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Higher dimensional nonrenormalizable operators may modify the standard model Higgs potential in

many interesting ways. Here, we consider the appearance of a second vacuum which may play an

important role in cosmology. For a certain range of parameters, the usual second-order electroweak phase

transition is followed by a first-order phase transition that may drive the late time accelerated expansion of

the Universe. Such a potential contains kinklike solutions which in turn can play a crucial role in

reconstructing the global shape of the potential in colliders, as we explicitly demonstrate.
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I. INTRODUCTION

Today, observational data seem to indicate that our
Uuniverse is going through a period of accelerated expan-
sion. It remains a mystery, however, what the driving force
is behind this acceleration. This problem is known as the
dark energy problem. Observationally, the equation of state
for the Universe is w � �1, which corresponds to a con-
stant, or nearly constant, energy density. The minimal
solution is the true vacuum energy density or cosmological
constant. If this is indeed the case, this may represent the
worst discrepancy between theory and observation. The
value needed to explain the observed acceleration of the
Universe is ð10�3 eVÞ4. This value is some 124 orders of
magnitude smaller than the generic predicted value
ð1019 GeVÞ4. Since our Universe certainly does not have
the generic value of the vacuum energy density, there is a
serious question why it is so. This problem is known as the
cosmological constant problem, and we would like to
distinguish it from the dark energy problem. In particular,
it is possible to construct models with the scalar field where
the driving force behind acceleration is the scalar field
vacuum energy density. Most of the models in the litera-
ture, including quintessence, k-essence and ghost-
condensate, are such models [1–6]. While these models
can provide the mechanism for acceleration and resolve
some issues connected with it, they cannot solve the cos-
mological constant problem. In fact, no model dealing
solely with the scalar field without addressing gravity can
solve the cosmological constant problem. In the heart of
the cosmological constant problem is the fact that the
matter field Lagrangian is invariant under a shift by a
constant. Such a shift does not change the equations of
motion. However, gravity breaks that symmetry.
Therefore, it is very unlikely that the cosmological prob-
lem will be solved without addressing gravity in a funda-
mental way [7].

Here, we will adopt a common route. We will not try to
solve the cosmological constant problem. We will simply
propose a mechanism that can explain accelerated expan-
sion of the Universe using a scalar field, assuming that the

cosmological constant problem is solved. The scalar field
that is driving the acceleration does not have to be de-
coupled from the rest of the Universe [8–12]. It can, in fact,
be the standard model Higgs field. The Higgs field is
coupled to the other standard model particles which means
that we can test the model in colliders.
The properties of the standard model Higgs potential are

well known. They depend on the Higgs mass and self-
couplings. If we limit ourselves only to dimension-four
renormalizable operators, then the electroweak phase tran-
sition is second order [13]. However, it is clear that the
standard model is only an effective low energy theory and
there is no need to include only dimension-four operators.
Inclusion of the higher dimensional nonrenormalizable
operators may introduce very interesting features. In par-
ticular, adding dimension-six and dimension-eight opera-
tors can introduce two more symmetric minima. Then, for
a certain range of parameters, the usual second-order elec-
troweak phase transition is followed by a first-order phase
transition. This subsequent phase transition may drive the
late time accelerated expansion of the Universe and yet
leave the imprint in colliders. Here, we study such a
scenario in detail.

II. MODEL

We consider the standard model Lagrangian for the
Higgs field, invariant under the electroweak transforma-
tions. We include the nonrenormalizable dimension-six
and dimension-eight operators

Vð�Þ ¼ ��2�y�þ �1ð�y�Þ2 � �2ð�y�Þ3
þ �3ð�y�Þ4 þ V0; (1)

where� is the standard electroweak Higgs doublet. V0 is a
constant which is an overall shift of the potential.
At zero temperature the CP-even scalar state can be

expanded in terms of its zero-temperature vacuum expec-
tation value v and the physical Higgs boson H:

h�i ¼ v; � ¼ H þ vffiffiffi
2

p � �ffiffiffi
2

p : (2)
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The potential as a function of � is given by

Vð�Þ ¼ ��2

2
�2 þ �1

4
�4 � �2

8
�6 þ �3

16
�8 þ V0: (3)

Substituting Eq. (2) into Eq. (3) and reading off the coef-
ficient in front of the quadratic terms in H, we can find the
physical Higgs field mass mH as

mH ¼ ��2 þ 3�1v
2 þ ð7=2Þ�3v

6 � ð15=4Þ�2v
4: (4)
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(5)

we can then rewrite Eq. (3) in a more convenient way,

Vð�Þ ¼ �"0�
3
1�

3
2�

2 þ �3

16
ð�2 ��2

1Þ2ð�2 ��2
2Þ2 þ V 0

0;

(6)

where

V 0
0 � V0 � �3

16
�4

1�
4
2: (7)

Here we note that we have restriction on �1. From Eq. (5),
requiring that both�1 and�2 be real, we have the require-
ment that

1

4

�2
2

�3

< �1 <
3

8

�2
2

�3

: (8)

The role of the parameter "0 is to introduce a controlled
fine-tuning of Vð�Þ. If "0 ¼ 0, the potential in Eq. (6) has
two degenerate minima at� ¼ �1 and� ¼ �2. If "0 � 0,
the difference between the energy densities of the two
vacua is

�V ¼ "0�
3
1�

3
2ð�2

2 ��2
1Þ: (9)

For the sake of definiteness, we take that �2 >�1.
V0 has been added to the potential to specify the false

vacuum energy density. We require that Vð�1Þ �
ð10�3 eVÞ4. This choice represents a vacuum energy den-
sity that is sufficient to drive the accelerated expansion of
the Universe. We do not explain the appearance of such a
small number. The solution to the true cosmological con-
stant problem may explain it. For example, an interesting
numerology 10�3 eV � ðTeV=MPlÞTeV hints toward a
gravitational origin of this small number. In particular,
operators suppressed by powers of MPl might be respon-
sible for it.

