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Recently, there have been several evidences that the hadronic total cross section �tot is proportional to

Blog2s, which is consistent with the Froissart unitarity bound. The COMPETE Collaboration has further

assumed �tot ’ Blog2ðs=s0Þ þ Z to extend its universal rise with the common values of B and s0 for all

hadronic scatterings to reduce the number of adjustable parameters. It was suggested that the coefficient B

was universal in the arguments of the color glass condensate of QCD in recent years. However, there has

been no rigorous proof yet based only on QCD. We attempt to investigate the value of B for ��p, K�p
and �pp, pp scatterings, respectively, through the search for the simultaneous best fit to the experimental

�tot and � ratios at high energies. The �tot at the resonance- and intermediate-energy regions has also been

exploited as a duality constraint based on the special form of the finite-energy sum rule. We estimate the

values of B, s0, and Z individually for ��p, K�p and �pp, pp scatterings without using the universality

hypothesis. It turns out that the values of B are mutually consistent within 1 standard deviation. It has to be

stressed that we cannot obtain such a definite conclusion without the duality constraint. It is also

interesting to note that the values of Z for �p, Kp, and �pðpÞp approximately satisfy the ratio 2:2:3

predicted by the quark model. The obtained value of B for �pðpÞp is Bpp ¼ 0:280� 0:015 mb, which

predicts �pp
tot ¼ 108:0� 1:9 mb and �pp ¼ 0:131� 0:0025 at the LHC energy

ffiffiffi
s

p ¼ 14 TeV.

DOI: 10.1103/PhysRevD.79.096003 PACS numbers: 11.55.Hx, 13.85.Lg

I. INTRODUCTION

Recently, there have been several evidences [1–6] of the
total cross section �tot in the �p and �pðpÞp scatterings,
proportional to log2s at high energies, which is consistent
with the Froissart unitarity bound [7,8]. The COMPETE
Col-
laboration [2,6] has further assumed �tot ’ Blog2ðs=s0Þ to
extend its universal rise with a common value of B for all
the hadronic scatterings. The universality of the coefficient
B was expected in Ref. [9], and other theoretical support
[10,11] based on the arguments describing deep inelastic
scattering by gluon saturation in hadron light-cone wave
functions (the color glass condensate [12] of QCD) has
been given in recent years. However, there is still no
rigorous proof based on QCD.

Therefore, it is even worthwhile to prove or disprove this
universal rise of �tot empirically. In the near future, the pp
total cross section �pp

tot in
ffiffiffi
s

p ¼ 14 TeV will be measured
at TOTEM [13] and at another experiment [14] at the LHC.
Therefore, the value of B for �pp, pp scattering, Bpp, will

be determined with good accuracy. On the other hand, the
��N total cross sections ���N

tot have been measured only
up to k ¼ 610 GeV, where k is the laboratory momentum
of � and corresponds to

ffiffiffi
s

p ¼ 33:8 GeV, as shown by the
SELEX Collaboration [15]. Thus, one might doubt that it is

possible to obtain the value of B for �p scattering, B�p,

with reasonable accuracy.
In the previous article [5], we attacked this problem by

comparing the values of Bpp and B�p in a new light. We

used the laboratory energy of the incident particle, denoted
as �, instead of the center-of-mass energy squared, s. They
are related to each other through

s ¼ 2M�þM2 þm2 (1)

whereM is the mass of the target proton and m is the mass
of the incident particle: m ¼ � (pion mass), m ¼ mK

(kaon mass), and m ¼ M for �p, Kp, and �pðpÞp scatter-
ings, respectively. The total cross section �tot is composed

of the crossing-even cross section �ðþÞ
tot and the crossing-

odd cross section �ð�Þ
tot . Its definition will be given in

Sec. II. �ðþÞ
tot is a sum of a Reggeon component and a

non-Reggeon component, and �ð�Þ
tot is only made of a

Reggeon component corresponding to the vector meson
trajectories. The Reggeon components become negligible
in the high-energy region. Thus, the �tot at high energies is

described only by the non-Reggeon component of �ðþÞ
tot ,

which is parametrized by

�ðþÞ
tot ’ 4�

m2

�
c2log

2 �

m
þ c1 log

�

m
þ c0

�
: (2)

The coefficients c2, c1, c0 are introduced in the respective
scatterings.*ishida@phys.meisei-u.ac.jp
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Equation (2) with c2 > 0 shows the shape of a parabola
as a function of log� with a minimum. The c2 parameter
controls the rise of the parabola on the high-energy side.
We reexpress Eq. (2) as

