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Our model consists of intersecting 220550 branes in M theory distributed uniformly in the common

transverse space. Equations of state follow from U duality symmetries. In this model, three spatial

directions expand, and seven directions stabilize to constant sizes. From a string theory perspective, the

dilaton is hence stabilized. The constant sizes depend on certain imbalance among initial values. One

naturally obtains M11 ’ Ms ’ M4 and gs ’ 1 within a few orders of magnitude. Smaller numbers, for

example, Ms ’ 10�16M4, are also possible but require fine-tuning.
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In the early universe, the temperature and energy den-
sities are high. When they are of the order of the Planck
scaleM4 ’ 1019 GeV, the dynamics of the early universe is
expected to be described by a more fundamental theory
such as string theory or M theory [1,2].

If this is the case then the problem of spacetime dimen-
sions needs to be resolved—spacetime is 11 dimensional in
M theory, whereas it is four dimensional in our observed
universe.

A canonical resolution is that the early universe starts
out being 11 dimensional. During its evolution, by some
dynamics, seven of the spatial directions cease to expand
and their sizes become stabilized. The remaining three
spatial directions continue to expand and become the ob-
served universe.

The stabilized sizes then relate the M-theory scale M11

and the four-dimensional Planck scaleM4. Likewise, since
string theory can be obtained by dimensionally reducing
M theory, the sizes also relate M11 and the string scale Ms

and the string coupling constant gs. One may then inquire,
for example, whether it is possible to have a string/M-
theory scale in the TeV range as required in large volume
compactification scenarios [3].

Various proposals have been made for obtaining a four-
dimensional universe from string/M theory [4–6].
Typically, one assumes that the spatial directions are all
toroidal and are wrapped by a gas of winding and anti-
winding strings or p-branes, and that the cosmological
evolution is governed by a ten-/eleven-dimensional effec-
tive action. The earliest proposal [4], in the context of
string theory, is based on the observation that winding
and antiwinding strings oppose the expansion and are
annihilated efficiently in four-dimensional spacetime.
Others [5,6] are variants of this, or based on its general-
izations to winding and antiwinding p-branes in string/M
theory. These proposals are quite appealing and have been

used in a variety of ‘‘brane gas’’ models [5,6], but some
important issues remain to be resolved [7].
In this article, based on the ideas in [8,9], we present an

M theoretic early universe model where seven of the spatial
directions cease to expand and their sizes become stabi-
lized. From a string theory perspective, the dilaton is hence
stabilized. The remaining three spatial directions continue
to expand, thus leading to a four-dimensional universe. The
stabilized sizes, and thus the explicit relations among
ðM11;M4;Ms; gsÞ, depend on certain imbalance among
initial values. The exact values are obtained numerically,
but can also be estimated analytically under certain ap-
proximations. In this model, one may obtain any value for
M11 orMs, including in the TeV range, by a corresponding
fine-tuning of the initial values.
Our model is as follows. Let all the spatial directions be

toroidal. Consider mutually Bogomol’nyi-Prasad-
Sommerfeld (BPS) intersecting brane configurations in
M theory where N sets of coincident branes and antibranes
intersect as per the rules given in [10]. According to these
rules, for example, two sets of 2 branes must intersect
along zero common direction, 2 branes and 5 branes along
one common direction, or two sets of 5 branes along three
common directions.
The branes and antibranes in such a configuration differ

significantly from those in brane gas models, as explained
in Sec. 2.6 of the first and Sec. 6 of the second paper in [8].
Briefly, the differences are the following: (1) In brane gas
models, the branes can intersect each other arbitrarily. Here
the intersections must follow specific rules. U duality
symmetries of M theory then imply a relation among the
equations of state which turns out to be a crucial element
underlying the present results [9]. (2) The branes in brane
gas models support excitations on their surfaces and, at
high energies, have S� E, where S is the entropy and E the
energy. Here, the intersecting branes form bound states,
become fractional, support very low energy excitations

and, hence, are highly entropic. At high energies, S�
EN=2 which, for N > 2, vastly exceeds the entropy in brane
gas models. Such intersecting brane configurations are,
therefore, the entropically favorable ones. (3) In brane
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gas models, the branes tend to annihilate if they intersect
each other. Here, the intersections are necessary for the
formation of bound states and of high entropic excitations.
These excitations are long lived and noninteracting to the
leading order; hence the branes here are metastable and do
not immediately annihilate. See [8] for more details, and
[11] also.

