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We comment on a recent paper by Giacosa, Gutsche, and Lyobovitskij [Phys. Rev. D 77, 034007

(2008)], in which it is argued that a quarkonium interpretation of the � meson should give rise to a much

smaller two-photon decay width than commonly assumed. The reason for this claimed discrepancy is a

term in the transition amplitude, necessary for gauge invariance, which allegedly is often omitted in the

literature, including the work of the present authors. Here we show their claims to be incorrect by

demonstrating, in the context of the quark-level linear � model, that the recently extracted experimental

values are compatible with a q �q assignment for the �, provided that meson loops are taken into account as

well.
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I. INTRODUCTION

In a recent paper [1], Giacosa, Gutsche, and
Lyubovitskij (GGL) studied the two-photon decay width
of the � meson, alias f0ð600Þ [2,3], based on the presup-
position that it is a q �q state. They employed two simple
perturbative sigma models, one purely local, comprising�,
�, quark and antiquark fields, and the other nonlocal, with
only �, q, and �q, besides an extended covariant vertex
function. The principal result of their work was that, in
contrast with what is generally assumed, a q �q assignment
for the � should lead to a width ��!�� much smaller—

probably even below 1 keV—than the recently reported
value of ð4:1� 0:3Þ keV resulting from an analysis by
Pennington [4] (also see Ref. [5]), as well as the 3 prior
values given in the 2006 [2] and 2008 [3] PDG tables.
Therefore, GGL concluded that, if the large experimental
�� width is confirmed, a quarkonium interpretation of the
� is not favored, ‘‘contrary to usual belief.’’ As an expla-
nation for their very small ��!�� prediction, GGL argued

that a term in the quark-triangle loop diagram, necessary
for gauge invariance, largely cancels the lead term, thus
resulting in a small total amplitude. Moreover, GGL
claimed that the former term is ’’often neglected,’’ includ-
ing in previous work of ours and our coauthors [6–9].

In this comment, we shall show that GGL are mistaken
on several points. First of all, we have not unduly neglected
any term in the evaluation of the quark-triangle diagram in

Refs. [6–9]. When we disregarded the term in question, this
was fully justified, since the term was zero or negligible.
Second, the small ��!�� value obtained by GGL is a

consequence of a very low � mass, in combination with
a relatively large constituent quark mass, at least in the
local case. For the nonlocal Lagrangian, their tiny ��!��

value is rather an indication for the inadequacy of the
Lagrangian itself. Third, we demonstrate, by explicit cal-
culation, how important meson-loop contributions are,
which is in principle admitted by GGL, but not
concretized.
In Sec. II of this comment, we study in detail the two-

photon width of the � meson, in the context of the quark-
level linear � model (QLL�M) [10], showing that a good
agreement with data is achieved. In Sec. III we present our
conclusions.

II. TWO-PHOTON WIDTH OF THE � IN THE
QLL�M

Given the scalar amplitude structure [7,8,11]
M��ðk0Þ��ðkÞðg��k0 � k� k0�k�Þ, the rate for the decay

of a scalar meson S into two photons reads

�ðS ! ��Þ ¼ m3
SjMS!��j2

64�
: (1)

If one assumes, as GGL do, that the � is a scalar q �q state,
then the principal contribution to the amplitude M�!��

comes from the up and down quark-triangle diagrams (see
e.g. Fig. 1 in Ref. [1]), yielding (with Nc ¼ 3)

M n �n
�!�� ¼ 5�

3�f�
2�n½2þ ð1� 4�nÞIð�nÞ�; (2)
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where � ¼ e2=4�, �n ¼ m2
n=m

2
� (n stands for u or d), and Ið�Þ is the triangle loop integral given by
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(3)

These Eqs. (2) and (3) exactly correspond to Eqs. (2) and
(4) in Ref. [1], with the proviso that GGL defined the�- �q-q
coupling in their Lagrangian as g�=

ffiffiffi
2

p
instead of our

QLL�M coupling g, the latter being related to f� above
via the Goldberger-Treiman relation mq ¼ f�g [6–9].
Note that we use here, just like GGL in their local approach
as well as in the Nambu-Jona-Lasinio (NJL) model [12], a
point �-q- �q coupling, which is also done for the different
two-meson couplings of the � described below. However,
in theQLL�M these couplings should not be understood as
perturbative parameters, since all couplings are self-
consistently interrelated via dynamical generation and
loop shrinking [10].