Vð�Þ in Eq. (6) is the zero-temperature potential. In
order to study the sequence of phase transitions we need

to calculate the finite-temperature effective potential.
Finite-temperature effects are approximated by adding a
thermal mass to the potential. The potential is then written
as Vð�; TÞ ¼ cT2�2=2þ Vð�; 0Þ, where c is generated by
the quadratic terms that acquire a �-dependent mass in the
high-T expansion of the one-loop thermal potential. Note
that there are also terms which are proportional to T2�4;
however, these terms only lead to small corrections to the
potential [15].
If the mass of a certain species of particles is greater than

the temperature of the plasma, the thermal corrections due
to this species decouple exponentially. Therefore, strictly
speaking, one has to multiply the contribution from each of
the species by the step function�ðT �mÞ [16]. While this
effect may modify the fine details of the phase transition
the general qualitative features will remain unchanged.
The effective potential can then be written as

Veffð�; TÞ � �"ðTÞ�3
1�

3
2�

2 þ �3

16
ð�2 ��2

1Þ2ð�2 ��2
2Þ2

þ V 0
0; (10)

where

"ðTÞ ¼ "0 � cT2

�3
1�

3
2

: (11)

Following the procedure in [17,18], the constant c is given
by

c ¼ 1
16ð3g2 þ g02 þ 4y2t þ 1

32�1Þ: (12)

g and g0 are the SUð2ÞL and Uð1ÞY gauge couplings, and yt
is the top Yukawa coupling. All temperature dependence is
in "ðTÞ.
Now, we can study that change of the shape of the

potential as the Universe cools down (as shown in
Fig. 1). At very high temperatures, before the electroweak
symmetry breaking, the potential has a characteristic ‘‘U’’
shape with a single minimum at � ¼ 0. The whole poten-
tial is symmetric and we can consider only �> 0 semi-
plane. The vacuum energy density of the Higgs field before
the electroweak phase transition is generically of the order
of the characteristic energy scale of the phase transition,
i.e. �100 GeV. However, notice that the Higgs field is
sitting there only before the electroweak phase transition
where the temperature of the Universe is high and the
Universe is radiation dominated. The Higgs field has a
zero expectation value and the electroweak symmetry is
not broken. As T falls, the minimum at � ¼ 0 becomes a
maximum, while simultaneously two new minima appear.
The Higgs field then rolls down the potential to the first
minimum at � ¼ �1. There, the Higgs field has a nonzero
expectation value and the electroweak symmetry is broken.
This is the standard electroweak phase transition which is
of the second order. Thus, we do not change the standard
picture of the early Universe. We currently live in � ¼ �1
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vacuum, where the vacuum expatiation value of the Higgs
field is �1 ¼ 246 GeV.

However, the temperature-dependent evolution of the
Higgs field potential does not stop there. The other mini-
mum at � ¼ �2 keeps descending as the temperature in
the Universe drops. Eventually, below some critical tem-
perate, the minimum at � ¼ �2 becomes the true global
minimum, while the minimum at � ¼ �1, that we live in,
becomes a false minimum.

In order to justify an effective field theory description of
the nonrenormalizable operators, it is important that the
coefficients with negative mass dimension in the potential
are considerably less than unity (in units of TeV, assuming
that the new physics comes at the TeV scale), as is the case
for the values in the plot in Fig. 1. The second requirement
is that the scalar field vacuum expectation values are lower
than the TeV scale. In the plot in Fig. 1, the value of the
second vacuum expectation value is �2 ¼ 0:8 TeV which
is getting close to the new physics scale. Note that the
values chosen for the plot are just for the purpose of
illustration; more detailed analysis of the possible values
of the parameters in the potential will be done in Sec. V.

The critical temperature is given by "ðTÞ ¼ 0. From
Eq. (11) we get

T2
c ¼ "0�

3
1�

3
2

c
: (13)

At T ¼ Tc we have �V ¼ 0 and the heights of the two

minima are equal. For T < Tc, the second minimum at �2

becomes the true minimum with the energy density differ-
ence between the vacua given by Eq. (9).
At high temperatures there is also an overall correction

to the potential that is proportional to NT4, where N is the
number of relativistic particle species in the plasma. This
contribution could modify the critical temperature if there
are different numbers of relativistic species in the two
adjacent vacua [19–21]. We examine this effect in
Appendix C.
The existence of the lower minimum than the one we

currently live in indicates that our Universe will eventually
tunnel into the true vacuum. This phase transition may
drive the late time accelerated expansion of the Universe.
The tunneling rate depends on the energy difference be-
tween the vacua which in turn depends on the parameter "0.
For completeness, we note that one could set �1 >�2,

with �1 identified with the standard electroweak vacuum.
In this case, the electroweak phase transition will be more
complicated than usually thought, since it would be com-
posed of two subsequent phase transitions before the Higgs
field settles down into today’s vacuum �1. This interesting
possibility is outside of the scope of this paper.