In our model, we consider N ¼ 4 intersecting brane
configuration denoted by 220550, which has vanishing net
charges and consists of two sets each of 2 branes and 5
branes along ðx1; x2Þ, ðx3; x4Þ, ðx1; x3; x5; x6; x7Þ, and
ðx2; x4; x5; x6; x7Þ directions. This configuration, when lo-
calized in the common transverse space along ðx8; x9; x10Þ
directions, describes a four charged black hole [12]. Here,
we take the configuration to be uniformly distributed in the
common transverse space which then is assumed, as in
[8,9], to describe a homogeneous anisotropic universe
whose evolution is governed by an 11-dimensional effec-
tive action.

Let I ¼ 1, 2, 3, 4 denote the branes 2, 20, 5 50, respec-
tively. We assume that, as in the case of black holes, the
energy momentum tensors TA

BðIÞ of the Ith set of branes

are mutually noninteracting and separately conserved
[8,11]. Then

TA
B ¼ X

I

TA
BðIÞ;

X
A

rAT
A
BðIÞ ¼ 0; (1)

where TA
B is the total energy momentum tensor of the

configuration. Homogeneity implies that TA
B ¼

diagð��; piÞ and TA
BðIÞ ¼ diagð��I; piIÞ. We take �I > 0.

To obtain the equations of state piIð�IÞ, let pkI and p?I

denote parallel and perpendicular components of pressure
due to the Ith set of branes. For the mutually BPS inter-
secting brane configurations of the type considered here, it
is shown in [9] that U duality symmetries of M theory
imply that the functions p?Ið�IÞ must be the same for all I
and that pkI ¼ 2p?I � �I. For the 22

0550 configuration, it
then follows that if �I are all equal, then, for any function
p?ð�Þ, the seven brane directions become stabilized and
the remaining three spatial directions expand [9].

However, an explicit form for the function p?ð�Þ is
required to obtain further details such as the values of the
stabilized sizes, or to understand the evolution when �I are
not all equal. In principle, p?ð�Þ is to be determined by
brane/antibrane dynamics. But not much is known about
this dynamics. Hence, in order to make progress and to
understand the details of the evolution, we assume in our
model that p? ¼ ð1� uÞ�, where u is a constant. Such a
form, with u ¼ 1, is indeed derived in [8] in the limit
where the brane/antibrane annihilation can be neglected.
Here, we will keep u an arbitrary constant, assuming only
that 0< u< 2. The resulting evolution is then applicable,
at least qualitatively, even if u is varying, e.g.. due to brane/
antibrane annihilation effects.

It then follows that piI ¼ ð1� uIi Þ�I, where, for the
220550 configuration,

u1i ¼ uð2; 2; 1; 1; 1; 1; 1; 1; 1; 1Þ;
u2i ¼ uð1; 1; 2; 2; 1; 1; 1; 1; 1; 1Þ;
u3i ¼ uð2; 1; 2; 1; 2; 2; 2; 1; 1; 1Þ;
u4i ¼ uð1; 2; 1; 2; 2; 2; 2; 1; 1; 1Þ:

(2)

Consider now the evolution of the D ¼ ð10þ
1Þ-dimensional homogeneous anisotropic universe in the
model described above. Let the line element ds, with xA ¼
ðt; xiÞ and i ¼ 1; 2; . . . ; D� 1, be given by

ds2 ¼ X
AB

gABdx
AdxB ¼ �dt2 þX

i

e2�
iðdxiÞ2; (3)

where �i are functions of t only. Einstein equations RAB �
1
2gABR ¼ TAB, with 8�G ¼ 1, and Eqs. (1) lead to �I ¼
el

