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We show that the theory of Breit-Wigner resonances can be used as an efficient numerical tool to

compute black hole quasinormal modes. For illustration, we focus on the Schwarzschild anti–de Sitter

(SAdS) spacetime. The resonance method is better suited to small SAdS black holes than the traditional

series expansion method, allowing us to confirm that the damping time scale of small SAdS black holes

for scalar and gravitational fields is proportional to r�2l�2þ , where rþ is the horizon radius. The pro-

portionality coefficients are in good agreement with analytic calculations. We also examine the eikonal

limit of SAdS quasinormal modes, confirming quantitatively Festuccia and Liu’s [arXiv:0811.1033]

prediction of the existence of very long-lived modes. Our results are particularly relevant for the AdS/CFT

correspondence, since long-lived modes presumably dominate the decay time scale of the perturbations.
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I. INTRODUCTION

It is well known that quasibound states manifest
themselves as poles in the scattering matrix, and as Breit-
Wigner resonances in the scattering amplitude.
Chandrasekhar and Ferrari made use of the form of the
scattering cross section near these resonances in their study
of gravitational-wave scattering by ultracompact stars
[1,2]. In geometrical units (c ¼ G ¼ 1), the Regge-
Wheeler potential VðrÞ describing odd-parity perturbations
of a Schwarzschild black hole (BH) of mass M has a peak
at r� 3M. Constant-density stellar models may have a
radius R=M < 3 (but still larger than the Buchdal limit,
R=M > 2:25). When R=M & 2:6, the radial potential de-
scribing odd-parity perturbations of the star (which reduces
to the Regge-Wheeler potential for r > R) displays a local
minimum as well as a maximum. If this minimum is
sufficiently deep, quasistationary, ‘‘trapped’’ states can
exist: gravitational waves can only leak out to infinity by
‘‘tunneling’’ through the potential barrier. Since the damp-
ing time of these modes is very long, Chandrasekhar and
Ferrari dubbed them ‘‘slowly damped’’ modes [1].

For trapped modes of ultracompact stars, the asymptotic
wave amplitude at spatial infinity, �� � cos!rþ
� sin!r, has a Breit-Wigner-type behavior close to the
resonance:

�2 þ �2 � const½ð!�!RÞ2 þ!2
I �; (1.1)

where !�1
I is the lifetime of the quasibound state and !2

R

its characteristic ‘‘energy.’’ The example of ultracompact
stars shows that the search for weakly damped quasinormal
modes (QNMs) corresponding to quasibound states (! ¼
!R � i!I with !I � !R) is extremely simplified. We
locate the resonances by looking for minima of �2 þ �2

on the ! ¼ !R line, and the corresponding damping time
!I can then be obtained by a fit to a parabola around the
minimum [1,2].
Here we show that this ‘‘resonance method’’ can be used

very successfully in BH spacetimes. The resonance method
is particularly valuable in studies of asymptotically anti–
de Sitter (AdS) BHs. The QNM spectrum of AdS BHs is
related to thermalization time scales in a dual conformal
field theory (CFT), according to the AdS/CFT conjecture
[3]. Analytic studies of wave scattering in AdS BHs have
previously hinted at the existence of resonances (see Fig. 9
in Ref. [4]); here we show that these are indeed Breit-
Wigner resonances.
Various analytic calculations recently predicted the ex-

istence of long-lived modes in asymptotically AdS BH
spacetimes [5–7]. These modes will presumably dominate
the BH’s response to perturbations, hence the thermaliza-
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tion time scale in the dual CFT. Since their existence may
be very relevant for the AdS/CFT conjecture, we decided to
investigate numerically these long-lived modes. In Sec. II
we confirm the existence of quasibound states for small
SAdS BHs, first predicted by Grain and Barrau [5], par-
tially correcting some of their predictions. In Sec. III we
reanalyze the eikonal limit of SAdS QNMs studied by
Festuccia and Liu [6], finding excellent agreement with
their calculations.

It may be useful to point out that a different but inti-
mately related method (the complex angular momentum
approach, a close kin of the theory of Regge poles in
quantum mechanics) has been used in the past to study
QNMs in asymptotically flat BH spacetimes [8–10]. Some
aspects of the relation between the resonance method and
the theory of Regge poles are illustrated, for example, in
Ref. [2].