III. TUNNELING RATE

An important question is, how long will the Universe
exist in the false vacuum state � ¼ �1? The transition
from the false to the true vacuum occurs from nucleation
of bubbles of true vacuum inside the false vacuum. The
transition probability per unit space-time volume, using the
semiclassical approximation, is given by

� ¼ Ae�SE ; (14)

where SE is the Euclidean action of the bounce solution
and A is a dimensionful constant, which depends on the
loop corrections to the potential Eq. (3). However, here we
are only interested in the order of magnitude transition rate,
and thus we will ignore these corrections. To calculate SE,
we follow the method developed by Coleman [22].
The one-dimensional Euclidean action per unit volume

for the tunneling is, to zeroth order in "0,

S1 ¼
Z �2

�1

d�0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vð�0Þ

q

� 2

15

ffiffiffiffiffiffi
�3

8

s
ð�2 ��1Þ3ð�2

1 þ 3�1�2 þ�2
2Þ; (15)

where we are again assuming that �2 >�1. In the zero-
temperature limit and thin wall approximation, the radius
the critical bubble is then

R0 ¼ 3S1
�V

¼ 3

5

ffiffiffiffiffiffi
�3

8

s
ð�2 ��1Þ2ð�2

1 þ 3�1�2 þ�2
2Þ

"0ð�1 þ�2Þ�3
1�

3
2

:

(16)

FIG. 1 (color online). The temperature dependence of the �8

Higgs field potential. As the temperature decreases the minimum
at � ¼ 0 becomes the maximum and the field starts rolling
down. Simultaneously two new minima appear. The standard
electroweak (second-order) phase transition is over when the
Higgs field ends up in the first vacuum at � ¼ �1. Then the
second minimum at � ¼ �2 descends and becomes the true
vacuum. This drives the first-order phase transition that may
explain the late time accelerated expansion of the Universe. The
picture is symmetric with respect to the vertical axis. The values
used in plot are �1 ¼ 0:246 TeV, �2 ¼ 0:8 TeV, �3 ¼
0:154 TeV�4 and "0 ¼ 0:015 TeV�4.
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For anOð4Þ symmetric bubble, the Euclidean action is then
given by

SE ¼ � 1

2
�V�2R4

0 þ 2�2R3
0S1

¼ 8�2
3

120 000

�2ð�2 ��1Þ9ð�2
1 þ 3�1�2 þ�2

2Þ4
"30ð�1 þ�2Þ3�9

1�
9
2

:

(17)

At zero temperature, Eq. (14) gives the decay rate per unit
volume per unit time. In order for our observable Universe,
whose four-volume is of the order of t4Hubble, to remain in

the false vacuum, one must require that �t4Hubble � 1.
Taking tHubble � 1010 yr, we find that sufficient stability
for the false vacuum is obtained for SE > 400. With the
generic value �1 � 1, we see that vacuum stability requires
only "0 � 0:012 TeV�4. This is also enough to make the
thin wall approximation valid.

To ensure that the above analysis remains true for the
early Universe, we calculate the temperature-dependent
decay rate in the high temperature limit. At finite tempera-
tures the Oð4Þ symmetric bounce is approximately the
periodic in time Oð3Þ symmetric solution. In this solution,
the period is 1=T (see [23]). The decay exponent, i.e. the
Euclidean action, now has the form

SE ¼ S3ð�; TÞ
T

; (18)

where S3 is the three-dimensional action of anOð3Þ bubble.
The new radius of the critical bubble is now

RðTÞ ¼ 2S1
�VðTÞ

¼ 4

15

ffiffiffiffiffiffi
�3

8

s
ð�2 ��1Þ2ð�2

1 þ 3�1�2 þ�2
2Þ

"ðTÞð�1 þ�2Þ�3
1�

3
2

: (19)

The three-dimensional action of the Oð3Þ bounce solution
is then given by

S3ðTÞ ¼ � 4

3
�RðTÞ3�VðTÞ þ 4�RðTÞ2S1

¼ B
�ð�2 ��1Þ7ð�2

1 þ 3�1�2 þ�2
2Þ3

"ðTÞ2ð�1 þ�2Þ2�6
1�

6
2

; (20)

where

B � 128�3=2
3

10 125
ffiffiffiffiffiffiffiffi
512

p : (21)

Therefore the temperature-dependent decay rate is given
by Eqs. (14), (20), and (21), as

�� exp

�
� const

T"ðTÞ2
�
; (22)

where "ðTÞ is given in Eq. (11). We can see here some
important properties. First, at high temperature T � Tc,

when � ¼ �1 is the lowest energy state, the transition rate
is large. Thus most of the Universe ends up in that mini-
mum. At T ¼ Tc, we have that "ðTÞ ¼ 0, and thus the
transitions between the vacua are suppressed. The high
temperature approximation is valid, at least formally, at
the temperatures slightly below Tc. It is there that the decay
rate in Eq. (22) is maximal and we need to correct the zero-
temperature estimate for "0. Fortunately, a slight correction
"0 � 0:005 TeV�4 makes the decay rate safely small. As
shown earlier, for T � Tc, � ¼ �1 is a false minimum,
but the transition rate to the true vacuum at � ¼ �2 is
suppressed by the bare value of "0. We saw that "0 �
0:01 TeV�4 makes the transition time larger than the cur-
rent Hubble time. In order to incorporate a somewhat
stronger constraint for high temperatures, we require "0 �
0:005 TeV�4.
We have to make sure that energetic processes in our

Universe (e.g. cosmic ray collisions) were not able to
initiate the formation of a true vacuum bubble, which
would in turn encompass most of the visible Universe by
now. Fortunately, it is not a simple thing to create a vacuum
bubble in a high energy collision. This requires not just
sufficient energy but a coherent superposition of a large
number of high energy quanta over a volume large com-
pared to the characteristic energy. Such processes require
high densities and high temperatures, not only high ener-
gies. The height of the barrier between the false and true
vacua is

Vmax ¼ �3

256
ð�2

2 ��2
1Þ4: (23)

