energy densities and V|, in
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TABLE II. Fiducial parameter values (energy densities in units
of h?) for the inverse power law model.

WDE 0.3796
. 0.146
Wy 0.0

wp 0.024
, 416 X 107
ng 1.0

nk 0.00001
O¢ 0.87

h 0.72

a 0.14

¢[ 10715

Vo 0.31

units of 4% and ¢, in reduced Planck units) were chosen,
excluding consideration of the thawing or outlying regions
of the parameter space, to lie near the boundary of (or just
beyond) 1o detection or within the 95.44%20) confi-
dence region in the Vy — a and log,o(¢;) — @ spaces
(Figs. 5 and 7) for stage 2 ACDM data, but excluded by
more than 30 in the stage 4 optimistic ground and space
data so as to be strongly ruled out by stage 4 ACDM data.
We also ensured that this fiducial model had initial
conditions and had an equation of state such that the
attractor is joined before the present time. The equation-
of-state parameter as a function of scale factor a for all
time scales (the a scale is logarithmic) for our fiducial
model is similar to the dashed curves in Figs. 2 and 3.
We also depict the potential of the fiducial model in the top
panel of Fig. 8, along with the corresponding equation-of-
state evolution as a function of redshift in the bottom panel.
The fiducial model corresponds to the point wy = —0.955,
which deviates from w(z) = —1 by only about 4.5%. We
have chosen our fiducial model to thus be marginally
consistent with the ACDM-based data but demonstrating
sufficient dark energy evolution to be different enough
from A to be resolved by stage 4 experiments. In this
way we are able to illustrate the power of stage 4 data
models and their ability to rule out the A model.
Duplicating our MCMC analysis methods for the IPL
fiducial model, we again marginalized over all but two
pairs of the parameters «, ¢;, and V|, for the purposes of
generating 2D likelihood regions for the IPL dark energy
parameters. Figure 9 shows the results of our MCMC
analysis and calculations for stage 2, stage 3 photo-
optimistic, stage 4 LST optimistic, and stage 4 space
optimistic data models in the V; — a parameter space.
We can see from the « = 0 axis, corresponding to a
cosmological constant, that the ACDM model (i.e., a non-
evolving scalar field) is still allowed at stage 2 [at the 20
(95.44%) confidence level but not quite at the 10 (68.27%)
confidence level] but becomes less favored by subsequent
stages of data models. At stage 3 the ACDM model lies
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0.9 more evolution are favored more here. The greater dark
08l energy evolution for this case also leads to the slightly
more significant downward trend in the shape of the con-

07 tours than is seen in the ACDM confidence contours.
> 06 The described increase in constraining power for higher
o5k* quality data models is similar to the ACDM results in
\ Sec. IVB for the ACDM model. However, as previously
O SSS~—— indicated, the range of « values has significantly increased
0.3} . . T ST y within the lo, 20, and 30 contours, allowing for an
(] 0.2 0.4 0.6 0.8 1 increased range of evolving dark energy solutions. From
6 the stage 4 combined data sets, we can clearly differentiate
0 ' ' ' ' between our selected IPL fiducial model and the ACDM
model by well over 3¢. This increased constraining power
-0.2¢ 1 is again consistent with the (ACDM) DETF results for
stage 4 experiments. Hence, the results of our MCMC
-0.4r 1 analysis, as seen in Fig. 9 (as well as Fig. 11 below),
= show that, for a universe described by this specific IPL.
-0.61 1 fiducial model, the stage 4 experiments will rule out a

cosmological constant by well over 3o

-0.8 ; Figure 10 shows likelihood contours in V, — logo(¢;)
space. As for the case of the ACDM model, there is again
-1 a 3 » ] o very little dependence of dark energy density today on ¢,

z

FIG. 8 (color online). The potential of the IPL fiducial model
(@ =0.14, ¢; = 10713, V; = 0.31) (top panel, dashed curve).
The corresponding equation-of-state evolution w(z) for a poten-
tially observable range of redshift values is shown in the bottom
panel. The solid curve overlaying the potential in the top panel
shows the evolution of the IPL fiducial model scalar field for the
range of z values (from z = 5 to the present time) depicted for
w(z) in the bottom panel.

