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We study the nonperturbative dynamics of nonsupersymmetric asymptotically free gauge theories with

fermionic matter in distinct representations of the SOðNÞ and Spð2NÞ gauge groups. We use different

analytic methods to unveil the associated conformal windows for the relevant matter representations. We

propose a direct test for confronting and establishing the validity of the analytic methods used to constrain

the conformal windows. By comparing the resulting windows for SU, Sp, and SO a pleasing universal

picture emerges.
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I. INTRODUCTION

Models of dynamical breaking of the electroweak sym-
metry are theoretically appealing and constitute one of the
best motivated natural extensions of the standard model
(SM). These are also among the most challenging models
to work with since they require deep knowledge of gauge
dynamics in a regime where perturbation theory fails. In
particular, it is of utmost importance to gain information on
the nonperturbative dynamics of non-Abelian four-
dimensional gauge theories.

Recent studies of the dynamics of gauge theories featur-
ing fermions transforming according to higher dimensional
representations of the new gauge group led to several
interesting phenomenological possibilities [1–3] such as
minimal walking technicolor [4] and ultra minimal walk-
ing technicolor [5]. Higher dimensional representations
have been used earlier in particle physics phenomenology.
Time honored examples are grand unified models.
Theories with fermions transforming according to higher
dimensional representations develop an infrared fixed
point (IRFP) for a very small number of flavors and colors
[1,3,6]. This was considered unlikely to occur for non-
supersymmetric gauge theories with fermionic matter [7].
This discovery is important since it allows the construction
of several explicit UV-complete models able to break the
electroweak symmetry dynamically while naturally featur-
ing small contributions to the electroweak precision pa-
rameters [4,8,9]. Simultaneously it also helps alleviating
the flavor changing neutral currents, while the models also
feature explicit candidates of asymmetric dark matter [4,5].
These models are economical since they require the intro-
duction of a very small number of underlying elementary
fields and can feature a light composite Higgs [2,3,10].
Recent analyses lend further support to the latter observa-
tion [11,12].

At large distances theories developing an IRFP are
conformal. One can envision several ways to depart from
conformality. For example, one can add a relevant operator

such as an explicit fermion-mass term or decrease the
number of flavors. If the departure from conformality is
soft, meaning that the IRFP is quasi reached the gauge
coupling constant runs slowly over a long range of energies
and the theory is said to walk [13–16]. This is, however, not
the best way to define a walking theory since the coupling
constant is not a physical quantity. In fact one should look
at two and higher point correlators and determine the
associated scaling exponent. In a (quasi)-conformal theory
the scaling will have a characteristic power law behavior.
Gauge theories developing an IRFP are natural ultraviolet
completions of unparticle [17] models [18,19]. The effects
of the instantons and their interplay with the fermion-mass
operator on the conformal window have been evaluated in
[20]. Within the SD approach these effects were investi-
gated in [21].
Non-Abelian gauge theories exist in a number of distinct

phases, which can be classified according to the character-
istic dependence of the potential energy on the distance
between two well separated static sources. The collection
of all of these different behaviors, when represented, for
example, in the flavor-color space, constitutes the phase
diagram of the given gauge theory. The phase diagram of
SUðNÞ gauge theories as functions of number of flavors,
colors, and matter representation has been investigated in
[1,3,6,19,22]. Interesting applications have been envi-
sioned not only for the LHC phenomenology [1,4,23–26]
but also for cosmology [5,27–38]. The nonperturbative
dynamics of these models is being investigated via first
principles lattice computations by several groups [39–48].
In the literature the reader can also find various attempts to
gain information on the nonperturbative gauge dynamics
using gauge-gravity type duality, and we cite here only a
few recent efforts [49–51].
Here, we extend the analysis of the zero temperature and

matter density phase diagram to SOðNÞ and Spð2NÞ gauge
theories. Our results will lead to a deeper understanding of
the (conformal) gauge dynamics of nonsupersymmetric
gauge theories, while it will enlarge the number of non-
supersymmetric gauge theories that can be used for ex-
tending the SM.*sannino@ifk.sdu.dk
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The analytical tools we will use for such an exploration
are i) The conjectured all-orders beta function (BF) for
nonsupersymmetric gauge theories with fermionic matter
in arbitrary representations of the gauge group [6]; ii) The
truncated Schwinger-Dyson (SD) equation [52–54] (re-
ferred also as the ladder approximation in the literature);
The Appelquist-Cohen-Schmaltz (ACS) conjecture [55],
which makes use of the counting of the thermal degrees
of freedom at high and low temperature.

We will show that relevant constraints can be deduced
for any gauge theory and any representation only via the
all-orders beta function and the SD results. The ACS
conjecture is, unfortunately, not sufficiently constraining
when studying theories with matter in higher dimensional
representations of SO and Sp gauge theories. This is in
complete agreement with our earlier results for SU gauge
theories [56]. We will rediscuss the phase diagram of the
SUð2Þ gauge theory with fundamental fermions. The re-
sults, here, seem to disagree with the ones in [55]. We
suggest that by investigating the dynamics of the SUð2Þ
gauge theory with five Dirac flavors in the fundamental
representation of the underlying gauge theory via first
principles lattice simulations one will be able to test the
ACS conjecture as well as the all-orders beta function one.