This is approximately ð0:1 TeVÞ4 for the values �1 �
0:246 TeV, �2 � 0:8 TeV and �3 � 0:154 TeV�4. Such
temperatures are unlikely to soon be achieved in colliders,
and are probably not achieved over a large enough volume
even in the highest energy cosmic ray collisions.
The critical bubble radius, Eq. (16), is 107 TeV�1 for

our parameters ("0 � 0:098 TeV�4, �1 � 0:246 TeV,
�2 � 0:8 TeV and �3 � 0:154 TeV�4). Given Eq. (23),
this suggests that we need approximately

Nquanta ’
�
4�R3

0

3
Vmax

�
V�1=4
max > 109ð1="0Þ3 (24)

individual excitations coherently superimposed. Moreover,
Nquanta grows very fast, as "�3

0 , making it extremely diffi-

cult to create a critical bubble in a high energy collision.
In the case of tunneling from de Sitter to anti–de Sitter

(AdS) vacuum, there is an additional suppression due the
different asymptotics of these space-times. The size of the
critical bubble in AdS ends up being larger than one might
generically expect [24], which further suppresses the
transition.
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IV. FUTURE OF THE UNIVERSE

In this context we can address the question of the future
of our Universe. Phase transitions give quite different
predictions for the future of our Universe than the true
cosmological constant. In the case of the true cosmological
constant, accelerated expansion never stops. Acceleration
will slowly drive most of today’s visible Universe out of
the cosmological horizon. In a distant enough future, the
whole visible Universe will be a gravitationally bound
system consisting of only the Milky Way and Andromeda
galaxies [25,26].

However, in the context of phase transitions we have
several different possibilities. First, if the difference be-
tween the two vacua is very small (i.e. the parameter "0 �
0), the phase transition will never be completed. The
bubble nucleation rate will be very slow and they will
never percolate, since the background is expanding with
acceleration. This scenario is similar to the true cosmo-
logical constant, except for the possibility to have a few
bubbles here and there locally.

The more interesting case is when the parameter "0 takes
much less fine-tuned values, for example, those which
allow for the phase transition to be completed. Phase
transitions are violent events and many things will be
different in the new vacuum after the completion of the
phase transition. The true vacuum at � ¼ �2 clearly has a
different Higgs field vacuum expectation value than the
vacuum we currently live in. This means that most of the
standard model particles will have different masses. In
such a Universe it is very difficult to imagine life similar
to ours due to the well known anthropic reasons.

Finally, for the perhaps most generic value of "0 �
0:01 TeV�4, the phase transition is just about to happen,
in cosmological terms. Since the characteristic scale in the
Higgs potential is of the order of 100 GeV, the requirement
that the false vacuum at � ¼ �1 is shifted up from zero by
a tiny amount of 10�3 eV directly implies that the true
vacuum at � ¼ �2 is deeply AdS, i.e. has a negative
vacuum energy density [27–30]. The transition from the
false to the true vacuum will be described by the Coleman-
De Luccia instanton [31]. According to [32], any initial
instabilities in the AdS space will quickly grow and cause
the collapse of the whole Universe into a black hole. In
such a scenario it is difficult to imagine any life at all.

V. CONSTRAINING THE VALUES OF
PARAMETERS IN THE POTENTIAL

The original potential has four parameters:�, �1, �2 and
�3. It would be interesting to find the possible values that
do not lead to dangerous exotic vacua. The main constraint
comes from Eq. (17), where we require that SE � 400. The
requirement that today we live in the standard electroweak
vacuum is that �1 ¼ 246 GeV. From Eq. (5), �1 can be
expressed as �1 ¼ �1ð�1; �2; �3Þ, which puts one con-

straint on the possible values of parameters. From this
constraint we can express �3 in terms of �1 and �2. In
order to make a useful plot of SE in terms of the two
parameters, we need to fix one more parameter. We do

that for� by setting the value of the Higgs mass (MHiggs ¼ffiffiffi
2

p
�). Since the exact value of the Higgs mass is not

known, we will make two plots, one assuming that the
Higgs mass takes its lowest (experimentally) allowed value

0.

0.2

1

0.

1.

2400

800

SE

FIG. 2 (color online). A scan over the allowed range of pa-
rameters �1 and �2 in the original potential (3) which do not lead
to the phenomenologically excluded new vacua. The constraint
comes from the requirement that the Euclidean action SE � 400.
For this plot, we set the value of the Higgs mass to 114 GeV.

0.

0.2
1 0.

1.

2

0

10

3

FIG. 3 (color online). The allowed range of the parameter �3

in the original potential (3) which does not lead to the phenom-
enologically excluded new vacua. We use Eq. (5) and the
requirement that �1 ¼ 246 GeV to express �3 in terms of �1

and �2. For this plot, we set the value of the Higgs mass to
114 GeV.
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of 114 GeV (Fig. 2) and the other one assuming that the
Higgs mass takes the value of 200 GeV (Fig. 4).

If we set the value of the Higgs mass to 114 GeV, from
Fig. 2 we see that possible ranges of the allowed values for
the parameter �1 and �2 are 0< �1 < 0:2, and 0< �2 <
1 TeV�2. Incorporating these limits into the constraint
equation �1 ¼ �1ð�1; �2; �3Þ, we get that a possible range
of the allowed values for the parameter �3 is given by 0<
�3 < 10 TeV�4, as shown in Fig. 3.

If we set the value of the Higgs mass to 200 GeV, from
Fig. 4 we see that possible ranges of the allowed values for

the parameter �1 and �2 are 1< �1 < 1:5, and 0< �2 <
1 TeV�2. Incorporating these limits into the constraint
equation �1 ¼ �1ð�1; �2; �3Þ, we get that a possible range
of the allowed values for the parameter �3 is given by 0<
�3 < 10 TeV�4, as shown in Fig. 5. As mentioned before,
the effective field theory description of the nonrenormaliz-
able operators is valid only for the values of �2; �3 < 1 (in
units of TeV, assuming that the new physics comes at the
TeV scale).
Having the allowed range of parameters in the potential

we can estimate the range of values that the second vacuum
�2 can take. From (5) we can see that �2 can take values
from 300 GeV to well above a TeV. Again, the effective
field theory description is valid only for the values of �2

smaller than TeV.