II. QUASIBOUND STATES IN SADS BLACK HOLES

In this paper we will focus on SAdS BHs in four space-
time dimensions, but our results are trivially extended to
higher dimensions. Scalar (s ¼ 0), electromagnetic (s ¼
1), and vector-type (or Regge-Wheeler) gravitational per-
turbations (s ¼ 2) of SAdS BHs are governed by a second-
order differential equation for a master variable � [3,11]:

f2
d2�

dr2
þ ff0

d�

dr
þ ð!2 � Vl;sÞ� ¼ 0; (2.1)

Vl;s ¼ f

�
lðlþ 1Þ

r2
þ ð1� s2Þ

�
2M

r3
þ 4� s2

2L2

��
; (2.2)

where f ¼ r2=L2 þ 1� r0=r, L is the AdS radius, r0 is
related to the horizon radius rþ through r0=L ¼
ðrþ=LÞ3 þ rþ=L, and we assume that the perturbations
depend on time as e�i!t. As usual, we define a ‘‘tortoise’’
coordinate r� by the relation dr=dr� ¼ f (so that r� !
�1 as r ! rþ).

The potential for scalar-field perturbations of SAdS BHs
is shown in Fig. 1 for different values of rþ=L, ranging
from ‘‘large’’ BHs with rþ=L� 104 to ‘‘small’’ BHs with
rþ=L� 10�4. Notice how a potential well of increasing
depth and width develops in the small BH limit (rþ=L �
1).

Close to the horizon, where the potential Vl;s ! 0, we
require ingoing-wave boundary conditions:

�� e�i!r� ; r� ! �1ðr ! rþÞ: (2.3)

Near spatial infinity (r ! 1) the asymptotic behavior is

�s¼0 � Ar�2 þ Br; �s¼1;2 � A=rþ B: (2.4)

Regular scalar-field perturbations should have B ¼ 0, cor-
responding to Dirichlet boundary conditions at infinity.
The case for electromagnetic and gravitational perturba-
tions is less clear, and there are indications that Robin

boundary conditions may be more appropriate in the con-
text of the AdS/CFT correspondence [12–15]. With this
caveat, most calculations in the literature assume Dirichlet
boundary conditions, so we choose to work with those.
In general, a solution with the correct boundary condi-

tions at infinity behaves near the horizon (r� ! �1) as

�� Aine
�i!r� þ Aoute

i!r� � � cos!r� þ � sin!r�;
(2.5)

with � ¼ Aout þ Ain, � ¼ iðAout � AinÞ. For increased nu-
merical accuracy, in our calculations we use a higher-order
expansion of the form

Ainð1þ aðr� rþÞÞe�i!r� þ Aoutð1þ a�ðr� rþÞÞei!r� ;

(2.6)

with

a ¼ 2lðlþ 1Þ þ ðs2 � 1Þððs2 � 6Þr2þ=L2 � 2Þ
ð2rþ=LÞð1þ 3r2þ=L2 � 2i!rþÞ

: (2.7)

The problem is analogous to axial gravitational-wave
scattering by compact stars, as long as we replace the
‘‘outgoing-wave boundary condition at infinity’’ in the
stellar case by an ‘‘ingoing-wave boundary condition at
the horizon’’ in the SAdS case (compare our Fig. 1 with
Fig. 1 in Ref. [1]). Quasibound states for the potential (2.2)
should show up as Breit-Wigner resonances of the form
(1.1) for real !.
Figure 2 shows a typical plot of �2 þ �2 as a function of

!RL. The pronounced dips correspond to the location of a
resonance,! ¼ !R, and the inset shows a zoomed-in view
of one such particular resonance. Once a minimum in�2 þ
�2 is located, the imaginary part !I can be found by a
parabolic fit of �2 þ �2 to the Breit-Wigner expression
(1.1). Alternative (but equivalent) expressions are
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FIG. 1 (color online). Potential for scalar-field (s ¼ 0) pertur-
bations of a SAdS background with l ¼ 0. Different lines refer to
different values of rþ=L. A potential well develops for small
BHs (rþ=L < 1).
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!I ¼ ��=�0 ¼ �=�0, where a prime stands for the de-
rivative with respect to !R, evaluated at the minimum
[1,2]. We used these three different expressions to estimate
numerical errors in the computed quasinormal frequencies.
In the next subsections we briefly report on our results for
s ¼ 0 and s ¼ 2, respectively.