outside of the 20 contour, and by stage 4 it is ruled out by
well over 3o. For stage 2 and subsequent stages, the range
of a values covered by the contours is significantly greater
than for the ACDM case since dark energy solutions with

when ¢; << Mp. Once again, the spread in V|, values is
essentially a measure of how well the experiments are
measuring the present dark energy density as given by
the chosen IPL fiducial model. The trend toward an in-
creasing range of and acceptable upper limit to values of
¢, possessing attractor solutions for smaller V), as noted in
reference to Fig. 6, is slightly more pronounced here due to
the larger range of acceptable values of a and greater DE
evolution for the IPL model.

The likelihood contours in the log;y(¢;) — « (Fig. 11)
plots are clearly seen to shrink in the « direction with
increasing stage number, but the overall range of « values
stepped to by the MCMC chain and thus included within
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0.5 0.5 >o >o
0.3 0.3
0.4 0.4
9 o
= > 0.2 0.2
0.3 0.3 220 15 -10 -5 0 220 15 -10 -5
- log,(6) log,,(0)
0.2
0 0.2 o 0.4 0‘20 0.2 0.4 Stage 4 Ground LST Optimistic Stage 4 Space Optimistic
o
Stage 4 Ground LST Optimistic Stage 4 Space Optimistic 0.4 0.4
0.5 0.5
> 00 g ——)
0.4 0.4 0.3 === 0.3 -
g | g
08 I N 0.2 0.2
-20 -15 -10 -5 0 -20 -15 -10 -5
0.2 0.2 log,4(0)) log, (%)
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0.4
o

0.2
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0.4

FIG. 9. Vy— a 1o (68.27%), 20 (95.44%), and 30 (99.73%)
likelihood contours for DETF optimistic combined data sets
generated from a selected IPL background cosmological model.

FIG. 10. V, — log,o(¢;) 1o (68.27%), 20 (95.44%), and 30
(99.73%) likelihood contours for DETF optimistic combined
data sets generated from a selected IPL background cosmologi-
cal model.
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FIG. 11. logio(¢p;) — @ lo (6827%), 20 (95.44%), and 30
(99.73%) likelihood contours for DETF optimistic combined
data sets generated from a selected IPL background cosmologi-
cal model.

the likelihood contours is significantly larger than for the
ACDM model data sets, again indicating that dark energy
solutions with more evolution are disfavored less for this
IPL fiducial model than for the ACDM model. The
log,o(¢p;) — @ contours also show [like the V, —
log;o(¢;) contours in Fig. 10] that the ACDM model is
still allowed at stage 2 (but lies just outside of the 1o
contour) and at stage 3 photo-optimistic (lying outside of
the 20 contour here) but is ruled out by well over 30 by
stage 4, again becoming less favored by subsequent stages
of data sets. We also see a slightly more pronounced trend
of an increasing range of acceptable values of ¢; possess-
ing attractor solutions as « increases. Again, this corre-
sponds to the increasing range of acceptable ¢; values
possessing attractor solutions for smaller V, in Fig. 10
and the fact that the part of the IPL potential where the
largest values of ¢; that lead to attractor solutions that are
still acceptable is steeper (larger «) than for the ACDM
case [Egs. (8)—(10)].

As in the case of the ACDM data sets discussed in
Sec. IVB and found in the Albrecht-Skordis model [6],
we find once again that stage 4 ground data (this time based
on our fiducial IPL. model) constrain the parameters « and
V, slightly more strongly than the stage 4 space data do.
This is the opposite of what has been found with other
scalar field models [4,5].