�ðþÞ
tot ’ Zap þ Blog2

s

s0
(3)

with a ¼ �þ, Kþ, p. By using the relation s ’ 2M� from
Eq. (1) approximated at high energies, the c2 in Eq. (2) is
directly related to the B parameter in Eq. (3). Thus, we
obtain the B parameters for the relevant processes indi-
vidually. In the case of �pp, we have data for large values of
log� coming from the Super Proton Synchrotron (SPS) and
Tevatron experiments. Thus we can determine the value of
c2ðppÞ and Bpp with good accuracy. On the other hand, in

the case of ��p, �þp scatterings, we have used rich
information from the experimental �tot data in the low-
and intermediate-energy regions through the finite-energy
sum rule (FESR). We used the FESR as a constraint
between high-energy parameters, and analyzed the ��p
total cross sections ���p

tot and the � ratios ���p, the ratios
of real to imaginary parts of the forward scattering ampli-
tudes. Here we adopted the FESR with the integral region
between k ¼ �N1 and �N2 [16,17]. The k is the laboratory
momentum of the incident particle which is related to � by

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
. k ’ � in high-energy regions. This FESR

requires that the low-energy extension of the high-energy
asymptotic formula coincides, roughly speaking, with the
average of the experimental �tot in the relevant region
between k ¼ �N1 and �N2. This requirement is called the
FESR duality. We have already used [16,17] this sum rule
between �N1 ¼ 10 GeV and �N2 ¼ 20 GeV. The rich data
in k < 10 GeV were not included in this case, however.
When lower-energy data are included in the integral of
�tot, one can more precisely determine the subleading
term, i.e., the P0 term [the term with coefficient �P0 in
Eq. (6) corresponding to f2ð1275Þ trajectory], which is
built in the sense of the FESR [18–20] by the sum of
direct-channel resonances. Then, it helps to determine the
nonleading term such as log�, which then helps to deter-
mine the leading term like log2�. Thus, for the �p scatter-
ings, we are able to maximally extend the energy regions of
the input data to take �N1 � 10 GeV, so as to obtain the
value of B�p as accurately as possible.

It is to be noted that the �pp scattering has open (meson)
channels below the �pp threshold with � <M (correspond-

ing to
ffiffiffi
s

p
< 2M), and �ðþÞ

tot diverges above the threshold
(� >M) because of the exothermic reactions. The K�p
scattering also has open channels with � <mK (corre-
sponding to

ffiffiffi
s

p
<MþmK). If we choose the value of

�N1 to be fairly larger than m (m ¼ M for �pp, m ¼ mK

for K�p), we have no difficulty coming from open chan-
nels. Contrarily, there are no such effects in �p scattering.
Thus, by taking �N1 as small as possible, we can take into
account more resonances through the FESR in order to

obtain the low-energy extension from the high-energy side
with good accuracy. To obtain a sufficiently small error of
B�p, it appears to be important to include the information

from the low-energy scattering data with 0 � k � 10 GeV
through the FESR.
We will show that the resulting value of B�p is consis-

tent [5] with that of Bpp, which appears to support the

universality hypothesis. It will also be shown that the
central value of BKp is also consistent with Bpp and B�p,

although its error is fairly large, due to the present situation
of the K�p, Kþp data. So far, we have searched for the
simultaneous best fit of the high-energy parameters such as
c2; c1; c0; . . . to the �tot and the � ratios under the duality
constraint. In other words, both B (related to c2) and s0
(related to c1=c2) are completely arbitrary.
We have also attempted to fit data by assuming the

universality of B in �tot � Blog2ðs=s0Þ from the beginning.
The fit is successful and the increase of the total fitting �2

due to the universality constraint is small. This result also
suggests the universality of B. The scale s0 was assumed to
be independent of the colliding particles in Ref. [6]. This
resulted in reducing the number of adjustable parameters.
But, again, there has been no proof of this assumption
based on QCD. We will also investigate this possibility.
In Sec. II, kinematical considerations are summarized

for forward ��p, K�p and �pðpÞp scatterings. A duality
constraint is also explained based on the special form of the
FESR. In Sec. III, we explain the approach for how to
estimate the value of B, s0, and Z individually for the above
hadron scatterings. In Sec. IV, detailed analyses are given
based on�tot and � together with the duality constraint. We
then discuss the universality of the coefficient B. Section V
summarizes our conclusions.

II. KINEMATICAL CONSIDERATIONS

A. Total cross sections �tot and � ratios

We take both the crossing-even and crossing-odd for-

ward scattering amplitudes, FðþÞð�Þ and Fð�Þð�Þ, defined
by

Fð�Þð�Þ ¼ f �apð�Þ � fapð�Þ
2

;

f �apð�Þ ¼ FðþÞð�Þ þ Fð�Þð�Þ;
fapð�Þ ¼ FðþÞð�Þ � Fð�Þð�Þ

(4)

where ð �a; aÞ ¼ ð��; �þÞ, ðK�; KþÞ, and ð �p; pÞ respec-
tively, and f �apð�Þ, fapð�Þ are the forward �ap, ap scattering
amplitudes. The � is the incident energy of �pðpÞ, �, and K
in the laboratory system. The combinations (4) of the
amplitudes satisfy the crossing property

Fð�Þð��Þ ¼ �Fð�Þð�Þ� (5)

under the crossing transformation � ! �� for forward
amplitudes. We assume that
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ImFðþÞð�Þ ’ �

m2

�
c0 þ c1 log

�

m
þ c2log

2 �

m

�
þ �P0

m

�
�

m

�
�P0

;