VI. RECONSTRUCTING THE POTENTIAL IN
COLLIDERS

The main feature that distinguishes this type of models
from other scalar field models (say, quintessence) is the
explicit connection with particle physics and the possibility
of reconstructing the potential in colliders. With the in-
ception of the LHC, we hope to be able to achieve this
there.
In this model, we explicitly used the �8 potential. How

do we probe the global structure of the potential? If we
excite the field locally, only around one vacuum, then we
can only probe the local structure of the potential. In order
to probe the global shape of the potential we need to excite
a solution that extrapolates between the vacua. These are
nonperturbative kinklike solutions. In [33], the author con-
structed a recipe for the reconstruction of the potential
when kinklike solutions are present in the theory. The
base of the recipe is the inverse scattering method. In the
direct scattering methods we start from the known potential
and calculate the eigenfrequencies, i.e. the energies of the
scattered particles. In the inverse scattering method, we
start from the known eigenfrequencies (acquired presum-
ably in the scattering experiments) and calculate the shape
of the potential which is the cause of the scattering.
In our context, kinklike solutions which connect the two

vacua correspond to the bubbles of the true vacuum. Inside
the bubble we have the true vacuum while outside is the
false vacuum. The true vacuum is energetically favored so
the volume term contributes to the pressure directed out-
ward. However, the surface tension of the bubble tends to
contract the bubble. The critical bubble is the one which is
large enough so that these two forces are balanced. We
showed above that the production of the critical bubble of
the true vacuum which is capable of expanding is very
suppressed. However, production of a subcritical bubble
which will collapse under its own tension should not be
severely suppressed. By studying production and decay of
these subcritical bubbles we can learn a lot about the global
shape of the potential.

0.

1.5

1

0.

1.

2

400

800

SE

FIG. 4 (color online). A scan over the allowed range of pa-
rameters �1 and �2 in the original potential (3) which do not lead
to the phenomenologically excluded new vacua. The constraint
comes from the requirement that the Euclidean action SE � 400.
For this plot, we set the value of the Higgs mass to 200 GeV.
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2

0

10

3

FIG. 5 (color online). The allowed range of the parameter �3

in the original potential (3) which does not lead to the phenom-
enologically excluded new vacua. We use Eq. (5) and the
requirement that �1 ¼ 246 GeV to express �3 in terms of �1

and �2. For this plot, we set the value of the Higgs mass to
200 GeV.
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Bubbles of true vacuum are solitonlike solutions, and in
zeroth order the production cross section should be just the
geometrical cross section, i.e. �R2

bubble, where Rbubble is the

geometrical radius of the bubble. The situation is some-
what similar to mini-black-hole production in high energy
collisions. Black holes are gravitational solitons and their
production cross section was shown to be just the geomet-
rical cross section, i.e. �R2

BH [34]. However, there is one

significant difference. While in the of case mini-black-hole
production, according to the hoop conjecture, there are no
phase space suppression factors, in the case of the bubble
the suppression factor must be present. A bubble is a
coherent superposition of a certain number of the scalar
field quanta, say, N. Therefore the suppression factor

would likely go as e�entropy which is roughly e� lnðN!Þ �
e�N . For a subcritical bubble where N is a few, the pro-
duction may be possible [35]. For a critical bubble with
large N, the production is highly suppressed. Note also that
the threshold for the bubble production would be Nm,
where m is the mass of the scalar field quanta.

If the bubble of the true vacuum is produced, it is
unlikely that it will be produced in its ground state.
Instead, we expect that it will be produced in a highly
excited state. Then the decay of such a bubble will give off
the eigenvalues of the potential. Since bubbles are coherent
states of a certain number of the scalar field quanta, they
would dominantly decay into those scalar field quanta (in
this case the Higgs field). The eigenvalues of the potential
would come from the (reconstructed) energy distribution
of emitted scalar field quanta. Because of the spherically
symmetric configuration of the bubble, one of the main
signatures of the bubble production would be a spherically
symmetric distribution of emitted scalar field quanta. For
the light Higgs, the main decay channel will be through b
quarks, which further decay to a c quark, a lepton (which
may serve as a trigger) and a neutrino. In that case, b
quarks will be produced copiously. Because of the high
multiplicity, b quarks may not be very energetic. The main
question is then whether this signature can be distinguished
from the QCD background. Two things are important in
this context: first, high degree of spherical symmetry, and
second, many jet events. For example, for five (and likely
more) jet events the trigger threshold may be lowered to
about 50 GeV, in which case the QCD background can be
kept under control. The heavier Higgs is much easier to
analyze. For the heavy Higgs, decay channels including
W	 and Z gauge bosons become significant. Once the ZZ
branching ratio becomes significant, the experimental sig-
nature is much more distinct. The other question is the
possibility of the reconstruction of the original energy of
the bubble through the decay products. Situations contain-
ing neutrinos in the final stage are specially inconvenient.
However, based on earlier experience, say, with the top
quark, we know that something like that is possible.
Analyzing other decay products, one may identify the

exact channel of decay and thus estimate the energy taken
by neutrinos.
If a scalar field theory is written in the standard form as

L ¼ 1
2@��@��� Vð�Þ; (25)

then the equations of motion can be written in the
Schrödinger-like form�

� d2

dx2
þ d2Vð�0ðxÞÞ

dx2

�
c nðxÞ ¼ !2

nc nðxÞ: (26)