The paper is organized as follows: In Sec. II, we will
introduce the all-orders beta function, in Sec. III, we will
summarize the basic points about the SD approximation,
and in Sec. IV, we will briefly summarize the thermal
degrees of freedom method to bound the conformal win-
dow. The phase diagram of Spð2NÞ gauge theories with
matter in the vector and two-index representation will be
investigated in Sec. V, while in Sec. VI, we will investigate
the one for SOðNÞ gauge theories. We will conclude in
Sec. VII.

II. ALL-ORDERS BETA FUNCTION CONJECTURE

Recently, we have conjectured an all-orders beta func-
tion, which allows for a bound of the conformal window
[6] of SUðNÞ gauge theories for any matter representation.
It is written in a form useful for constraining the phase
diagram of strongly coupled theories. It is inspired by the
Novikov-Shifman-Vainshtein-Zakharov beta function for
supersymmetric theories [57,58], and the renormalization
scheme coincides with the Novikov-Shifman-Vainshtein-
Zakharov one. The predictions of the conformal window
coming from the above beta function are nontrivially sup-
ported by all the recent lattice results [39–42,46,47,59].

It reproduces the exact supersymmetric results when
reducing the matter content to the one of supersymmetric
gauge theories. In particular, we compared our prediction
for the running of the coupling constant for the pure Yang-
Mills theories with the one studied via the Schroedinger
functional [59–61] and found an impressive agreement. We
have also predicted that the IRFP for SUð3Þ gauge theories

could not extend below 8.25 number of flavors. Subsequent
numerical analysis [46,47,62] confirmed our prediction.
Here, we further assume the form of the beta function to

hold for SOðNÞ and Spð2NÞ gauge groups. Consider a
generic gauge group with NfðriÞ Dirac flavors belonging

to the representation ri, i ¼ 1; . . . ; k of the gauge group.
The conjectured beta function reads

�ðgÞ ¼ � g3

ð4�Þ2
�0 � 2

3

P
k
i¼1 TðriÞNfðriÞ�iðg2Þ

1� g2

8�2 C2ðGÞð1þ 2�0
0

�0
Þ

; (1)

with

�0 ¼ 11

3
C2ðGÞ � 4

3

Xk
i¼1

TðriÞNfðriÞ and

�0
0 ¼ C2ðGÞ �

Xk
i¼1

TðriÞNfðriÞ:
(2)

The generators Ta
r , a ¼ 1 . . .N2 � 1 of the gauge group in

the representation r are normalized according to
Tr½Ta

r T
b
r � ¼ TðrÞ�ab, while the quadratic Casimir C2ðrÞ

is given by Ta
r T

a
r ¼ C2ðrÞI. The trace normalization factor

TðrÞ and the quadratic Casimir are connected via
C2ðrÞdðrÞ ¼ TðrÞdðGÞ, where dðrÞ is the dimension of
the representation r. The adjoint representation is denoted
by G.
The beta function is given in terms of the anomalous

dimension of the fermion mass � ¼ �d lnm=d ln�, where
m is the renormalized mass, similar to the supersymmetric
case [57,58,63]. The loss of asymptotic freedom is deter-
mined by the change of sign in the first coefficient�0 of the
beta function. This occurs when

Xk
i¼1

4

11
TðriÞNfðriÞ ¼ C2ðGÞ; Loss of AF: (3)

At the zero of the beta function we have

Xk
i¼1

2

11
TðriÞNfðriÞð2þ �iÞ ¼ C2ðGÞ: (4)

Hence, specifying the value of the anomalous dimensions
at the IRFP yields the last constraint needed to construct
the conformal window. Having reached the zero of the beta
function the theory is conformal in the infrared. For a
theory to be conformal the dimension of the nontrivial
spinless operators must be larger than 1 in order not to
contain negative norm states [64–66]. Since the dimension
of the chiral condensate is 3� �i we see that �i ¼ 2, for
all representations ri, yields the maximum possible bound

Xk
i¼1

8

11
TðriÞNfðriÞ ¼ C2ðGÞ: (5)

In the case of a single representation this constraint yields
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NfðrÞBF � 11

8

C2ðGÞ
TðrÞ : (6)

The actual size of the conformal window can be smaller
than the one determined by the bound above, Eqs. (3) and
(5). It may happen, in fact, that chiral symmetry breaking is
triggered for a value of the anomalous dimension less than
two. If this occurs, the conformal window shrinks. Within
the ladder approximation [52,53] one finds that chiral
symmetry breaking occurs when the anomalous dimension
is close to 1. Picking �i ¼ 1 we find

Xk
i¼1

6

11
TðriÞNfðriÞ ¼ C2ðGÞ: (7)

When considering two distinct representations the confor-
mal window becomes a three-dimensional volume, i.e. the
conformal volume [22]. Of course, we recover the results
by Banks and Zaks [67] valid in the perturbative regime of
the conformal window.