I�2� and
X
ij

Gij�
i
t�

j
t ¼ 2

X
I

el
I�2�; (4)

�i
tt þ�t�

i
t ¼

X
I

uiIel
I�2�; (5)

where lI ¼ P
iu

I
i�

i þ lI0,� ¼ P
i�

i, the subscripts t denote
time derivatives, and

Gij ¼ 1��ij; Gij ¼ 1

D� 2
��ij; uiI ¼X

j

GijuIj:

(6)

Let d� ¼ e��dt and GIJ ¼ P
iu

iIuJi . Also, define GIJ byP
JG

IJGJK ¼ �I
K. Then, manipulating Eqs. (4) and (5), one

obtains

�i ¼ X
IJ

GIJu
iIðlJ � lJ0Þ þ Li�; (7)

lI�� ¼
X
J

GIJel
J
; (8)

X
IJ

GIJl
I
�l

J
� ¼ 2

�
EþX

I

el
I

�
; (9)

where the subscripts � denote � derivatives, Li are integra-
tion constants satisfying

P
iu

I
iL

i ¼ 0, and 2E ¼
�P

ijGijL
iLj. Also, with no loss of generality, we have

taken the initial values to be

ð�i; �i
t; l

I; lIt ; �I; �Þt¼0 ¼ ð0; ki; lI0; KI; �I0; 0Þ; (10)

where �I0 ¼ el
I
0 and ki ¼ P

IJGIJu
iIKJ þ Li. For the

220550 configuration in our model, uIi are given in
Eqs. (2) using which uiI, GIJ, and GIJ can be calculated
easily. For example,
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G IJ ¼ 2u2ð1� �IJÞ; GIJ ¼ 1

6u2
ð1� 3�IJÞ: (11)

We now point out an interesting similarity with black

holes: When Li all vanish, e�
i
here have the same form as

those for extremal 220550 black holes and e2uhI , where hI ¼P
JGIJðlJ � lJ0Þ play the role of harmonic functions HI ¼

1þ QI

r . Compare Eq. (7) here and (18) in [12]. Also, the

asymptotic limit t ! 1 here, see below, corresponds to the
near horizon limit r ! 0 and (certain combination of) �I0

play the role of QI.
To obtain �iðtÞ for the 220550 configuration, and thus the

evolution of the universe, one may solve Eqs. (8)–(11) for
lIð�Þ and obtain �ið�Þ from Eq. (7). Then tð�Þ and, hence,
�ðtÞ follow from dt ¼ e�d�. We are unable to solve Eqs.
(8)–(11) analytically. Nevertheless, the important features
of the evolution can be obtained as follows.

For the 220550 configuration, the following two results
can be proved: (R1) The constraints

P
iu

I
iL

i ¼ 0 imply that
0 � ciðLiÞ2 � E, where ci are constants of Oð1Þ. Hence
E ¼ 0 if and only if Li ¼ 0 for all i. (R2) If E � 0 then
Eqs. (7) and (9) imply that none of ð��; l

I
�Þmay vanish, and

that they must be all positive or all negative.
Let KI ¼ lI�ð0Þ> 0 for all I. The above results together

with Eqs. (8) and (11) then imply that, as � increases, lIð�Þ
all increase and diverge at finite � ¼ �1. In the limit � !
�1 and to the leading order, we obtain

el
I ¼ 1

3u2
1

ð�1 � �Þ2 ; t ¼ t� þ Að�1 � �Þ�ð2�uÞ=u;

e�
i ¼ ev

i

�
1

3u2
1

ð�1 � �Þ2
�P

IJ

GIJu
iJ

¼ ev
ifBðt� t�Þg�i

;

(12)

where t� and �1 are finite constants and depend on the
details of evolution, A and B are u-dependent constants,
vi ¼ �P

IJGIJu
iIlJ0 þ Li�1, and �i ¼ 2u

2�u

P
IJGIJu

iJ.