(6)

ImFð�Þð�Þ ’ �V

m

�
�

m

�
�V

; (7)

for � > N with some energy N due to the Pomeron-
Reggeon exchange model, except for the terms with co-
efficients c2 and c1. The coupling coefficients �P0 , c0, �V

are the unknown parameters in the Regge theory. �P0 , �V

are determined phenomenologically. The c2, c1 terms are
introduced consistently with the Froissart bound to de-
scribe the rise of �tot in the high-energy regions. The total

cross sections � �ap
tot , �

ap
tot and the � ratios � �ap and �ap are

given by

Im f �ap;apð�Þ ¼ k

4�
� �ap;ap

tot ; � �ap ¼ Ref �ap

Imf �ap ;

�ap ¼ Refap

Imfap
;

(8)

respectively, where the k are the incident momenta of �pðpÞ,
�, and K in the laboratory system. The total cross section

of the crossing-even (odd) part �ð�Þ
tot is given by �ð�Þ

tot ¼
ð� �ap

tot � �ap
tot Þ=2 ¼ 4�

k ImFð�Þð�Þ. By using the crossing

property (5), the real parts are given by [4,17]

ReFðþÞð�Þ ’ ��

2m2

�
c1 þ 2c2 ln

�

m

�
� �P0

m

�
�

m

�
�P0

cot
��P0

2

þ FðþÞð0Þ; (9)

ReFð�Þð�Þ ’ �V

m

�
�

m

�
�V

tan
��V

2
; (10)

where FðþÞð0Þ is a subtraction constant.

B. Duality constraints

The FESR is used as a duality constraint between these
parameters [16,17],

2

�

Z N2

N1

�

k2
ImFðþÞð�Þd� ¼ 1

2�2

Z �N2

�N1

�ðþÞ
tot ðkÞdk: (11)

The laboratory energy � is related to the corresponding

momentum k by � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. The momentum corre-

sponding to � ¼ N is represented by the quantity with the
overline, such as k ¼ �N in this paper. The � ¼ N1;2 in

Eq. (11) are related to the corresponding momenta k ¼
�N1;2 by N1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N2
1;2 þm2

q
. The value of �N2 should have a

reasonably high momentum, above which no resonance
structures are observed, while �N1 may be in the resonance
region in the sense of the FESR duality.

The integrand of the left-hand side (LHS) of Eq. (11) is
the low-energy extension of Eq. (6). The right-hand side

(RHS) is the integral of the experimental �ðþÞ
tot ð¼ ð� �ap

tot þ
�ap

tot Þ=2Þ in the resonance-energy regions. This shows sev-

eral peak and dip structures corresponding to a number of
resonances, in addition to the nonresonating background.
Thus, Eq. (11) means the FESR duality; that is, the average
of these resonance structures plus the nonresonating back-

ground in �ðþÞ
tot should coincide with the low-energy ex-

tension of the asymptotic formula.

III. THE GENERAL APPROACH

A. Energy region of �tot and � fitted by asymptotic
formulas

Let us first discuss the energy regions where experimen-
tal �tot and � ratios can be fitted by the asymptotic
forms (6)–(10).
As is well known, many low-energy resonances easily

join into the smooth high-energy behaviors around the
transition energy �0. This energy �0 is around 5 GeV
(which corresponds to

ffiffiffi
s

p ’ 3:3 GeV in �pp scattering) in
real experimental data. The value of �0 is in the energy
region of overlapping resonances and seems to be too small
to apply the asymptotic formula to the data just above � ¼
�0. However, since the average of the low-energy reso-
nances is equivalent to the asymptotic formula due to the
FESR duality, we can equate the experimental �tot to the

imaginary part of Fð�Þð�Þ (6) and (7) for � > �0. Let us
now consider the behaviors of the real part of the ampli-
tude. For simplicity of explanation, let us consider the
crossing-odd amplitude. Then, we can substitute the RHS
of (7) into the principal-part dispersion integral, instead of
substituting low-energy resonances, due to the FESR dual-
ity. Therefore, we can obtain the RHS of (10) explicitly for
� > �0.
This can easily be extended to the general case. The two-

component hypothesis of duality was proposed by Gilman,
Harari, and Zarmi [21] for when the scattering amplitude
includes the contribution from the Pomeron exchange; i.e.,
the ordinary Regge pole (P0) is built by direct-channel
resonances in the sense of the FESR, while the Pomeron-
type singularity [which corresponds to Eq. (2) in the
present case] is associated with the nonresonating back-
ground. If we take this hypothesis, the same argument can
be applied, and we can substitute the RHS of (6) into the
principal-part dispersion relation from the threshold to
obtain the RHS of (9). Therefore, we can use the RHS of
(9) for � > �0. Since the transition energy �0 is around
5 GeVas mentioned above, we can use the asymptotic form
for both the imaginary part and the real part for k > 5 GeV.