Ignoring for the moment possible meson-loop contribu-
tions as well as an s�s component in the �, we can use
Eq. (2) to calculate ��!��, for different � and quark

masses. Also, we can check what the importance is of
the term involving Ið�Þ. However, let us first deal with
the allegation by GGL that we had erroneously neglected
the Ið�Þ term in previous work. Well, in Ref. [6] we simply
worked in the, perfectly well-defined, NJL limit (m� ¼
2mq) of the QLL�M, in which the term in question van-

ishes identically, using quite reasonable � and quark
masses of 630 MeVand 315 MeV, respectively. The result-
ing ��!��, ignoring meson-loops, would then be �
2:2 keV. But accounting for an estimate of the pion-loop
contribution as well yielded the prediction of � 3:8 keV
[6], in good agreement with experiment, then and now. In
Ref. [9], Eq. (101), again the NJL limit of theQLL�Mwas
used, but now also including an estimate for the kaon loop,
besides the pion loop, leading to a slightly smaller result,
but still very much larger than any of GGL’s predictions
(also see Ref. [13]). Finally, in Refs. [7,8] ��!�� was not

even considered, thus making the critique by GGL com-
pletely void. Moreover, note that in Ref. [7] we did use the
full expressions of Eqs. (2) and (3) above when necessary,
namely, in the detailed discussion of the f0ð1370Þ ! ��
width. Only when estimating the f0ð980Þ ! ��width, and
a possible n �n admixture in the latter scalar resonance, did
we use an approximate expression in Refs. [7,8], with
totally immaterial consequences in view of the small scalar
mixing angle.

Let us now carry out a more detailed analysis of ��!��

in a QLL�M setting, employing Eqs. (2) and (3). Working
beyond the chiral limit (CL), we may take the NJL value
m� ¼ 675 MeV for mn ¼ 337:5 MeV [14], where mn

stands for the nonstrange (up or down) quark mass. Still
neglecting n �n-s�s mixing and meson loops, this gives

�q �q
�!�� � 2:7 keV. Also away from the NJL limit, corre-

sponding to a mass m� ’ 666 MeV [14], the latter width
gets reduced to � 2:4 keV. If we now moreover allow for
the admixture of a small s�s component in the �, with a
nonstrange-strange mixing angle of, say, �10� [14], then

we get �q �q
�!�� � 2:5 keV, for the often used [9] QLL�M

quark massesmn ¼ 337:5 MeV andms ¼ 486 MeV. Note
that this s�s component, with amplitude

M s �s
�!�� ¼

ffiffiffi
2

p
�g

3�ms

2�s½2þ ð1� 4�sÞIð�sÞ�; (4)

contributes with a weight factor of only
ffiffiffi
2

p
�mn=3�f�ms

(using the GT relation mn ¼ f�g), as compared to
5�=3�f� from Eq. (2) in the n �n case, since the charge
of a strange quark is �1=3 [7].
Next we are going to add meson-loop contributions as

well. Now, in the framework of the QLL�M, loops with
charged mesons that couple to the � include those with
pions and kaons, as well as those with the scalar mesons
	ð800Þ and a0ð980Þ. The expression for a gauge-invariant
meson-loop contribution to the two-photon amplitude
mainly differs from the quark triangle in Eq. (2) because
of the presence of a seagull graph (see e.g. Ref. [11], first
paper), yielding a total amplitude