D. Nontracking parameter space regions

Though the main focus of our work has involved an
analysis of the tracking regions of the parameter space of
the IPL. model, here we discuss briefly the results of our
MCMC analysis of the nontracking regions, i.e., initial
values of the scalar field from which the attractor is not
joined before or by the present time. In this case, our
motivation is simply to explore an interesting-looking class
of dark energy behaviors that have already been considered
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elsewhere in the literature (e.g., [32]). We acknowledge
that to the extent that the tracking behavior is a key reason
to consider the IPL model, the solutions considered in this
section do not benefit from the same degree of motivation.
As indicated previously, in order to allow the MCMC
algorithm to step more frequently in nontracking portions
of the parameter space and so bring out greater detail in the
thawing and some of the transient portions, we have also
generated MCMC chains with a lower bound of —3 placed
on log;o(¢;). These outlying regions of parameter space
associated with the thawing equation-of-state behavior
(again corresponding to ¢; — Mp and increasing w and
present-day dark energy density values in recent times) can
clearly be seen in the stage 2 and stage 3 error contours for
our IPL fiducial model depicted in Fig. 12 at @ = 0.5,
where the contours turn or “‘flare” upward and become
more “‘patchy.”. This unsmooth and flared appearance of
the 20 and 30 contours corresponds to the largest values of
¢, where the equation of state w(a) increases or does not
turn down as steeply near scale factors of unity and so is
exhibiting thawing-like behavior; therefore, the acceptable
range of « values significantly increases as w increases.
These portions of the likelihood contours correspond to
outlier points lying relatively far outside the main distri-
bution of parameter points stepped to by the MCMC chain.
In these regions of parameter space the scalar field starts to
evolve on the flatter portions of the IPL potential where
V(¢p;) is small. We see that there is a greater spread in V,
values, and, thus, V| is less constrained by the data here.
This is again related to the fact that the corresponding
equation-of-state values for ¢; ~ Mp do not turn down
as steeply near scale factors of unity (or even increase
towards values greater than —1) compared to w values
corresponding to ¢; < Mp. We can see that the area of

Stage 2 Stage 3 Photo Optimistic
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0.4 0.4
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FIG. 12. Vy — a 1o (68.27%), 20 (95.44%), and 30 (99.73%)
likelihood contours for DETF optimistic combined data sets
generated from a selected IPL background cosmological model
for the case of a cutoff of log;o(¢;) = —3 placed on the MCMC
algorithm. This effectively gives an enlarged and more detailed
view of nontracking and thawing-like regions of the parameter
space.
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these outlying likelihood contours shrinks and tightens
from stage 2 to stage 3 and again from stage 3 to stage 4.
The reduction in the V|, direction again shows the improv-
ing constraints that the higher quality data place on these
outlying transient and thawing regions. We also observe an
apparent illustration here of the ability of the stage 4
ground-based simulated data sets to better constrain the
thawing behavior than the stage 4 space-based data. This
appears to be consistent with the results obtained in the
MCMC analysis for the tracking regions of parameter
space. Moreover, the stage 4 space-based data rule out a
significant portion of the thawing region of the parameter
space, while the stage 4 ground LST optimistic data sets
appear to rule out nearly all of the thawing parameter
values.

Figure 13 depicts log,y(¢;) — a likelihood contours for
our IPL fiducial model for nontracking regions of parame-
ter space associated with transient and outlying thawing
equation-of-state behavior. Given that our MCMC analysis
does not focus nearly as much on nontracking regions of
parameter space than on the tracking regions, our chains
may not have equilibrated for the nontracking regions to
the same extent as they have done for tracking regions.
However, we believe that important trends can still be
ascertained from this analysis. In the stage 2 and stage 3
likelihood contours, a significant increase in the « direc-
tion for the largest ¢; values (¢p; — Mp) can be seen. This
corresponds to the fact, as discussed in Sec. II B, that for
the IPL model the range of acceptable « values is largest
for the largest initial scalar field values from which the
attractor is not joined by the present time. This is associ-
ated with the flatter part of the IPL potential that is less
sensitive to &, which controls the slope of the potential.