B. Practical approach for the search of B

In order to obtain the value of B, we search for the

simultaneous best fit to �ðþÞ
tot and the �ðþÞ ratios under the

duality constraint, Eq. (11). The formulas (4)–(10) and the
duality constraint (11) are our starting points. The LHS of
Eq. (11) is the integral of the asymptotic formulas (6) and is
represented by a linear homogeneous equation of the pa-
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rameters c2;1;0 and �P0 . The RHS of Eq. (11) is the integral

of the experimental �tot, which is estimated by using the

experimental data of ���p
tot , �K�p

tot , � �pp;pp
tot . Here �N2 is fixed

to be 20 GeV, while we take various values of �N1. We try to
take �N1, being less than 10 GeV, as small as possible. The

� �ap;ap
tot and � �ap;ap are fitted simultaneously for the respec-

tive processes of �p, Kp and �pðpÞp scatterings. In actual
analyses we fit the data of Ref �ap;apðkÞ by the formulas (9)
and (10). We have obtained them from the experimental

data of � �ap;ap in Ref. [6] times Imf �ap;ap
PDG ðkÞ, where we use

the result of the fit given by PDG [6,22]. By using Ref �ap;ap

data in the fittings, the resulting �2 functions become
second-order homogeneous equations of the relevant pa-
rameters, which are easy handle. This makes our analyses
simple and transparent.

The � �ap;ap
tot for k � 20 GeV and � �ap;ap for k � 5 GeV

are fitted simultaneously. Here, by considering the transi-
tion energy �0 � 5 GeV, we have chosen k � 5 GeV for
the fitted energy region of the � data, while for �tot, k �
20 GeV, which is different from the � data. The �tot data
up to k ¼ 20 GeV are used to obtain their integrals in the
duality constraint (11). Thus, in order to avoid the double
counting of the data, we use larger values, k > 20 GeV, for
� than for �.

The high-energy parameters c2, c1, c0, �P0 , and �V are
treated as process dependent, while �P0 and �V are fixed
with common values for every process. The duality con-
straints (11) give constraints between c2, c1, c0 and �P0 for

�pðpÞp, Kp and �p scatterings, respectively. FðþÞð0Þ is
treated as an additional parameter, and the number of
fitting parameters is five for each process. The resulting
c2 are related to the B parameters, defined by � ’
Blog2ðs=s0Þ þ � � � , through the equations

Bap ¼ 4�

m2
c2; m ¼ M;�;mK; a ¼ p;�;K

(12)

and we can test the universality of the B parameters.

C. Analysis when the coefficient B and scale s0 are
assumed to be universal

We also analyze the data by assuming the coefficient B
of �tot � Blog2ðs=s0Þ to be universal from the beginning
and by testing the universality of B. We also search for the
possibility that s0 has a common value for pp, �p, Kp
scatterings.

IV. ANALYSIS BASED ON �tot AND �

A. Evaluation of the integral of �ðþÞ
tot appearing in the

FESR

In order to obtain the explicit forms of the FESR (11), it

is necessary to evaluate the integral of �ðþÞ
tot ,

1

2�2

Z �N2

�N1

�ðþÞ
tot ðkÞdk ¼ 1

2�2

Z �N2

�N1

1

2
ð� �ap

tot ðkÞ þ �ap
tot ðkÞÞdk

(13)

with a ¼ �þ, Kþ, p from the experimental data [6] for
each process. For this purpose we have performed phe-

nomenological fits to the experimental � �ap;ap
tot . The experi-

mental �tot can be fitted simply by the phenomenological

formula �tot ¼ 4�
k f �

m2 ðc2log2 �
m þ c1 log

�
m þ c0Þ þ �

m 	
ð�mÞ0:5 þ d

m ð�mÞ�0:5 þ f
m ð�mÞ�1:5 þ g

m ð�mÞ�2:5g. The dimension-

less parameters c2 are fixed to the values of our previous
analysis [16], c2 ¼ 0:001 40, 0.0185, and 0.0520 for ��p,
K�p, and �pðpÞp scatterings, respectively. The other pa-
rameters are taken to be free, depending on the processes.
The error of each data point, denoted as �y, is given by
combining the statistical error �ystat and the systematic

error �ysyst as �y 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�ystatÞ2 þ ð�ysystÞ2

q
. The data of

� �pp
tot are mutually inconsistent in the low-energy region

among the data of different experiments, and we cannot
obtain a good fit. We adopt a statistical method, Sieve
algorithm [23], and seven points are removed following

this prescription [24]. The experimental� �ap;ap
tot ðkÞ are fitted

in the region of laboratory momenta, ka < k < 100 GeV,
where ka are taken to be 3 GeV, 2 GeV, and 2.5 GeV for
�p, Kp, and �pðpÞp scatterings, respectively. The ka cor-
respond to