III. SCHWINGER-DYSON IN THE RAINBOW
APPROXIMATION

For nonsupersymmetric theories an old way to get quan-
titative estimates is to use the rainbow approximation to
the Schwinger-Dyson equation [68,69], see Fig. 1. Here,
the full nonperturbative fermion propagator in momentum
space reads

iS�1ðpÞ ¼ ZðpÞðp6 ��ðpÞÞ; (8)

and the Euclidianized gap equation in Landau gauge is
given by

�ðpÞ ¼ 3C2ðrÞ
Z d4k

ð2�Þ4
�ððk� pÞ2Þ
ðk� pÞ2

�ðk2Þ
Zðk2Þk2 þ �2ðk2Þ ;

(9)

where Zðk2Þ ¼ 1 in the Landau gauge, and we linearize the
equation by neglecting �2ðk2Þ in the denominator. Upon
converting it into a differential equation and assuming that
the coupling �ð�Þ � �c is varying slowly [�ð�Þ ’ 0] one
gets the approximate (WKB) solutions

�ðpÞ / p��ð�Þ; �ðpÞ / p�ð�Þ�2: (10)

The critical coupling is given in terms of the quadratic
Casimir of the representation of the fermions

�c � �

3C2ðrÞ : (11)

The anomalous dimension of the fermion-mass operator is

�ð�Þ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ð�Þ

�c

s
� 3C2ðrÞ�ð�Þ

2�
: (12)

The first solution corresponds to the running of an ordinary
mass term (hard mass) of nondynamical origin and the
second solution to a soft mass dynamically generated. In
fact, in the second case one observes the 1=p2 behavior in
the limit of large momentum.
Within this approximation spontaneous symmetry

breaking occurs when � reaches the critical coupling �c

given in Eq. (11). From Eq. (12) it is clear that �c is
reached when � is of order unity [15,52,53]. Hence, the
symmetry breaking occurs when the soft and the hard mass
terms scale as a function of the energy scale in the same
way. In Ref. [52], it was noted that in the lowest (ladder)
order, the gap equation leads to the condition �ð2� �Þ ¼
1 for chiral symmetry breaking to occur. To all orders in
perturbation theory this condition is gauge invariant and
also equivalent nonperturbatively to the condition � ¼ 1.
However, to any finite order in perturbation theory these
conditions are, of course, different. Interestingly, the con-
dition �ð2� �Þ ¼ 1 leads again to the critical coupling �c

when using the perturbative leading order expression for

the anomalous dimension, which is � ¼ 3C2ðrÞ
2� �.

To summarize, the idea behind this method is simple.
One simply compares the two couplings in the infrared
associated to i) an infrared zero in the � function, call it ��
with ii) the critical coupling, denoted with �c, above which
a dynamical mass for the fermions generates nonperturba-
tively and chiral symmetry breaking occurs. If �� is less
than �c, chiral symmetry does not occur, and the theory
remains conformal in the infrared, vice versa if �� is larger
than �c, then the fermions acquire a dynamical mass, and
the theory cannot be conformal in the infrared. The con-
dition �� ¼ �c provides the desired NSD

f as function of N.

In practice, to estimate �� one uses the two-loop beta
function while one uses the truncated SD equation to
determine �c as we have done before. This corresponds
to when the anomalous dimension of the quark mass
operator becomes approximately unity.
The two-loop fixed point value of the coupling constant

is

��

4�
¼ ��0

�1

; (13)

with the following definition of the two-loop beta function:

�ðgÞ ¼ � �0

ð4�Þ2 g
3 � �1

ð4�Þ4 g
5; (14)

where g is the gauge coupling, and the beta function
coefficients are given by

FIG. 1. Rainbow approximation for the fermion self-energy
function. The boson is a gluon.
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�0 ¼ 11
3C2ðGÞ � 4

3TðrÞNf; (15)

�1 ¼ 34
3C

2
2ðGÞ � 20

3C2ðGÞTðrÞNf � 4C2ðrÞTðrÞNf: (16)

To this order the two coefficients are universal, i.e. do not
depend on which renormalization group scheme one has
used to determine them. The perturbative expression for
the anomalous dimension reads

�ðg2Þ ¼ 3

2
C2ðrÞ g2

4�2
þOðg4Þ; (17)

with � ¼ �d lnm=d ln� and m the renormalized fermion-
mass.

For a fixed number of colors the critical number of
flavors for which the order of �� and �c changes is defined
by imposing �� ¼ �c, and it is given by

NSD
f ¼ 17C2ðGÞ þ 66C2ðrÞ

10C2ðGÞ þ 30C2ðrÞ
C2ðGÞ
TðrÞ : (18)

Comparing with the previous result obtained using the all-
orders beta function, we see that it is the coefficient of
C2ðGÞ=TðrÞ, which is different.

IV. THERMAL COUNTING OF THE DEGREES OF
FREEDOM CONJECTURE

The free energy can be seen as a device to count the
relevant degrees of freedom. It can be computed, exactly, in
two regimes of a generic asymptotically free theory: the
very hot and the very cold one.

The zero-temperature theory of interest is characterized
using the quantity fIR, related to the free energy by

fIR � �lim
T!0

F ðTÞ
T4

90

�2
; (19)

where T is the temperature and F is the conventionally
defined free energy per unit volume. The limit is well
defined if the theory has an IRFP. For the special case of
an infrared-free theory

fIR ¼ # Real Bosonsþ 7

4
# Weyl-Fermions: (20)

The corresponding expression in the large T limit is

fUV � � lim
T!1

F ðTÞ
T4

90

�2
: (21)

This limit is well defined if the theory has an ultraviolet
fixed point. For an asymptotically free theory fUV counts
the underlying ultraviolet d.o.f. in a similar way.