Stage 2

Stage 3 Photo Optimistic

0

-1

log, (0,
log, ,(0,)

-2

S
K

0.2 04 06 08 1 1.2 02040608 1 1.2
o o
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0
z z
£ £
3 0.5 1 1
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FIG. 13. log,o(¢;) — a 1o (68.27%), 20 (95.44%), and 30

(99.73%) likelihood contours for DETF optimistic combined
data sets generated from a selected IPL background cosmologi-
cal model for the case of a cutoff of log;y(¢;) = —3 placed on
the MCMC algorithm. This effectively gives an enlarged and
more detailed view of nontracking and thawing-like regions of
the parameter space.
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As can be seen from Eq. (9), flatter parts of the potential
correspond to cases where V(¢p;) ~ V() is small and ¢,
is large. Thus, even large values of a can be associated
with flatter portions of the potential here. So, as long as
V(¢;) ~ V(¢) remains very small and the ratio of & and
¢, does not become too large, a larger range of acceptable
values of «, leading to similar cosmologies, will be al-
lowed within the parameter space. Moreover, larger ¢;
values combined with larger « can lead to similar w(a) =
— 1 with behavior close to that of A. Hence, for stage 3 data
and especially stage 4 data, the MCMC chain will not step
as much in this region (since ACDM models and models
with similar behavior are ruled out to a greater extent by
stage 3 and stage 4 data). This explains the greater con-
straints placed in the « direction for the very largest ¢;
values for successive stages of data sets, and is consistent
with the overall trend of the likelihood contours in the
log,o(;) — @ space shrinking in the « direction with
higher quality data.

The extent to which larger « values (and thus significant
portions of the thawing regions of the parameter space) are
constrained and even ruled out by the stage 4 data sets also
reflects the degree to which evolving dark energy is con-
strained and disfavored by the higher quality data sets.
Once again, and perhaps more dramatically illustrated
here, we see that the ground-based stage 4 data sets con-
strain the thawing regions of parameter space for the IPL
model to a more significant extent than do the stage 4
space-based data sets.

V. DISCUSSION AND CONCLUSIONS

We have presented our MCMC analysis of the inverse
power law quintessence model using combined simulated
data sets forecast by the DETF and representing future dark
energy experiments. In doing so, we have analyzed the
impact of DETF simulated data models in the context of
the IPL model of dark energy and demonstrated the ability
of these experiments to place significant constraints on the
parameters of a quintessence model. We have found that
the effect of the DETF combined data models on the
parameter space of IPL models is broadly consistent with
the DETF findings. In particular, we have found a signifi-
cant improvement in the constraining power of each suc-
cessive stage of DETF simulated data sets.

We have shown likelihood contours for choices of com-
bined DETF data sets and found the increase in IPL dark
energy parameter constraints with increasing data quality
to be consistent with the DETF results in the wy — w,
parameter space. For example, the relative constraints on
the size of the V) — ¢; parameter space between different
simulated data sets lead to similar constraints computed by
the DETF in the wy — w, parameter space. A direct com-
parison with the DETF figure of merit was complicated by
the fact that the IPL. model depends on three parameters («,
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¢, and V}y), while the DETF FoM was calculated based on
the two-dimensional w, — w, space. However, we found
that the changes in the areas of projected two-dimensional
likelihood contours were consistent with the DETF results.
Specifically, the DETF reported a FoM (defined as the
inverse area inside the 95% likelihood contours in the w —
w, plane) that showed a gain of at least a factor of 3 in
going from stage 2 to good combinations of stage 3 data
sets (and thus roughly a factor of 3 decrease in the allowed
parameter area when moving from stage 2 to good combi-
nations of stage 3 data), and a gain of at least a factor of 10
in going from stage 2 to good combinations of stage 4 data.
We observed decreases by similar amounts in our projected
2D likelihood contours for pairs of IPL parameters.

In the course of this work we have also produced and
examined similar 2D likelihood plots of a much wider
range of combined DETF simulated data sets, including
data models with pessimistic estimates of systematic errors
and data models representing single DE observing tech-
niques. We found our results in the IPL. model parameter
space to be consistent with the constraints reported by the
DETF in the wy — w, space across the complete range of
data combinations and selections that we considered.