Explicitly, �i are given by

�i ¼ 2

3ð2� uÞ ð0; 0; 0; 0; 0; 0; 0; 1; 1; 1Þ: (13)

Thus, asymptotically, t ! 1 since 0< u< 2 in our

model. And, e�
i ! t2=ð3ð2�uÞÞ for the common transverse

directions i ¼ 8, 9, 10. Hence, these directions continue to
expand, their expansion being precisely that of a ð3þ
1Þ-dimensional homogeneous, isotropic universe contain-
ing a perfect fluid whose equation of state is p ¼ ð1� uÞ�.
Also, e�

i ! ev
i
for the brane directions i ¼ 1; . . . ; 7.

Hence, these directions cease to expand and their final

sizes are given by ev
i
.

In our model, irrespective of initial values, three com-
mon transverse spatial directions will always expand and
seven brane directions will always be stabilized and reach
constant sizes. The underlying dynamics is distinct from
those in [4–6] and can be described as follows. It follows

from Eq. (5) that parallel brane directions contract and
transverse ones expand, at opposite rates for 2 branes and
5 branes. If the brane energy densities �I are all different
then, generically, so will be the corresponding expansion
and contraction rates, and the brane directions will have net
expansion or contraction. Only if the expansion rates equal
contraction rates will the brane directions cease to expand
or contract and their sizes stabilize to constant values.
Such an equality ensues eventually in our model as a

result of two crucial features: (i) The dynamics of the
evolution, given by uIi which in turn follow from U duality
symmetries [9], is such that �I, even if different initially,
evolve to become all equal. This equality is due to each

�I � el
I
being ‘‘sourced’’ by the sum of the other three; see

Eqs. (8) and (11). (ii) The 220550 configuration is such that
each brane direction is parallel to two sets of branes and
transverse to the other two in just the right way. Hence, its
expansion and contraction rates become equal once �I

become all equal.
The stabilized sizes of the brane directions should then

depend on the imbalance among �I0 and �i
tð0Þ. Indeed we

have, for example,

ev
1 ¼ eL

1�1
�
�20�

2
40

�30�
2
10

�
1=6u

; ev
c ¼ eL

c�1
�
�10�20

�30�40

�
1=6u

;

(14)

where we also define vc ¼ P
7
i¼1 v

i and Lc ¼ P
7
i¼1 L

i,
needed below.
Thus, asymptotically as t ! 1, the ð10þ

1Þ-dimensional universe effectively becomes
ð3þ 1Þ dimensional. Also, the dimensional reduction of
M theory along, for example, the x1 direction gives string
theory with its dilaton now stabilized. Let the coordinate
sizes ’ Oð 1

M11
Þ. Then, up to numerical factors of Oð1Þ, the

corresponding scales ðM11;M4;MsÞ and the string coupling
constant gs are related asymptotically by

M2
4 ’ ev

c
M2

11 ’ ev
c�v1

M2
s ; g2s ’ e3v

1
: (15)

To determine the sizes of brane directions and the rela-
tions in Eq. (15) explicitly for a given set of initial values
ðlI0; KI; LiÞ, we need �1 if Li � 0. We will obtain �1
numerically since it depends on the details of evolution
and we do not have explicit solutions. But we first give an
approximate expression for �1 which is easy to evaluate
and works well under certain conditions.
Let Li � 0. We set E ¼ 1 by measuring t and � in units

of 1ffiffiffi
E

p . Note that if el
I
0 � 1 for all I then Eqs. (8) and (9)

imply that lIð�Þ may be taken as evolving ‘‘freely,’’ i.e.,
lIð�Þ ¼ lI0 þ KI�, where KI ¼ lI�ð0Þ> 0, until one of the

el
I ¼ 1; from then on, all el

I
will evolve quickly and

diverge soon after. Consequently, �1 may be given ap-
proximately by
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�1 ’ �a ¼ min