In terms of these quantities, the conjectured inequality
[55] for any asymptotically free theory is

fIR � fUV: (22)

This inequality has not been proven but it was shown to be
consistent with known results and then used to derive new
constraints for several strongly coupled, vectorlike gauge

theories. The ACS conjecture has been used also for chiral
gauge theories [70]. There it was also found that to make
definite predictions a stronger requirement is needed [71].

V. PHASE DIAGRAM OF Spð2NÞ GAUGE
THEORIES

Spð2NÞ is the subgroup of SUð2NÞ, which leaves the
tensor Jc1c2 ¼ ð1N	N 
 i�2Þc1c2 invariant. Irreducible ten-
sors of Spð2NÞ must be traceless with respect to Jc1c2 .
Here, we consider Spð2NÞ gauge theories with fermions
transforming according to a given irreducible representa-
tion. Since �4½Spð2NÞ� ¼ Z2 there is a Witten topological
anomaly [72] whenever the sum of the Dynkin indices of
the various matter fields is odd. The adjoint of Spð2NÞ is
the two-index symmetric tensor.

A. Spð2NÞ with vector fields

Consider 2Nf Weyl fermions qic with c ¼ 1; . . . ; 2N and

i ¼ 1; . . . ; 2Nf in the fundamental representation of

Spð2NÞ. We have omitted the SLð2; CÞ spinorial indices.
We need an even number of flavors to avoid the Witten
anomaly since the Dynkin index of the vector representa-
tion is equal to one. In the following Table we summarize
the properties of the theory

Fields [Spð2NÞ] SUð2NfÞ T½ri� d½ri�
q h h 1

2 2N
G� Adj ¼ o 1 N þ 1 Nð2N þ 1Þ

1. Chiral symmetry breaking

The theory is asymptotically free for Nf � 11ðN þ
1Þ=2, while the relevant gauge singlet mesonic degree of
freedom is

M½i;j� ¼ ���q½i�;c1q
j�
�;c2

Jc1c2 : (23)

If the number of flavors is smaller than the critical number
of flavors above which the theory develops an IRFP, we
expect this operator to condense and to break SUð2NfÞ to
the maximal diagonal subgroup, which is Spð2NfÞ leaving
behind 2N2

f � Nf � 1 Goldstone bosons. Also, there exist

no Spð2NÞ stable operators constructed using the invariant
tensor �c1c2;...c2N since they will break up into mesons M.
This is so since the invariant tensor �c1c2...c2N breaks up into
sums of products of Jc1c2 .

2. All-orders beta function

A zero in the numerator of the all-orders beta function
leads to the following value of the anomalous dimension of
the mass operator at the IRFP:

�h ¼ 11ðN þ 1Þ
Nf

� 2: (24)
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Since the (mass) dimension of any scalar gauge singlet
operator must be, by unitarity arguments, larger than 1 at
the IRFP, this implies that �h � 2. Defining with ��

h the

maximal anomalous dimension above which the theory
loses the IRFP the conformal window is

11

4
ðN þ 1Þ � 11

2þ ��
h

ðN þ 1Þ � Nf � 11

2
ðN þ 1Þ:

(25)

For the first inequality we have taken the maximal value
allowed for the anomalous dimension, i.e. ��

h ¼ 2.

3. SD

The estimate from the truncated SD analysis yields as
critical value of Weyl flavors

NSD
f ¼ 2ð1þ NÞð67þ 100NÞ

35þ 50N
: (26)

4. Thermal degrees of freedoms

In the UV we have 2Nð2N þ 1Þ gauge bosons, where the
extra factor of 2 comes from taking into account the two
helicities of each massless gauge boson, and 4NNf Weyl

fermions. In the IR we have 2N2
f � Nf � 1 Goldstones,

and hence we have

fUV ¼ 2Nð2N þ 1Þ þ 7NNf; fIR ¼ 2N2
f � Nf � 1:

(27)

The number of flavors for which fIR ¼ fUV is

NTherm
f ¼ 1þ 7N þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð3þ 10N þ 27N2Þp
4

: (28)

No information can be obtained about the value of the
anomalous dimension of the fermion bilinear at the fixed
point. Assuming the conjecture to be valid the critical
number of flavors cannot exceed NTherm

f . The phase dia-

gram is plotted in Fig. 2.

5. A comment on the limit N ¼ 1 corresponding to SUð2Þ
In this case, NTherm

f ¼ 2þ
ffiffiffiffi
15
2

q
’ 4:74 and not

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 16=81

p ’ 7:8 as one deduces from Eq. (11) of [55].
The reason for the discrepancy is due to the fact that the
fundamental representation of SUð2Þ ¼ Spð2Þ is pseudor-
eal and hence the flavor symmetry is enhanced to SUð2NfÞ.
This enhanced symmetry is expected to break spontane-
ously to Spð2NfÞ. This yields 2N2

f � Nf � 1 Goldstone

bosons rather than N2
f � 1 obtained assuming the global

symmetry to be SUðNfÞ 	 SUðNfÞ 	Uð1Þ spontaneously
broken to SUðNfÞ 	Uð1Þ. The corrected NTherm

f value for

SUð2Þ is substantially lower than the SD one which is 7.86.
The all-orders beta function result is instead 5.5 for the
lowest possible value of Nf below which chiral symmetry

must break (corresponding to �h ¼ 2). Imposing �h ¼ 1
(suggested by the SD approach) the all-orders beta function
returns to 7.3, which is closer to the SD prediction. Note
that there is some phenomenological interest in the SUð2Þ
gauge theory with fermionic matter in the fundamental
representation. For example the case of Nf ¼ 8 has been

employed in the literature as a possible template for early
models of walking technicolor [73].
These results indicate that it is interesting to study the