ffiffiffi
s

p ¼ 2:56 GeV, 2.35 GeV, and 2.60 GeV for
the relevant processes. There are no remarkable resonance
structures observed above these energies, and successful
fits are obtained by using this simple formula. The g is
fixed to be g ¼ 0 for the analyses of��p and �pðpÞp, while
it is treated to be free for K�p. There are five fitting
parameters for ��p, �þp, �pp, and pp, and six fitting
parameters for K�p and for Kþp. The resulting �2 are
�2=ðND � NPÞ ¼ 102:6=ð165� 5Þ, 69:7=ð100� 5Þ for
��p, �þp; 171:4=ð149� 6Þ, 75:0=ð86� 6Þ for K�p,
Kþp; and 48:8=ð70� 5Þ, 112:2=ð103� 5Þ for �pp, pp
[25].
In the FESR (11) �N2 is fixed to be �N2 ¼ 20 GeV, while

we take various values of �N1. The integrals of �
ðþÞ
tot ðkÞ from

the relevant �N1 to the �N2 are estimated by using these
phenomenological fits.
In �p scatterings, we try to take very small values of �N1

in the resonance-energy region. There are no open chan-
nels below threshold � < � in this process, and the smaller
the �N1 is taken, the more information in the low-energy
region is included through the FESR, and the more accu-
rate value of c2 is obtained. Actually, we take �N1 less than
1 GeV. In this case we divide the region of the integral into

two parts: The integral of �ðþÞ
tot ðkÞ from the higher-energy

region, kd < k < �N2, is estimated by using the phenome-
nological fits, while the integral from the lower-energy
region, �N1 < k < kd, is evaluated directly from experimen-
tal data. That is, the data points are connected by straight
lines and the areas of these polygonal line graphs are
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regarded as the corresponding integrals. The dividing mo-
mentum kd is taken to be 4 GeV.

The ���p
tot data in the low-energy region are shown in

Fig. 1. We take k ¼ �N1 ¼ 10, 7, 5, 4, 3.02, 2.035, 1.476,
0.9958, 0.818, 0.723, 0.475, 0.281 GeV. These values of �N1,
which are shown by vertical lines, correspond to the labo-
ratory momenta of peak and dip positions observed in

experimental ���p
tot spectra. This can be seen in Fig. 1.

The values of cross-section integrals estimated from the
above-mentioned procedures are given in Table I.
The situations are different in K�p and �pp, pp scatter-

ings. K�p is the exothermic reaction. K�p ! �0�, ��

could occur even at threshold, � ¼ mK, and the �K�p
tot ðkÞ

increases like 1=k near threshold. In the case of too small
values of �N1, the integral of �tot is affected strongly by the
contribution from these open channels. Furthermore, in the
exotic Kþp channel there is a sudden decrease of �tot

observed below Ecm ’ 1:9 GeV (k ’ 1:2 GeV). Similarly,
�pp has a number of open meson channels below threshold,
� <M, and a big dip structure is observed in �tot of the
exotic pp channel below Ecm ’ 2:2 GeV (k ’ 1:4 GeV).

We can see the situations in the �K�p
tot and � �pp;pp

tot data
shown in Figs. 2 and 3, respectively. The reason for pro-
ducing these structures is not known, but it is safe to take
�N1 to be fairly larger than mK and M. Actually, we take
�N1 � 3 GeV as �N1 ¼ 10, 7, 5, 4, 3 GeV in K�p and �pp,
pp scatterings. These laboratory momenta are represented
by vertical lines in Figs. 2 and 3, respectively.

For each value of �N1 the integrals of � �ap;ap
tot and their

average �ðþÞ
tot are estimated by using the phenomenological

fits to K�p and �pðpÞp scatterings. The results are given in
Tables II and III, respectively.
The values of the integrals given in Tables I, II, and III

are estimated with very small errors, which are generally
less than 0.3%. We regard central values as exact ones and
treat the FESR (11) as exact constraints between the fitting
parameters.

B. Analysis of ��p scattering

The data [6] of ���p
tot for k � 20 GeV and ���p (more

exactly, Ref�
�p) for k � 5 GeV are fitted simultaneously.

In the FESR (11), �N2 is taken to be 20 GeV. The �N1 are
chosen to be 10, 7, 5, 4, 3.02, 2.035, 1.476, 0.9958, 0.818,
0.723, 0.475, 0.281 GeV, as explained before.

2 3 4 GeV
Ecm

20

40

60

80

100

120

mb

0.281
0.475 0.723

0.818
0.996

1.476 2.035 3.02 4 5 7 10
k GeV

FIG. 1 (color online). The �tot data of ��p scattering (big
blue points) and of �þp scattering (small black points) in the
low-energy region: The errors are not shown. The horizontal axis
represents the center-of-mass energy Ecm. The vertical lines
correspond to the values of laboratory momenta k ¼ �N1 ¼ 10,
7, 5, 4, 3.02, 2.035, 1.476, 0.9958, 0.818, 0.723, 0.475,
0.281 GeV, which are selected as the lower limits of the integrals
in the FESR (11). Their numbers (in GeV) are shown in the
upper part of the figure. The solid lines represent the low-energy
extensions of our best fit using the FESR in the case of �N1 ¼
0:818 GeV.