We constructed our simulated data sets from two differ-
ent background cosmologies, one with a cosmological
constant and one with an IPL scalar field with specific
parameter values. We found our results to be consistent
with those of the DETF in both cases. We have separately
analyzed cases constrained to having early tracking behav-
ior and other cases which focused on the nontracking
solutions. In each case we have placed bounds on some
of the IPL potential parameters as necessary to prevent the
MCMC algorithm from infinitely stepping in divergent
directions of parameter space (and thus never converging
to a stationary probability distribution) and to also enable
us to better examine and analyze details in enlarged regions
of parameter space corresponding to nontracking behavior.

In order to demonstrate the power stage 4 experiments
will have for detecting the evolution of dark energy, we
chose a specific background IPL scalar field model, with
parameter values of @ = 0.14, ¢, = 10715, and V, =
0.31, that was consistent with stage 2 data based on a
cosmological constant. This specific model corresponds
to w(a =1) = wy, = —0.95535, which deviates from
w = —1 by about 4.5%. One must look back to much
earlier times (e.g., a <0.2) and/or look to larger a pa-
rameter values in order to find more significant deviation
from w = —1 for this quintessence model (see Figs. 1-4).
We found that if the universe were in fact to be described
by this fiducial IPL quintessence model, then good stage 4
experiments would rule out a ACDM model by better than
30, indicating that there is indeed a dynamical component
to dark energy. For the IPL background cosmology, we
found that the ACDM model lies outside the 1o contour
but within the 20 contour at stage 2 and lies outside of the
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20 likelihood contour by stage 3. We also noted that the
variable o was somewhat more strongly constrained by
stage 4 ground data sets than with stage 4 space data. This
is consistent with the results reported by [6] for a similar
MCMC analysis carried out on the Albrecht-Skordis scalar
field model, but is opposite to the behavior displayed by the
exponential and pseudo-Nambu-Goldstone-boson scalar
field models as described in our other companion papers
[4,5]. This effect is currently under investigation and may
lead to new insights into the complementarity of ground-
and space-based stage 4 dark energy projects.

We have found, as also discussed in [2] and demon-
strated in our companion papers [4—6], that widely varying
families of functions w(a) for the IPL model are con-
strained by the DETF data sets in a similar way to the
constraints found in the wy — w, parameter space by the
DETF. In particular, we have seen that the main IPL model
potential parameter « is constrained by DETF data models
in a comparable way to the constraints found in the wy —
w, formulation by the DETF, even though the wy, — w,
parameters describe very different functions w(a). We
believe that this relates to the fact pointed out in [58] that
high quality DETF data sets will be able to constrain many
more properties of w(a) that are present in the wy — w,
parametrization alone and will thus be able to make good
measurements of significantly more than two equation-of-
state parameters. More specifically, by considering the IPL
family of w(a) functions and the wy, — w, family of func-
tions in terms of an orthonormal basis of independently
measured mode functions w j(a) (as discussed in
[2,13,58]), we are able to ensure that a wide variety of
different w(a) functions will be constrained as well as the
DETF wy — w, parameters. In other words, the various
quintessence models (discussed in this paper and in our
companion papers) are just sampling different random
combinations of the “well measured modes” discussed in
[13,58] and, in each case, lead to similar results. This also
appears to reflect the fact that many more functions w(a)
are measured than are contained in any of the quintessence
model w(a) family of functions alone [6]. Consequently,
modeling the impact of future dark energy experiments
using the two-parameter DETF scheme makes some sense
in that it gives a good indicator of the impact of scalar field
dark energy models with a similar number of parameters in
the quintessence potential.

One of the advantages of the techniques employed in
this work and the companion work [4-6] is that we can
explicitly examine how simulated data sets representing
future dark energy experiments can constrain actual theo-
retically motivated quintessence models (in addition to
abstract parametrizations such as the wy — w, ansatz) in
a significant way. As developed further in [7], this ap-
proach helps us understand how future data have the capa-
bility to reject some (or possibly even all) current dark
energy models entirely.
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