MMM
�!�� ¼ � 2g0�

�m2
M

�

� 1

2
þ �Ið�Þ

�

; � ¼ m2
M

m2
�

; (5)

where the minus sign stems from the opposite statistics
with respect to the quark-loop case, and g0 is the cubic
QLL�M meson coupling. For the charged-meson loops
pertinent to the�, we shall need the three-meson couplings
[7,9,10]

g�n �n;�� ¼ cos2ð
SÞm2
� þ sin2ð
SÞm2

f0ð980Þ �m2
��

2f�
;

g�s �s;�� ¼ 0;

g�n �n;KK ¼ cos2ð
SÞm2
� þ sin2ð
SÞm2

f0ð980Þ �m2
K�

2fK
;

g�s �s;KK ¼ sin2ð
SÞm2
� þ cos2ð
SÞm2

f0ð980Þ �m2
K�

ffiffiffi
2

p
fK

;

g�n �n;		 ¼ cos2ð
SÞm2
� þ sin2ð
SÞm2

f0ð980Þ �m2
	

2ðf� � fKÞ ;

g�s �s;		 ¼ sin2ð
SÞm2
� þ cos2ð
SÞm2

f0ð980Þ �m2
	

ffiffiffi
2

p ðfK � f�Þ
;

g�n �n;a0a0 ¼ 3g�n �n;��; g�s �s;a0a0 ¼ 0;

(6)
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where 
S is the scalar mixing angle, and fK ¼
f�ðms=mn þ 1Þ=2 � 1:22f�. The cubic coupling of the
physical � meson to these four meson-meson channels is
then given by

g0�;MM ¼ cosð
SÞg�n �n;MM � sinð
SÞg�s �s;MM: (7)

Note that we neglect here small OZI-violating corrections
to the QLL�M three-meson couplings, just as in previous
work of ours [7]. Such contributions will be included in a
forthcoming study.

Now we are in a position to do a complete calculation of
��!��, with both quark and meson loops accounted for.

Note that the imaginary part of Ið�Þ, as given by the � <
0:25 case in Eq. (3), will be included for the pion-loop
amplitude. If we choose again a scalar mixing angle of
�10� and take m	 ¼ 800 MeV, we obtain a total two-
gamma width

�q �qþMM
�!�� � 3:5 keV: (8)

This rate corresponds to a total amplitude modulus jMj ¼
4:88	 10�2 GeV�1, which can be decomposed in terms
of the partial quark- and meson-loop amplitudes

<eMn �n ¼ 4:01	 10�2 GeV�1;

<eMs�s ¼ 1:08	 10�2 GeV�1;

M�� ¼ ð1:19� i1:03Þ 	 10�2 GeV�1;

MKK ¼ �1:82	 10�3 GeV�1;

M		 ¼ �2:05	 10�3 GeV�1;

Ma0a0 ¼ �1:50	 10�3 GeV�1:

(9)

Note that here the relative sign between quark and meson
loops has already been included. Also observe that the
kaon, 	, and a0ð980Þ loops reduce the contribution of the
pion loop, so that the net effect of the meson loops on the
two-photon width is about þ40%. Changing the scalar
mixing angle to e.g. 
S ¼ �18� [9] only reduces the total
two-photon width by about 3%. So the predictions, for a
wide range of reasonable mixing angles, are fully compat-
ible with the corresponding PDG [2] data, and also not at
odds with Pennington’s recent results [4,5].

In contrast, the sensitivity of ��!�� to the � mass is

much stronger, which is obvious from Eq. (1), relating
width and amplitude via m� cubed. This can also by seen
in Fig. 2 of the paper [1] by GGL themselves, where e.g. an
m� of 650 MeV, with mq ¼ 350 MeV, would yield a

�q �q
�!�� of roughly 2.5 keV, so in agreement with the values

2.4–2.5 keV found above. However, by taking a very small
m� of 440 MeV, as GGL choose to do, one obtains a much
smaller ��!��, even when meson loops are included. For

instance, if we assume the� to be purely n �n and takemq ¼
250 MeV, ��!�� becomes � 0:7 keV, even with the 3

meson-loop contributions included, which should be com-
pared to GGL’s value of 0.54 keV (see Table I of Ref. [1])

for the pure q �q case. Neglecting in this scenario the term
proportional to Ið�Þ would indeed increase our result of �
0:7 keV to � 1:4 keV, but this is of course an error we
have not and will not make.
At this point, we also take exception at GGL’s claim