TABLE I. The integrals of the cross section 1
2�2

R �N2
�N1
���p

tot ðkÞdk ðGeV�1Þ and their average,
which are estimated by using experimental data for ��p scattering: The �N2 is fixed to be
20 GeV, while we take various values of �N1.

�N1– �N2 (GeV) 1
2�2

R �N2
�N1
���p

tot ðkÞdk 1
2�2

R �N2
�N1
��þp

tot ðkÞdk 1
2�2

R �N2
�N1
�ðþÞ

tot ðkÞdk
10–20 31:404� 0:033 33:611� 0:029 32:508� 0:022
7–20 41:253� 0:042 44:244� 0:038 42:748� 0:028
5–20 48:069� 0:047 51:656� 0:044 49:863� 0:032
4–20 51:609� 0:048 55:536� 0:047 53:572� 0:034
3.02–20 55:220� 0:050 59:539� 0:052 57:380� 0:036
2.035–20 59:069� 0:052 63:899� 0:053 61:484� 0:037
1.476–20 61:456� 0:052 66:443� 0:054 63:950� 0:038
0.9958–20 63:431� 0:053 68:994� 0:056 66:213� 0:039
0.818–20 63:907� 0:053 70:016� 0:057 66:961� 0:039
0.723–20 64:093� 0:053 70:536� 0:057 67:314� 0:039
0.475–20 64:875� 0:053 71:605� 0:057 68:240� 0:039
0.281–20 67:563� 0:054 72:646� 0:057 70:105� 0:039
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For each value of �N1, the integrals of �
ðþÞ
tot , which are the

RHS of Eq. (11), are given in Table I. The integral of the
asymptotic formula (6) which appears in the LHS of
Eq. (11) is calculable analytically, and we obtain the ex-
plicit form of the FESR (11). In the case of �N1 ¼
0:818 GeV, for example, the FESR (11) is given by

ð�pÞ 87:1714�P0 þ 627:26c0 þ 2572:37c1 þ 10 891:2c2

¼ 66:961� 0:039: (14)

The error of the RHS is very small, and Eq. (14) is regarded
as an exact constraint between the parameters c2;1;0 and

�P0 . �P0 is represented by the other three parameters c2;1;0
as �P0 ¼ �P0 ðc2; c1; c0Þ. The fitting is performed with five

parameters, including �V and FðþÞð0Þ. The ð�P0 ; �VÞ in
Eqs. (6) and (7) are fixed to be empirical values (0.500,
0.497) [16] in all the fitting procedures. The values of c2

2 3 4 5 GeV
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80

100

120

mb

3 4 5 7 10
k GeV

FIG. 3 (color online). The experimental �tot of �pp (blue
points) and of pp (black points) in the low-energy region: The
vertical lines correspond to the values of k ¼ �N1 selected in our
analyses. See, the caption in Fig. 2.

TABLE III. The integral of �tot in �pp, pp: 1
2�2

R �N2
�N1
� �pp;pp;ðþÞ

tot ðkÞdk ðGeV�1Þ. �N2 is taken to be

20 GeV, while �N1 is taken to be 10, 7, 5, 4, 3 GeV.

�N1– �N2 (GeV) 1
2�2

R �N2
�N1
� �pp

tot ðkÞdk 1
2�2

R �N2
�N1
�pp

tot ðkÞdk 1
2�2

R �N2
�N1
�ðþÞ

tot ðkÞdk
10–20 65:75� 0:24 51:07� 0:06 58:41� 0:12
7–20 87:61� 0:33 66:68� 0:07 77:14� 0:17
5–20 103:48� 0:39 77:28� 0:08 90:38� 0:20
4–20 112:11� 0:41 82:72� 0:08 97:41� 0:21
3–20 121:51� 0:41 88:33� 0:08 104:92� 0:21

TABLE II. The integral of �tot in K�p: 1
2�2

R �N2
�N1
�K�p;Kþp;ðþÞ

tot ðkÞdk ðGeV�1Þ. �N2 is taken to be

20 GeV, while �N1 are taken to be 10, 7, 5, 4, 3 GeV, respectively.

�N1– �N2 (GeV) 1
2�2

R �N2
�N1
�K�p

tot ðkÞdk 1
2�2

R �N2
�N1
�Kþp

tot ðkÞdk 1
2�2

R �N2
�N1
�ðþÞ

tot ðkÞdk
10–20 28:217� 0:068 22:661� 0:053 25:439� 0:043
7–20 37:175� 0:094 29:377� 0:069 33:276� 0:058
5–20 43:425� 0:110 33:818� 0:077 38:622� 0:067
4–20 46:693� 0:116 36:031� 0:080 41:362� 0:070
3–20 50:120� 0:120 38:257� 0:081 44:189� 0:072
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FIG. 2 (color online). The experimental �tot of K�p (blue
points) and of Kþp (black points) in the low-energy region:
The vertical lines correspond to the laboratory momenta k ¼
�N1 ¼ 10, 7, 5, 4, 3 GeV, which are selected as the lower limits of
the FESR integrals (11). Their numbers (in GeV) are shown in
the upper part of the figure. The horizontal axis represents the
corresponding center-of-mass energy Ecm. The solid lines rep-
resent the low-energy extensions of our best fit using the FESR
in the case of �N1 ¼ 5 GeV.
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and �2 in the best fits for the respective �N1 are given in
Table IV [26].