SUð2Þ gauge theory with Nf ¼ 5 Dirac flavors via first

principles lattice simulation. This will allow to discrimi-
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ACS ACSAF AF

BF &

BF &

SP(2N) SP(2N)

FIG. 2 (color online). Phase diagram of Spð2NÞ gauge theories with 2Nf fundamental Weyl fermions. Left panel: The upper solid
(blue) line corresponds to the loss of asymptotic freedom, and it is labeled by AF; the dashed (black) curve corresponds to the SD
prediction for the breaking/restoring of chiral symmetry. The solid grey (magenta in color) line corresponds to the ACS bound stating
that the conformal region should start above this line. According to the all-orders BF, the conformal window cannot extend below the
solid (blue) line, as indicated by the arrows. This line corresponds to the anomalous dimension of the mass reaching the maximum
value of 2. Right panel: The BF line is plotted assuming the value of the anomalous dimension to be one.
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nate between the two distinct predictions, the one from the
ACS and the one from the all-orders beta function.

B. Spð2NÞ with adjoint matter fields

Consider Nf Weyl fermions qifc1;c2g with c1 and c2 rang-

ing from 1 to 2N and i ¼ 1; . . . ; Nf. This is the adjoint

representation of Spð2NÞ with Dynkin index 2ðN þ 1Þ.
Since it is even for any N, there is no Witten anomaly for
any Nf. In the following Table we summarize the proper-

ties of the theory:

Fields [Spð2NÞ] SUðNfÞ T½ri� d½ri�
q o h N þ 1 Nð2N þ 1Þ
G� Adj ¼ o 1 N þ 1 Nð2N þ 1Þ

1. Chiral symmetry breaking

The theory is asymptotically free for Nf � 11=2 (recall

that Nf here is the number of Weyl fermions), while the

relevant gauge singlet mesonic degree of freedom is

Mfi;jg ¼ ���qfi�;fc1;c2gq
jg
�;fc3;c4gJ

c1c3Jc2c4 : (29)

If the number of flavors is smaller than the critical number
of flavors above which the theory develops an IRFP, we
expect this operator to condense and to break SUðNfÞ to
the maximal diagonal subgroup, which is SOðNfÞ leaving
behind ðN2

f þ Nf � 2Þ=2 Goldstone bosons.

2. All-orders beta function

Here, the anomalous dimension of the mass operator at
the IRFP is

�o ¼ 11

Nf

� 2: (30)

Since the dimension of any scalar gauge singlet operator
must be larger than 1 at the IRFP, this implies that �o �
2. Defining with ��

o the maximal anomalous dimension

above which the theory loses the IRFP, the conformal
window is

11

4
� 11

2þ ��
o

� Nf � 11

2
: (31)

3. SD

The estimate from the truncated SD analysis yields as
critical value of flavors

NSD
f ¼ 4:15: (32)

4. Thermal degrees of freedoms

In the ultraviolet we have 2Nð2N þ 1Þ gauge bosons and
Nð2N þ 1ÞNf Weyl fermions. In the IR we have ðN2

f þ
Nf � 2Þ=2 Goldstone bosons. Hence,

fUV ¼ 2Nð2N þ 1Þ þ 7

4
Nð2N þ 1ÞNf;

fIR ¼ N2
f þ Nf � 2

2
:

(33)

The number of flavors for which fIR ¼ fUV is

NTherm
f ¼ �2þ 7N þ 14N2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

36þ 36N þ 121N2 þ 196N3 þ 196N4
p

4
: (34)

This is a monotonically increasing function of N, which
even for a value of N as low as 2 yields NTherm

f ¼ 35:2,
which is several times higher than the limit set by asymp-
totic freedom. Although this fact does not contradict the
statement that the critical number of flavors is lower than
NTherm

f , it shows that this conjecture does not lead to useful
constraints when looking at higher dimensional represen-
tations as we observed in [56] when discussing higher
dimensional representations for SUðNÞ gauge groups The
phase diagram is summarized in Fig. 3.

C. Spð2NÞ with two-index antisymmetric
representation

Consider Nf Weyl fermions qi½c1;c2� with c1 and c2 rang-

ing from 1 to 2N and i ¼ 1; . . . ; Nf. As for the two-index

symmetric case here too the Dynkin index is even and

hence we need not to worry about the Witten anomaly. In
the following Table we summarize the properties of the
theory:

Fields [Spð2NÞ] SUðNfÞ T½ri� d½ri�
q p h N � 1 Nð2N � 1Þ � 1
G� Adj ¼ o 1 N þ 1 Nð2N þ 1Þ

1. Chiral symmetry breaking

The theory is asymptotically free for Nf � 11ðNþ1Þ
2ðN�1Þ with

the relevant gauge singlet mesonic degree of freedom
being

Mfi;jg ¼ ���qfi�;½c1;c2�q
jg
�;½c3;c4�J

c1c3Jc2c4 : (35)

If the number of flavors is smaller than the critical number
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of flavors above which the theory develops an IRFP, we
expect this operator to condense and to break SUðNfÞ to
the maximal diagonal subgroup, which is SOðNfÞ leaving
behind ðN2

f þ Nf � 2Þ=2 Goldstone bosons.