For simplicity, the field �ðxÞ is a function of only one
coordinate. �0ðxÞ is the (unknown) profile function of the
kink solution. The task is to determine the potential Vð�Þ
knowing the eigenvalues !n. Though the answer is not
unique, additional theoretical input (e.g. total energy of the
bubble and some perturbative interactions) can possibly
reduce degeneracies. The zero mode c 0 ¼ d�0=dx which
corresponds to the eigenvalue !0 ¼ 0 plays a special role.
In theories where kink solutions are present the
Bogomol’nyi equation directly relates the zero mode to
the shape of the potential

c 0 ¼ d�0ðxÞ
dx

¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vð�0Þ

q
: (27)

Therefore

Vð�0Þ ¼ 1
2c 0ðxÞjxð�0Þ; (28)

where xð�0Þ is obtained by inverting�0ðxÞwhich is in turn
obtained by integrating the relation c 0 ¼ d�0=dx. Thus,
by finding the zero mode solution to Eq. (26) we can
reconstruct the shape of the potential. The problem is
that, in most of the cases, the zero mode is coupled to all
of the higher modes, and we need to solve a coupled set of
differential equations. However, as shown in [33], two of
the most important theories containing kink solutions, i.e.
sine-Gordon and �4 theory, have, respectively, one and
two eigenfrequencies. In these cases we can solve the
equations analytically. In more complicated cases, it is
possible that the equations need to be solved numerically.
We now come back to our �8 potential. Since the

original potential has four parameters ð�;�1; �2; �3Þ, we
can infer that in this case there are four eigenfrequencies:
�1, �2, �3, and �4. Following the procedure in [33], in the
special with a high degree of symmetry between the ei-
genvalues, one can reconstruct the potential (for details see
Appendix A)

Vð�0Þ ¼ �2

2

�
1� 9�2

0

4�2

�
4
; (29)

where� is a normalization constant. Here we recognize the
�8 potential. In order to get a desired potential with two
pairs of nonequivalent minima we need to relax the con-
ditions on the eigenvalues. In this more generic case, the
potential cannot be obtained in an analytic form since the
differential equations must be solved numerically. The
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result of the calculations presented in Appendix A is shown
in Fig. 6. By comparing the potential in Eq. (6) with the
reconstructed one in Fig. 6, we can infer the values of the
parameters in our original potential. In particular, we can
obtain the value of the fine-tuning parameter "0. If the
solution to the true cosmological constant implies that
the true vacuum energy density vanishes, then the parame-
ter "0 must give for the energy density difference between
the vacua in Eq. (9) the value of �V � ð10�3 eVÞ4.

VII. CONCLUSION

The electroweak standard model is believed to be only a
low energy effective theory. For this reason we may be
allowed to introduce higher dimensional nonrenormaliz-
able operators. We expect new physics to kick in close to a
TeV scale. Here we studied how these higher dimensional
nonrenormalizable operators may modify the standard
model Higgs potential in a manner interesting for cosmol-
ogy. We considered the appearance of a second vacuum in
the Higgs field potential. We calculated finite-temperature
corrections and showed that the usual second-order elec-
troweak phase transition is followed by a first-order phase
transition that may drive the late time accelerated expan-
sion of the Universe. Such a potential contains kinklike
solutions which in turn can play a crucial role in recon-
structing the global shape of the potential in colliders. We
explicitly demonstrated it using the inverse scattering
method adopted to studies of theories where kinklike so-
lutions are present.

We addressed the future of our Universe in this context
which is quite different from the future dictated by the true
cosmological constant.

Since our model does not address gravity in a funda-
mental way, it does not solve the cosmological constant

problem. It simply addresses the dark energy problem as all
of the other scalar field models do—postulates the poten-
tial consistent with a given equation of state, which in this
case is w ¼ �1. The advantage here is that we do not need
to postulate the existence of a new scalar field completely
decoupled from the rest of the Universe. As an additional
bonus in this model, the potential can be in principle
reconstructed in colliders.
While we do not explain the appearance of a small

number 10�3, an interesting numerology 10�3 eV �
ðTeV=MPlÞTeV hints toward a gravitational origin of this
small number. Operators suppressed by powers of MPl

might be responsible for it.
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APPENDIX A: RECONSTRUCTION OF
POTENTIAL

We illustrate here the inverse scattering problem, i.e.
reconstruction of the potential from its eigenvalues.
Knowing that the �4 potential has two eigenvalues, we
expect that the �8 potential has four. We take the four
eigenvalues of the bound states to be �1, �2, �3, and �4. We
will first consider the special case where the solution can be
found analytically, and then we will do numerical analysis
of a more generic case.
The translational mode is always the lowest, so we can

write �4 ¼ 0, since we are using the notation �i > �iþ1.
Following [33], we find the potential containing n of the
highest bound states:

UnðxÞ ¼ f2n þ f0n þ �2
n; (A1)

where the function fnðxÞ satisfies
f0n � f2n þUn�1 ¼ �2

n: (A2)

Defining fnðxÞ � �w0
n=wn we can rewrite Eq. (A2) as

� w00
n þUn�1wn ¼ �2

nwn: (A3)

This equation will have two linearly independent solutions;
however, if we require that Un is even under parity trans-
formations, then we must also require wnð�xÞ ¼ wnðxÞ.
This condition then eliminates one of the linearly indepen-
dent solutions.
Therefore to find U1 we consider

U1 ¼ f21 þ f01 þ �2
1 (A4)

and solve

� w00
1 þU0w1 ¼ �2

1w1: (A5)

Now if we take U0 ¼ �2
0 and define �

2 � �2
0 � �2

1, we can

then write Eq. (A5) as

FIG. 6 (color online). Reconstruction of the �8 potential using
the inverse scattering method. The specific values for this plot
are � ¼ 1, � ¼ �4, �2