As is seen in Table IV, values of the best-fitted c2 are
almost independent of the choices of �N1 (except for the
case �N1 ¼ 0:475 GeV). The results are surprisingly stable,

although there are many resonant structures and ���p
tot

show sharp peak and dip structures in this energy region.
We can adopt the case of �N1 ¼ 0:818 GeV as a repre-

sentative of our results. The best-fit value of c2 is

c2 ¼ ð121� 13Þ 	 10�5: (15)

The best-fit values of the other parameters are given in
Table V.

The result should be compared to the analysis without
the FESR. In this case there is no constraint between
parameters, and the fitting is performed with six parame-
ters including �P0 . The best-fit value of c2 is

c2 ¼ ð164� 29Þ 	 10�5: (16)

This value should be compared with the result (15) using
the FESR. By including rich information of low-energy
scattering data in the form of the FESR, the error of c2 in
Eq. (15) becomes less than half of Eq. (16).

Predicted spectra of �tot without the FESR are shown in
Fig. 4 and with the FESR in Fig. 5. The uncertainties of the
prediction from the best fit are shown by the shaded regions
in Figs. 4 and 5, which correspond to c2 in Eqs. (16) and
(15), respectively. Our prediction in Fig. 5 is greatly im-
proved from that in Fig. 4.

The results of the fit to ���p are given in Fig. 6.

The c2log
2 �
� þ c1 log

�
� with c2 > 0 shows the shape of

the parabola as a function of log�
�with a minimum. In order

to determine the c2, c1 coefficients of log
2 �
� and log�

� with

sufficient accuracy, a few orders of magnitude are neces-
sary for the fitted energy region. The fitted energy region
for ��p is 20 GeV< k< 370 GeV, shown by the hori-
zontal arrow in the figure, which corresponds to
6:2 GeV< Ecmð


ffiffiffi
s

p Þ< 26:4 GeV. This energy range is
insufficient to determine c2 with enough accuracy.
The energy region of the FESR integral,

�N1ð¼ 0:818 GeVÞ< k< 20 GeV (which corresponds to
1:56<

ffiffiffi
s

p ¼ Ecm < 6:2 GeV) is shown by the double
horizontal arrow in Fig. 5. Additional information from
this energy region greatly helps to improve our estimate of
c2. It is very important to include the information of the
data in the low-energy region by using the FESR.

TABLE IV. Values of c2 from �p scattering in the best fit with five parameters, using the FESR as a constraint. The fittings �2 are
given in the next row. The number of data points is 162. The result of the six-parameter fit without using the FESR is also shown in the
last column as ‘‘No SR.’’

�N1 10 7 5 4 3.02 2.035 1.476

c2ð10�5Þ 142(21) 136(19) 132(18) 129(17) 124(16) 117(15) 116(14)

�2
tot 149.05 149.35 149.65 149.93 150.44 151.25 151.38

�N1 0.9958 0.818 0.723 0.475 0.281 No SR

c2ð10�5Þ 116(14) 121(13) 126(13) 140(13) 121(12) 164(29)

�2
tot 151.30 150.51 149.90 148.61 150.39 147.78

TABLE V. Values of the best-fitted parameters and their 1
standard deviations in ��p scattering. The FESR with �N1 ¼
0:818 GeV is used, and �P0 is obtained from the other parame-
ters by using this FESR. Our predicted lines in Fig. 5 are
depicted by using these values.

c2ð10�5Þ c1 c0 FðþÞð0Þ �V �P0

121.1 �0:011 79 0.1141 �0:0180 0.040 04 0.1437

þ13:3 �0:013 85 0.1224 �0:2785 0.039 91 0.1280

�13:3 �0:009 74 0.1058 0.2425 0.040 18 0.1594
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FIG. 4 (color online). Prediction of ��p
tot without the FESR.

The data points are given with no error bars. The big blue points
(line) are data (best-fitted curve) for ��p. The black points and
lines are for �þp. The horizontal arrow represents the energy
region of the fitting. The shaded region corresponds to the
uncertainty of the prediction by the best fit, where c2 ¼ ð164�
29Þ 	 10�5. The c2 has large uncertainties since it is not deter-
mined well by direct fitting of the data above k ¼ 20 GeV
(Ecm ¼ 6:2 GeV).
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The value of �tot in ��N scattering at k ¼ 610 GeV
(Ecm ¼ 33:8 GeV) is reported by the SELEX
Collaboration [15] as ��N

tot ¼ 26:6� 0:9 mb. Here N is
not identified with a proton or a neutron. Our prediction

of �ðþÞ
tot [ ¼ ð���p

tot þ ��þp
tot Þ=2] at this energy is 25:75�

0:05 mb, and ���p
tot � ��þp

tot is 0.30 mb. By taking this
value into account we may predict ���N

tot ¼ 25:8�
0:3 mb at k ¼ 610 GeV. This is consistent with the
SELEX measurement.