2. All-orders beta function

The anomalous dimension of the mass operator at the
IRFP is

�p ¼ 11ðN þ 1Þ � 2NfðN � 1Þ
NfðN � 1Þ : (36)

Defining with ��
p

the maximal anomalous dimension

above which the theory loses the IRFP the conformal

window is

11

4

N þ 1

N � 1
� 11

2þ ��
p

N þ 1

N � 1
� Nf � 11

2

N þ 1

N � 1
: (37)

The maximal value allowed for the anomalous dimension
is ��

p
¼ 2.

3. SD

The SD analysis yields as critical value of flavors

NSD
f ¼ ð1þ NÞð83N þ 17Þ

5ð4N2 � 3N � 1Þ : (38)
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FIG. 3 (color online). Phase diagram of Spð2NÞ gauge theories with Nf adjoint Weyl fermions. Left panel: The upper solid (red) line
corresponds to the loss of asymptotic freedom, and it is labeled by AF; the dashed (black) curve corresponds to the SD prediction for
the breaking/restoring of chiral symmetry. According to the all-orders BF, the conformal window cannot extend below the solid (red)
line, as indicated by the arrows. This line corresponds to the anomalous dimension of the mass reaching the maximum value of 2. Right
panel: The BF line is plotted assuming the value of the anomalous dimension to be one.
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FIG. 4 (color online). Phase diagram of Spð2NÞ gauge theories with Nf two-index antisymmetric Weyl fermions. Left panel: The
upper solid (blue) curve corresponds to the loss of asymptotic freedom, and it is labeled by AF; the dashed (black) curve corresponds to
the SD prediction for the breaking/restoring of chiral symmetry. According to the all-orders BF, the conformal window cannot extend
below the solid (blue) curve, as indicated by the arrows. This curve corresponds to the anomalous dimension of the mass reaching the
maximum value of 2. Right panel: The BF curve is plotted assuming the value of the anomalous dimension to be one.
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4. Thermal degrees of freedoms

In the ultraviolet we have 2Nð2N þ 1Þ gauge bosons and ðNð2N � 1Þ � 1ÞNf Weyl fermions. In the IR we have ðN2
f þ

Nf � 2Þ=2 Goldstone bosons. Hence,

fUV ¼ 2Nð2N þ 1Þ þ 7

4
ðNð2N � 1Þ � 1ÞNf; fIR ¼ N2

f þ Nf � 2

2
: (39)

The number of flavors for which fIR ¼ fUV is

NTherm
f ¼ �9� 7N þ 14N2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

113þ 190N � 75N2 � 196N3 þ 196N4
p

4
: (40)

As explained above no useful constraint can be set with this
criterion [56]. The phase diagram is summarized in Fig. 6.

5. Summary of the results for SPð2NÞ gauge theories
In Fig. 5, we summarize the relevant zero temperature

and matter density phase diagram as function of the num-
ber of colors and Weyl flavors (NWf) for Spð2NÞ gauge
theories. For the vector representation NWf ¼ 2Nf, while

for the two-index theories NWf ¼ Nf. The shape of the

various conformal windows are very similar to the ones for
SUðNÞ gauge theories [1,3,6] with the difference that in
this case the two-index symmetric representation is the
adjoint representation and hence there is one less confor-
mal window.

VI. PHASE DIAGRAM OF SOðNÞ GAUGE
THEORIES

We shall consider SOðNÞ theories (for N > 5) since they
do not suffer of a Witten anomaly [72] and, besides, for
N < 7 can always be reduced to either an SU or an Sp
theory.

A. SOðNÞ with vector fields

Consider Nf Weyl fermions qic with c ¼ 1; . . . ; N and

i ¼ 1; . . . ; Nf in the vector representation of SOðNÞ. In the
following Table we summarize the properties of the theory:

Fields [SOðNÞ] SUðNfÞ T½ri� d½ri�
q h h 1 N
G� Adj ¼ p 1 N � 2 NðN�1Þ

2

1. Chiral symmetry breaking

The theory is asymptotically free for Nf � 11ðN�2Þ
2 . The

relevant gauge singlet mesonic degree of freedom is

Mfi;jg ¼ ���qfi�;c1q
jg
�;c2

�c1c2 : (41)

If the number of flavors is smaller than the critical number
of flavors above which the theory develops an IRFP, we
expect this operator to condense and to break SUðNfÞ to
the maximal diagonal subgroup, which is SOðNfÞ leaving
behind ðN2

f þ Nf � 2Þ=2 Goldstone bosons.

2. All-orders beta function

The anomalous dimension of the mass operator at the
IRFP is

�h ¼ 11ðN � 2Þ
Nf

� 2: (42)

Defining with ��
h the maximal anomalous dimension

above which the theory loses the IRFP, the conformal
window reads

11

4
N � 2 � 11

2þ ��
h

N � 2 � Nf � 11

2
N � 2: (43)

The maximal value allowed for the anomalous dimension
is ��

h ¼ 2.