A. Scalar-field perturbations

The series solution method presented by Horowitz and
Hubeny [3] was used by Konoplya in Ref. [16] to compute
quasinormal frequencies of small SAdS BHs. The series
has very poor convergence properties for rþ=L < 1, and
QNM calculations in this regime take considerable com-
putational time. As seen in Fig. 1, the potential for small
SAdS BHs is able to sustain quasibound states, so we
expect the resonance method to be well adapted to the
study of small BHs.

In Table I we list QNMs for l ¼ 0 scalar-field perturba-
tions and for different BH sizes, comparing (where pos-
sible) results from the resonance method with Konoplya’s
series expansion calculation. A cubic fit of our data for
L=rþ > 30 yields !IL ¼ 5:00r2þ=L2 þ 47:70r3þ=L3, a
quartic fit yields !I ¼ 5:09ðrþ=LÞ2 þ 33:59ðrþ=LÞ3 þ
485:09ðrþ=LÞ4, and fits with higher-order terms basically
leave a and b unchanged with respect to the quartic fit. The
numerical results are consistent with Horowitz and
Hubeny’s prediction that !I / r2þ, and they are in very
good agreement with analytic predictions by Cardoso and
Dias [17], who derived a general expression for the reso-
nant frequencies of small BHs in AdS for the M!R � 1
regime. Setting a ¼ 0 in Eq. (33) of Ref. [17], their result
is

L! ¼ lþ 3þ 2n� i!IL; (2.8)

where n is a non-negative integer and

!IL ’ ��0½ðlþ 3þ 2nÞðrþ=LÞ2lþ2�=�;

�0 � 2�1�6lðl!Þ2�½�l� 1=2�2�½5þ 2lþ 2n�
ð3þ 2nÞð3þ 2lþ 2nÞ�½lþ 1=2�2�½2þ 2n� :

(2.9)

For l ¼ n ¼ 0 one gets !I ¼ 16ðrþ=LÞ2=��
5:09ðrþ=LÞ2, in excellent agreement with the fits. For
general l Eq. (2.8) predicts an r2þ2lþ dependence, in agree-
ment with our results for l ¼ 0, 1, 2. Moreover, we find
excellent agreement with the proportionality coefficient
predicted by Eq. (2.9). Higher overtones are also well
described by Eqs. (2.8) and (2.9).
Our results show that the resonant frequency !R always

approaches the pure AdS value in the small BH limit,
generally confirming the analysis by Grain and Barrau
[5]. However, our numerics disagree with Grain and
Barrau’s semiclassical calculation of the monopole mode
(l ¼ 0). We find that all modes including the monopole
reduce to pure AdS in the small BH limit. More precisely,
as rþ=L ! 0 we find

!RL ¼ lþ 3þ 2n� klnrþ=L; n ¼ 0; 1; 2; . . .

(2.10)

with kl0 � 2:6, 1.7, 1.3 for l ¼ 0, 1, 2, respectively.
Our results for scalar-field perturbations are visually

summarized in Fig. 3, where we combine results from
the resonance method and from the series solution (com-
pare e.g. Fig. 1 of Ref. [18]). Modes with different l
coalesce in the large BH regime (top right in the plot), as
long as l � rþ=L. As shown in Fig. 1, the potential for
small SAdS BHs develops a well capable of sustaining
quasistationary, long-lived modes. It should not be surpris-
ing that small and large BH QNMs have such a qualita-
tively different behavior.
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FIG. 2. A plot of �2 þ �2 for scalar-field SAdS perturbations
with l ¼ 0, rþ=L ¼ 10�2. Resonances are seen when !R ’ 3þ
2n, i.e. close to the resonant frequencies of the pure AdS
spacetime. In the inset we show the behavior near the minimum,
which allows us to extract the decay time by a parabolic fit.

TABLE I. The fundamental l ¼ 0 QNM frequencies for small
SAdS BHs for selected values of rþ=L. The series solution data
are taken from Ref. [16]. In the table, �!RL � 3�!RL.