2 � �2
3 ¼ 5 and �2

3 � �2
4 ¼ �2

3 ¼ 3. The
plot is symmetric with respect to vertical axis.
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� w00
1 þ �2w1 ¼ 0: (A6)

The solution to this is w1 ¼ coshð�xÞ, and therefore

f1ðxÞ ¼ �� tanhð�xÞ: (A7)

Substituting into Eq. (A4) yields

U1 ¼ �2½1� 2sech2ð�xÞ
 þ �2
1: (A8)

To find U2 we consider

U2 ¼ f22 þ f02 þ �2
2 (A9)

and solve

� w00
2 þU1w2 ¼ �2

2w2: (A10)

To solve Eq. (A10) we use Eq. (A8). Now defining z � �x
and 	2 � �2

1 � �2
2 we can then write Eq. (A10) as

d2w2

dz2
þ ð�þ 2sech2ðzÞÞw2 ¼ 0; (A11)

where

� � �
�
1þ 	2

�2

�
: (A12)

In general the solution for w2 involves the hypergeometric
function; however, it is instructive to consider a special
case. If we take 	2=�2 ¼ 3, the solution for w2 is w2 ¼
cosh2ð�xÞ, and therefore

f2ðxÞ ¼ �2� tanhð�xÞ: (A13)

Substituting into Eq. (A9) yields

U2 ¼ 2�2½2� 3sech2ð�xÞ
 þ �2
2: (A14)

To find U3 we consider

U3 ¼ f23 þ f03 þ �2
3 (A15)

and solve

� w00
3 þU2w3 ¼ �2

3w3: (A16)

To solve Eq. (A16) we use Eq. (A14). Now defining z � �x
and 
2 � �2

2 � �2
3 we can then write Eq. (A16) as

d2w3

dz2
þ ð�þ 6sech2ðzÞÞw3 ¼ 0; (A17)

where � � �ð4þ 
2=�2Þ. In general the solution for w2

involves the hypergeometric function; however, it is more
instructive to consider a special case. If we take 
2=�2 ¼
5, the solution for w3 is w3 ¼ cosh3ð�xÞ, and therefore

f3ðxÞ ¼ �3� tanhð�xÞ: (A18)

Substituting into Eq. (A15) yields

U3 ¼ 3�2½3� 4sech2ð�xÞ
 þ �2
3: (A19)

Finally to find U4 we consider

U4 ¼ f24 þ f04 þ �2
4 ¼ f24 þ f04 (A20)

and solve

� w00
4 þU3w4 ¼ �2

4w4: (A21)

To solve Eq. (A21) we use Eq. (A19). Now using z � �x
we can write Eq. (A21) as

d2w4

dz2
þ ð�þ 12sech2ðzÞÞw4 ¼ 0; (A22)

where � � �ð9þ �2
3=�

2Þ. In general the solution for w4

involves the hypergeometric function; however, it is more
instructive to consider a special case. If we take �2

3=�
2 ¼

7, the solution for w4 is w4 ¼ cosh4ð�xÞ.
The profile function is defined as

�0 ¼ �
Z dx

wN

; (A23)

where N is the highest eigenvalue, in this case 4, and � is a
normalization constant. Therefore here we can write

�0 ¼ �

3
tanhð�xÞðsech2ð�xÞ þ 2Þ: (A24)

For significantly high values of �x this can be approxi-
mated as

�0 � 2�

3
tanhð�xÞ: (A25)

The symmetry breaking potential is then defined from the
Bogomol’nyi equation

Vð�0Þ ¼ 1
2c

2
0ðxÞjxð�0Þ; (A26)

where

c 0ðxÞ ¼ d�0

dx
: (A27)

Therefore we can write the symmetry breaking potential as

Vð�0Þ ¼ �2

2
sech8ð�xÞ ¼ �2

2

�
1� 9�2

0

4�2

�
4
; (A28)

where we used Eq. (A25). As expected, the potential in
question is �8. However, the conditions that we imposed
on the eigenvalues introduced a high level of symmetry in
the potential. In order to get a desired potential with two
pairs of nonequivalent minima we need to relax the con-
ditions on the eigenvalues.
Now, we consider a more generic case of the potential

that we need to reconstruct. In this case we search for
solutions to our given potential, Eq. (1). Such as in the
special case, the potential U1 is given by Eq. (A4). Using
this potential, we can again solve the differential equation
for w1ðxÞ. The solution for w1ðxÞ is given by w1ðxÞ ¼
coshð�xÞ, which then yields f1, Eq. (A7). From
Eqs. (A8) and (A10), we can then solve the differential
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equation which has a solution

w2ðxÞ ¼ P
ffiffiffiffiffiffi��

p
1 ðtanhð�xÞÞ þQ

ffiffiffiffiffiffi��
p
1 ðtanhð�xÞÞ; (A29)

where � is the same as in the special case above, Eq. (A12),
and P and Q are the Legendre polynomials of the first and
second kind, respectively. From the parity condition, we
can see that for the Legendre polynomials of the second

kind
ffiffiffiffiffiffiffiffi��

p
must be an even integer. For the Legendre

polynomial of the first kind, the only nonzero terms are

for
ffiffiffiffiffiffiffiffi��

p ¼ 0; 1. For
ffiffiffiffiffiffiffiffi��

p ¼ 0, this does not satisfy the
parity condition, and hence it is not an allowed solution.

For
ffiffiffiffiffiffiffiffi��

p ¼ 1, we then have the solution

w2ðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tanhð�xÞ2

q
¼ 	sechð�xÞ:

This then gives that the function f2 is given by

f2 ¼ 	� tanhð�xÞ:
This is just �f1, and hence when we solve for w3ðxÞ we
will just obtain Eq. (A29). We will end up going in circles
following this value; it is therefore more economic to
explore the Legendre polynomial of the second kind.