3. SD

The SD analysis yields as critical value of flavors

NSD
f ¼ 2ðN � 2Þð50N � 67Þ

5ð5N � 7Þ : (44)
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FIG. 5 (color online). Phase diagram, from top to bottom, for
Spð2NÞ gauge theories with NWf ¼ 2Nf Weyl fermions in the

vector representation (light blue), NWf ¼ Nf in the two-index

antisymmetric representation (light red), and finally in the two-
index symmetric (adjoint) [light green]. The arrows indicate that
the conformal windows can be smaller, and the associated solid
curves correspond to the all-orders beta function prediction for
the maximum extension of the conformal windows.
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4. Thermal degrees of freedoms

In the ultraviolet we have NðN � 1Þ gauge bosons and
NNf Weyl fermions. In the IR we have ðN2

f þ Nf � 2Þ=2
Goldstone bosons. Hence,

fUV ¼ NðN� 1Þ þ 7

4
NNf; fIR ¼ N2

f þNf � 2

2
: (45)

The number of flavors for which fIR ¼ fUV is

NTherm
f ¼ �2þ 7N þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

36� 60N þ 81N2
p

4
: (46)

This value is larger than the SD result, and it is larger
than the asymptotic freedom constraint for N < 7. This is
not too surprising since the vector representation of SOðNÞ
for small N becomes a higher representation of other
groups for which we have already shown that this method
is unconstraining [56].

Note that the ACS line is always above the SD result.

B. SOðNÞ with adjoint matter fields

Consider Nf Weyl fermions qi½c1;c2� with c1 and c2 vary-

ing in the range 1; . . . ; N and i ¼ 1; . . . ; Nf. This is the

adjoint representation of SOðNÞ. In the following Table we
summarize the properties of the theory:

Fields [SOðNÞ] SUðNfÞ T½ri� d½ri�
q p h N � 2 NðN�1Þ

2

G� Adj ¼ p 1 N � 2 NðN�1Þ
2

The analysis leads to a conformal window that is an
identical copy of the one for the adjoint matter of the Sp

gauge theory, which is also identical to the SU case with
adjoint matter. The phase diagram is summarized in Fig. 6.

C. SOðNÞ with two-index symmetric representation

Consider Nf Weyl fermions qifc1;c2g with c1 and c2 vary-

ing in the range 1; . . . ; N and i ¼ 1; . . . ; Nf, i.e. in the two-

index symmetric representation of SOðNÞ. In the following
Table we summarize the properties of the theory:

Fields [SOðNÞ] SUðNfÞ T½ri� d½ri�
q o h N þ 2 NðNþ1Þ

2 � 1
G� Adj ¼ p 1 N � 2 NðN�1Þ

2

1. Chiral symmetry breaking

The theory is asymptotically free for Nf � 11ðN�2Þ
2ðNþ2Þ . The

relevant gauge singlet mesonic degree of freedom is

Mfi;jg ¼ ���qfi�;fc1;c2gq
jg
�;fc3;c4g�

c1c3�c2;c4 : (47)

If the number of flavors is smaller than the critical number
of flavors above which the theory develops an IRFP, we
expect this operator to condense and to break SUðNfÞ to
the maximal diagonal subgroup which is SOðNfÞ leaving
behind ðN2

f þ Nf � 2Þ=2 Goldstone bosons.

2. All-orders beta function

The anomalous dimension of the mass operator at the
IRFP is

�o ¼ 11ðN � 2Þ
NfðN þ 2Þ � 2: (48)
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FIG. 6 (color online). Phase diagram of SOðNÞ gauge theories with Nf fundamental Weyl fermions. Left panel: The upper solid
(blue) line corresponds to the loss of asymptotic freedom, and it is labeled by AF; the dashed (black) curve corresponds to the SD
prediction for the breaking/restoring of chiral symmetry. The solid grey (magenta in color) line corresponds to the ACS bound stating
that the conformal region should start above this line. According to the all-orders BF, the conformal window cannot extend below the
solid (blue) line, as indicated by the arrows. This line corresponds to the anomalous dimension of the mass reaching the maximum
value of 2. Right panel: The BF line is plotted assuming the value of the anomalous dimension to be one.
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Defining with ��
o the maximal anomalous dimension

above which the theory loses the IRFP the conformal
window reads

11

4

N � 2

N þ 2
� 11

2þ ��
o

N � 2

N þ 2
� Nf � 11

2

N � 2

N þ 2
: (49)

The maximal value allowed for the anomalous dimension
is ��

o ¼ 2.

3. SD

The SD analysis yields as critical value of flavors

NSD
f ¼ ðN � 2Þð83N � 34Þ

10ð2N2 þ 3N � 2Þ : (50)

4. Thermal degrees of freedoms

In the ultraviolet we have NðN � 1Þ gauge bosons and

ðN ðNþ1Þ
2 � 1ÞNf Weyl fermions. In the IR we have ðN2

f þ
Nf � 2Þ=2 Goldstone bosons. Hence,

fUV ¼ NðN � 1Þ þ 7

4

�
N
ðN þ 1Þ

2
� 1

�
Nf;

fIR ¼ N2
f þ Nf � 2

2
:

(51)

The number of flavors for which fIR ¼ fUV is

NTherm
f ¼ �18þ 7Nð1þ NÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

452þ Nð�380þ Nð�75þ 49Nð2þ NÞÞÞp
8

: (52)

This value is several times larger than the asymptotic
freedom result and hence poses no constraint [56]. The
phase diagram is summarized in Fig. 7.