‘‘. . .the results for ��!�� at a fixed pole mass of M� ¼
440 MeV as favored by recent theoretical and experimen-
tal works [16, 20],’’ where their Ref. 20 is our Ref. [2], i.e.,
the 2006 PDG Review of Particle Physics. It is simply false
to state that the PDG favors a� pole mass of 440 MeV. The
truth is that the PDG listings mention
‘‘ð400–1200Þ � ið250–500Þ OUR ESTIMATE,’’ for the
f0ð600Þ T-matrix pole (i.e., S-matrix pole) as a function
of

ffiffiffi
s

p
. On the other hand, the theoretical papers referred to

by GGL include the Roy-equation analysis by Caprini,
Colangelo, and Leutwyler [15], which indeed found
441 MeV for the real part of the � S-matrix pole, besides
an imaginary part of 272 MeV. However, it is a common
mistake to confuse the real part of the pole with the ‘‘mass’’
of a broad resonance, especially when the resonance is
certainly not of a pure Breit-Wigner (BW) type, like e.g.
the �, which is strongly distorted due to the �� threshold
and the Adler zero not far below [16]. Notice that, in the
latter analysis, the mass of the � at which the �� phase
shift passes through 90�—by definition the K-matrix
pole—lies at 926 MeV. This does not mean that this is
the � mass, but just demonstrates the difficulty of assign-
ing any specific mass to a broad non-BW resonance.
Anyhow, our above choice of 666 MeV, in the context of
the QLL�M, is surely more reasonable than naively taking
the real part of a pole that is already significantly lower
than the ‘‘world average’’ [2,17] of � poles.
To conclude this section, we note that the Z ¼ 0 com-

positeness condition, discussed by GGL in the context of
their nonlocal Lagrangian, is manifestly satisfied in the—
nonperturbative and self-consistent—QLL�M, provided
� ¼ m2

q=m
2
� � 0:25, with g� not depending on m�, up to

corrections of the order of 3% beyond the CL [9].

III. CONCLUSIONS

In the present comment we have shown that GGL in-
correctly referred to and criticized our previous papers on
the subject. Moreover, we have demonstrated, via an ex-
plicit and detailed calculation in the context of the
QLL�M, that the reported experimental values of ��!��

give quantitative support to a q �q interpretation of the �
meson, provided that one uses a reasonable � mass and
also includes meson-loop contributions, besides the quark
loop considered by GGL.
Finally, let us comment on the nonlocal Lagrangian

employed by GGL besides the local one. Their justification
was ‘‘However, the local approach is no longer applicable
for values ofM� close to threshold, as will be evident from
the discussion of the next section.’’ Well, as already men-
tioned above, the QLL�M is a local renormalizable field
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theory, exactly satisfying the Z ¼ 0 compositeness condi-
tion close to—but below—threshold, due to its nonpertur-
bative and self-consistent formulation [10]. This condition
can be rigorously described in both the QLL�M and the
NJL model, in terms of a log-divergent gap equation [18].
The latter can also be expressed via a four-dimensional
ultraviolet cutoff �, resulting in a value � � 2:3mq. For a

nonstrange quark mass of 337.5 MeV, this gives � �
750 MeV, which is an energy scale that clearly separates
the ‘‘elementary’’ � from e.g. the ‘‘composite’’ � meson.
For further details, we refer to Ref. [18].

In contrast, GGL prefer a nonlocal �-model Lagrangian
for the calculation of ��!�� in a q �q scenario. In view of the

numerical results of the latter model, which produces even
tinier values for ��!�� than their local approach, we are

led to conclude that nature rather disfavors the nonlocal
realization of chiral symmetry as proposed by GGL than a
q �q interpretation of the � meson.
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