From Eq. (A29) we can find the function f2 to be

f2 ¼ ð2� ffiffiffiffiffiffiffiffi��
p Þ�Q

ffiffiffiffiffiffi��
p
2 ðtanhð�xÞÞQ

ffiffiffiffiffiffi��
p
1 ðtanhð�xÞÞ

� 2� tanhð�xÞ: (A30)

From Eq. (A30), we can then find the potential U2 using
Eq. (A1). We use Eq. (A30) to find U2 and then use this to
find w3ðxÞ. However, there is no closed form solution for
w3ðxÞ and we need to use numerical methods from here out
to find the solution for both w3ðxÞ and w4ðxÞ. Using w4ðxÞ,
we can then find the reconstructed potential Vð�0Þ which
we show in Fig. 6. The specific values that give the char-
acteristic shape in question are � ¼ 1, � ¼ �4, �2

2 � �2
3 ¼

5 and �2
3 � �2

4 ¼ �2
3 ¼ 3. For convenience, we recon-

structed the potential in two intervals, the first one between
� ¼ 0 and � ¼ 0:8 TeV, and the second one between
� ¼ 0:8 TeV and � ¼ 1. We then joined the plots into
a single plot in Fig. 6.

APPENDIX B: KINK SOLUTION OF THE FIELD �
BETWEEN THE VACUA �1 AND �2

The potential given in Eq. (6) contains a kinklike solu-
tion interpolating between the vacua �1 and �2. Setting
"0 ¼ 0 in the Bogomol’nyi equation we find

ffiffiffiffiffiffi
�3

8

s
x ¼

Z d�

ð�2 ��2
1Þð�2 ��2

2Þ
: (B1)

We evaluate this integral using the method of partial frac-
tions:

ffiffiffiffiffiffi
�3

p ð�2
2 ��2

1Þx ¼ ln

��
�þ�1

���1

�
1=�1

�
���2

�þ�2

�
1=�2

�
:

(B2)

This gives us xð�Þ. We then numerically invert it to get
�ðxÞ. The result is shown in Fig. 7.

APPENDIX C: CRITICAL TEMPERATURE

Several effects may change the numerical value of the
critical temperature of the phase transition. We first con-
sider the possibility that the two minima do not contain the
same number of degrees of freedom. Let us denote the
number of degrees of freedom in the two vacua �1 and �2

by N1 and N2, respectively. The condition for the critical
temperature is that the values of the effective potential (10)
evaluated at the two vacua �1 and �2 are the same. From
(10), after we add the terms that depend on N, we have

Veffð�1; TÞ ¼ �
�
"0 � cT2

�3
1�

3
2

�
�5

1�
3
2 �

�2

90
N1T

4 þ const;

(C1)

Veffð�2; TÞ ¼ �
�
"0 � cT2

�3
1�

3
2

�
�3

1�
5
2 �

�2

90
N2T

4 þ const;

(C2)

where Ni, i ¼ 1; 2, represent the contribution over the
relativistic bosonic NB and fermionic NF spin states, i.e.

N ¼ Nb þ 7
8NF: (C3)

At T ¼ Tc, we have Veffð�1; TcÞ ¼ Veffð�2; TcÞ which
gives a quartic equation for Tc:

ðN1 � N2ÞT4
c þ cð�2

2 ��2
1ÞT2

c � "0�
3
1�

3
2ð�2

2 ��2
1Þ ¼ 0:

(C4)

We can now solve Eq. (C4) for Tc to get

FIG. 7 (color online). A kinklike solution interpolating be-
tween the vacua �1 and �2 for "0 ¼ 0.
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T2
c ¼ �cð�2

2 ��2
1Þ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ð�2

2 ��2
1Þ2 þ 2�2

45 ðN1 � N2Þ"0�3
1�

3
2ð�2

2 ��2
1Þ

q
�2

45 ðN1 � N2Þ
: (C5)

We can perform a simple estimate of �N ¼ N1 � N2 if we
assume that in the vacuum �1 all the particles are relativ-
istic, while in the vacuum �2 the Higgs boson, W

	 and Z
bosons and top quark masses become larger than the
temperature of the Universe and their contribution should
be excluded. Therefore �N � 15.

Another consequence of the fact that particles not much
lighter than the temperature should be decoupled from the
plasma is that the constant c defined in Eq. (12) gets
modified. If the temperature during the electroweak phase
transition is of the order of 100 GeV, then it is reasonable to
exclude the Higgs boson, W	 and Z bosons and top quark
contributions in Eq. (12). This is especially true in the
second vacuum �2. We first need to express the constant
c in terms of physical quantities. For this purpose, we
eliminate �1 using Eq. (4), i.e.

�1 ¼ 1
3m

2
H=v

2 þ 1
3�

2=v2 þ 5
4�2v

2 � 7
6�2v

4: (C6)

The constant c now becomes

c ¼ 1
16ð3g2 þ g02 þ 4y2t þ 1

96�
2=v2 þ 1

96m
2
H=v

2 þ 5
128�2v

2

� 7
192�3v

4Þ: (C7)

We now exclude the Higgs boson, W	 and Z bosons and
top quark contributions to get

c ¼ 1
16ð4y2b þ 1

96�
2=v2 þ 5

128�2v
2 � 7

192�3v
4Þ; (C8)

where yb is the b-quark Yukawa coupling, which we
needed to include once the top quark is excluded. In turn,
the critical temperature defined in Eq. (13) will change.
While the numerical value of the critical temperature will
change, the qualitative features will remain unchanged.
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