5. Summary for SOðNÞ gauge theories
In Fig. 8, we summarize the relevant zero temperature

and matter density phase diagram as a function of the
number of colors and Weyl flavors (Nf) for SOðNÞ gauge
theories. The shape of the various conformal windows are
very similar to the ones for SUðNÞ and Spð2NÞ gauge with
the difference that in this case the two-index antisymmetric
representation is the adjoint representation. We have ana-
lyzed only the theories with N � 6 since the remaining

smaller N theories can be deduced from Sp and SU using
the fact that SOð6Þ � SUð4Þ, SOð5Þ � Spð4Þ, SOð4Þ �
SUð2Þ 	 SUð2Þ, SOð3Þ � SUð2Þ, and SOð2Þ �Uð1Þ.
At infinite N it is impossible to distinguish theories with

matter in the two-index symmetric representation from
theories with matter in the two-index antisymmetric. This
means that, in this regime, one has an obvious equivalence
between theories with these two types of matter. This
statement is independent of whether the gauge group is
SU, Sp or SOðNÞ. What distinguishes SU from both Sp
and SO is the fact that in these two cases one of the two
two-index representations is, in fact, the adjoint represen-
tation. This simple observation automatically implies that
one Weyl flavor in the two-index symmetric (antisymmet-
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FIG. 7 (color online). Phase diagram of SOðNÞ gauge theories with Nf Weyl fermions in the two-index symmetric representation.
Left panel: The upper solid (blue) curve corresponds to the loss of asymptotic freedom, and it is labeled by AF; the dashed (black)
curve corresponds to the SD prediction for the breaking/restoring of chiral symmetry. According to the all-orders BF, the conformal
window cannot extend below the solid (blue) curve, as indicated by the arrows. This curve corresponds to the anomalous dimension of
the mass reaching the maximum value of 2. Right panel: The BF curve is plotted assuming the value of the anomalous dimension to be
one.
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ric) representation of SOðNÞðSpð2NÞÞ becomes indistin-
guishable from pure super Yang-Mills at large N. The
original observation appeared first within the context of
string theory, and it is due to Sugimoto [74] and Uranga
[75]. A similar comment was made in [76].

VII. COMPARISON CHARTAND CONCLUSIONS

We unveiled the conformal windows for SO and Sp
nonsupersymmetric gauge theories with fermions in the
vector and two-index representations using three indepen-
dent analytic methods. In Figs. 5 and 8 we plotted the two
phase diagrams as a function of the number of flavors,
colors, and matter representation. These phase diagrams
are similar to the one for SUðNÞ gauge theories [1,3,6]
summarized in [19]. One observes a universal value, i.e.
independent of the representation, of the ratio of the area of
the maximum extension of the conformal window, pre-
dicted using the all-orders beta function, to the asymptoti-
cally free one, as defined in [22]. It is easy to check from
our results that this ratio is not only independent on the
representation but also on the particular gauge group
chosen.

The three different methods we used to unveil the con-
formal windows are the all-orders beta function (BF), the

SD truncated equation, and the thermal degrees of freedom
method. In the Table below, we compare directly the
various analytical methods. The three plus signs in the
second column indicate that the three analytic methods
do constrain the conformal window of SU, Sp, and SO
gauge theories with fermions in the fundamental represen-
tation. Only BF and SD provide useful constraints in the
case of the higher dimensional representations as summa-
rized in the third column. When multiple representations
participate in the gauge dynamics, the BF constraints can
be used directly [5,6] to determine the extension of the
conformal (hyper)volumes, while extra dynamical infor-
mation and approximations are required in the SD ap-
proach. Since gauge theories with fermions in several
representations of the underlying gauge group must con-
tain higher dimensional representations the ACS is ex-
pected to be less efficient in this case [77]. These results
are summarized in the fourth column. The all-orders beta
function reproduces the supersymmetric exact results when
going over the super Yang-Mills case, and the ACS con-
jecture was proved successful when tested against the
supersymmetric conformal window results [55].
However, the SD approximation does not reproduce any
supersymmetric results [78]. The results are summarized in
the fifth column. Finally, it is of theoretical and phenome-
nological interest—for example, to construct sensible UV
completions of models of dynamical electroweak symme-
try breaking and unparticles—to compute the anomalous
dimension of the mass of the fermions at the (near) con-
formal fixed point. Only the all-orders beta function pro-
vides a simple closed form expression as it is summarized
in the sixth column.
We have also suggested that it is interesting to study the

SUð2Þ gauge theory with Nf ¼ 5 Dirac flavors via first

principles lattice simulations since it will discriminate
between the two distinct predictions, the one from the
ACS conjecture and the one from the all-orders beta
function.
Our analysis substantially increases the number of

asymptotically free gauge theories that can be used to
construct SM extensions making use of (near) conformal
dynamics. Current lattice simulations can test our predic-
tions and lend further support or even disprove the emer-
gence of a universal picture possibly relating the phase
diagrams of gauge theories of fundamental interactions.
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TABLE I. Direct comparison among the various analytic
methods.

Method h-Rep. Higher rep. Multiple rep. Susy �

BF þ þ þ þ þ
SD þ þ � � �
ACS þ � � þ �
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