�
� lI0
KI

�
: (16)

Also, �a is maximum, and �a;max ¼ 1
K , when K1 ¼ x1,

K2 ¼ x2, K3¼minfx1þx2;x3g, and K4¼minfx1þx2;
1
2ðx1þx2þx3Þ;x4g, where xI ¼ �lI0K, Eq. (9) at � ¼ 0

determines K > 0, and we assume with no loss of general-
ity that 0< x1 � � � � � x4. No explicit solution is needed
to evaluate �a and �a;max.

We studied several sets of ðlI0; KIÞ numerically and ob-

tained �1;max, the maximum of �1, by sampling 25 000

random sets of KI for each set of lI0. We find that lI all

diverge at finite � ¼ �1 and that, when el
I
0 � 1 for all I,

the approximations given above are quite good: lI > lI0 þ
KI� discernibly only for � * �1 � 4, �a � ð0:5� 1:1Þ�1
generically, and, for KI which maximize �a, we get �a ¼
�a;max � ð0:9� 1:1Þ�1 � ð0:9� 1:1Þ�1;max.

To convey an idea of what values are possible in
Eq. (15), and also an idea of how good the approximations
given above are, we consider two illustrative sets of lI0,
choose KI which maximize �a, choose Li ¼ffiffi
1
6

q
ð�1; 2; 2;�1; 0; 0; 0;�1;�1;�1Þ so that gs can be

small, and choose u ¼ 2
3 which corresponds to a radiation

filled universe in ð3þ 1Þ dimensions. The corresponding

numerical results are given in Table I, from which ev
1
and

ev
c

can be read off easily using Eq. (15). Also,
ð�a;max; �1;maxÞ ¼ ð5:27; 5:82Þ for the first set, and ¼
ð25:43; 25:69Þ for the second set of lI0 in Table I.

For a given set of lI0, our choice of ðKI; LiÞ in Table I

results in near-minimum values for ðM11

M4
; Ms

M4
; gsÞ within

about an order of magnitude. Our numerical studies con-

firm this. Also note that, since E ¼ 1, �i
tð0Þ ¼ ki ’ KI ’

Li ’ Oð1Þ naturally, whereas ensuring that �I0 ¼ el
I
0 � 1

for all I requires (fine) tuning. Thus, we conclude that our
model naturally leads toM11 ’ Ms ’ M4 and gs ’ 1within
a few orders of magnitude, and that smaller M11 and Ms,
for example, Ms ’ TeV ’ 10�16M4 as required in large
volume compactification scenarios [3], are also possible
but require a corresponding fine-tuning of initial values.
We have shown that, in our model, three spatial direc-

tions expand and seven directions stabilize to constant

sizes ev
i
, i ¼ 1; . . . ; 7. We have also given exact expres-

sions for vi, which depend on initial values and �1. �1 can
be evaluated explicitly if solutions are known, otherwise
numerically. Also, we give approximate expression for �1
which is easy to evaluate and works well under certain
conditions. Explicit relations among ðM11;M4;Ms; gsÞ
then follow from which we see, for example, that obtaining
Ms ’ TeV requires fine-tuning.
We conclude by listing a few questions of obvious

importance for further studies. (i) How to solve Eqs. (8)–
(11) analytically? (ii) Is there any way of obtaining Ms ’
TeV in the present model without fine-tuning? (iii) Why
the 220550 configuration and why not, for example, 220200
(which will lead [9] to four spatial directions expanding)?
The likely answer is that the 220550 configuration is en-
tropically favorable [2,8,9], but dynamical details are not
clear. (iv) What is the evolution when topology of spatial
directions is more general? (v) We pointed out an interest-
ing similarity with black holes. Does it have any deeper
significance?

We thank B. Sathiapalan and N.V. Suryanarayana for
their comments.
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