Series Resonance

L=rþ �!RL
2=rþ !IL

3=r2þ �!RL
2=rþ !IL

3=r2þ
12 3.064 9.533 2.992 9.662

20 2.922 7.720 2.912 7.840

30 2.805 6.660 2.802 6.714

50 2.700 5.952

100 2.610 5.471

200 2.580 5.266

500 2.560 5.158

1000 2.554 5.125

2000 2.550 5.109

5000 2.550 5.100
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B. Gravitational perturbations

We have also searched for the modes of Regge-Wheeler
or vector-type gravitational perturbations. The potential
(2.2) for gravitational perturbations of small BHs does
not develop a local minimum. Nevertheless, it develops a
local maximum which, when imposing Dirichlet boundary
conditions [see the discussion following Eq. (2.4)], can

sustain quasibound states. For this reason we expect the
resonance method to be useful also in this case.
For small BHs our numerical results agree with the

following analytic estimate, derived under the assumption
that M!R � 1 [19]:

!IL ’ ��2ðlþ 2þ 2nÞðrþ=LÞ2lþ2; (2.11)

with

�2 � ðlþ 1Þð2þ lþ 2nÞ�½1=2� l��½l�3�½3þ l��½2ð2þ lþ nÞ�
ðl� 1Þ2ð2nÞ!�½lþ 3=2��½2lþ 1��½2lþ 2��½�1=2� l� 2n��½7=2þ lþ 2n� : (2.12)

For n ¼ 0 and l ¼ 2 this implies !I ¼
1024ðrþ=LÞ6=45� ’ 7:24ðrþ=LÞ6, while a fit of the nu-
merics yields !I � 7:44ðrþ=LÞ6. Again, !RL approaches
the pure AdS value in the limit rþ=L ! 0:

!RL ¼ lþ 2þ 2n� klnrþ=L; n ¼ 0; 1; 2; . . .

(2.13)

For the fundamental l ¼ 2 mode we find k20 � 1:4.

III. LONG-LIVED MODES IN THE EIKONAL
LIMIT

A recent study of the eikonal limit (l � 1) of SAdS BHs
suggests that very long-lived modes should exist in this
regime [6]. Define rb > rc to be the two real zeros (turning
points) of !2

R � p2f=r2 ¼ 0. Then the real part of a class
of long-lived modes in four spacetime dimensions is given
by the WKB condition

2
Z 1

rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2!2

R � p2f
q

rf
dr ¼ �ð2nþ 5=2Þ; (3.1)

where p ¼ lþ 1=2. Their imaginary part is given by

!I ¼ ��

8!R

; log� ¼ 2i
Z rc

rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2!2

R � p2f
q

rf
dr: (3.2)

The prefactor �, not shown in Ref. [6], can be obtained by
standard methods [20,21], with the result

� ¼
�Z 1

rb

cos2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

R � p2f=r2
q dr

f

��1
;

� �
Z 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

R � p2f=r2
q dr

f
� �

4
:

(3.3)

The resonance method is well suited to analyze the
eikonal limit, especially for small BHs (for large BHs the
existence of a dip in the potential well requires very large
values of l, which are numerically hard to deal with). In
Table II we compare the WKB results against numerical
results from the resonance method. Unfortunately, ma-
chine precision limitations do not allow us to extract ex-
tremely small imaginary parts. The agreement with the
WKB condition of Ref. [6] is remarkable, even for rela-
tively small values of l. Our numerics conclusively confirm
the existence of very long-lived modes in the SAdS ge-
ometry, but the numerical results for the damping time
scales disagree by orders of magnitude with the corre-
sponding results by Grain and Barrau [5]. A reanalysis of
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FIG. 3 (color online). Track traced in the complex plane
ð!RL;!ILÞ by the fundamental l ¼ 0, 1 scalar-field QNM fre-
quencies as we vary the BH size rþ=L. Counterclockwise along
these tracks, we mark by circles and diamonds the frequencies
corresponding to decreasing decades in rþ=L (rþ=L ¼
102; 101; 100; 10�1; . . . ).
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the assumptions implicit in their method would be useful to
understand the cause of this disagreement.

IV. CONCLUSIONS AND OUTLOOK

The method described here provides a reliable and ac-
curate alternative to the series solution method [3], to be
used in regimes where the former has poor convergence

properties. Together, the two methods allow an almost
complete characterization of the spectrum of BHs in AdS
backgrounds, encompassing both small and large BHs. As
an application of the method, we have explicitly confirmed
the existence of the weakly damped modes predicted by
Refs. [5,6].
Extensions of the resonance method to higher-

dimensional [3] and charged geometries [18,22] should
be trivial. Our techniques may be useful to verify the
existence of the highly real modes predicted by Ref. [7].
Finally, it would be interesting to investigate whether the
resonance method described here is of any use to inves-
tigate the eikonal limit of QNMs in asymptotically flat BH
spacetimes.
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