In Fig. 1, our best-fitted curve in the case of �N1 ¼
0:818 GeV is also depicted. The fitted energy region is
above k ¼ 20 GeV (Ecm ¼ 6:2 GeV), and it is far above
the energy region shown in Fig. 1. Nevertheless, the low-
energy extensions of the asymptotic formula almost coin-

cide with the experimental���p
tot in Ecm up to�3 GeV, and

in Ecm <�3 GeV they seem to cross the averages of peak

and dip structures of various N and � resonances. This
shows that the FESR duality is satisfied in our best fit.

C. Analysis of K�p scattering

The K�p and Kþp scatterings are analyzed using the
same method. We fix �N2 ¼ 20 GeV, while we take various
values of �N1 as �N1 ¼ 10, 7, 5, 4, 3 GeV. The integral of

�ðþÞ
tot [ ¼ ð�K�p

tot þ �Kþp
tot Þ=2] for each value of �N1 is given

in Table II, and the FESR (11) is written in an explicit form.
In the case of �N1 ¼ 5 GeV, the FESR is given by

ðKpÞ 8:213 63�P0 þ 39:2291c0 þ 124:142c1

þ 398:549c2 ¼ 38:62� 0:07; (17)

which is regarded as a constraint between parameters c2;1;0
and �P0 . Solving this constraint, �P0 is represented by the

other three parameters. The experimental �K�p
tot in k �

20 GeV and �K�p (more exactly, RefK
�p) in k � 5 GeV

are fitted simultaneously with five parameters, c2;1;0, �V ,

and FðþÞð0Þ, where �P0 , �V are fixed with values common
to the �p case, �P0 ¼ 0:5, �V ¼ 0:497. The fits are suc-
cessful, independently of the choices of �N1, as shown in
Table VI, where we only show the values of c2 and the total
�2 in the best fits.
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FIG. 5 (color online). Prediction of ��p
tot with the use of the

FESR in the case of �N1 ¼ 0:818 GeV as a constraint. The data
points are given with no error bars. The big blue points (line) are
data (best-fitted curve) for ��p. The black points and lines are
for �þp. The single horizontal arrow represents the energy
region of the fitting, while the double horizontal arrow represents
the energy region of the FESR integral, k ¼ �N1 through �N2

( ¼ 20 GeV). The uncertainty of the prediction by the best fit is
shown by the shaded region, where c2 ¼ ð121� 13Þ 	 10�5. It
is greatly improved from that without the FESR, shown by the
dashed line. The inclusion of rich information of low-energy
scattering data through the FESR is essential to determine c2.

TABLE VI. Values of c2 and �
2 in the best fits to �K�p

tot and �K�p. The FESR with the integrals
�N1 through �N2 are used as constraints. �N2 is fixed to 20 GeV, while we take various values of �N1.
The number of data points is 111, fitted with five parameters in the case with the FESR. The
result with no FESR is given in the last column as ‘‘No SR.’’

�N1 (GeV) 10 7 5 4 3 No SR

c2ð10�4Þ 179(61) 176(54) 176(49) 176(47) 174(44) 266(95)

�2
tot 64.01 63.90 63.80 63.76 63.77 62.29

2 5 10 100 GeV 1 TeV
Ecm
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FIG. 6 (color online). Result of the fit and the prediction of
���p with the use of the FESR in the case of �N1 ¼ 0:818 GeV as
a constraint. The big blue points (line) are data (best-fitted curve)
for ��p. The black points and lines are for �þp. The horizontal
arrow represents the energy region of the fitting.
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The central values of c2 in the best fits are very stable,
and almost independent of the choices of �N1. We choose
�N1 ¼ 5 GeV as a representative of our results. This value
is fairly larger than the momentum of the dip structure

observed in �Kþp
tot below k ’ 1:2 GeV. The best-fitted

value of c2 is

c2 ¼ ð176� 49Þ 	 10�4: (18)

The values of the other parameters are given in Table VII.
The results are compared with the analysis without the
FESR,

c2 ¼ ð266� 95Þ 	 10�4: (19)

This uncertainty of c2 is very large, since the range of
momenta of the fitting 20 GeV< k< 310 GeV, which
corresponds to 6:2 GeV< Ecm < 24:1 GeV, is insufficient
to determine c2 accurately by direct fitting. The best-fit
value of �P0 becomes negative and unphysical. Thus, the

central value c2 ¼ 266	 10�4 is considered to be too
large and unreliable.
By including the data above k ¼ 5 GeV (Ecm ¼

3:25 GeV) in the form of the FESR, the error of c2 in

TABLE VII. Values of the best-fitted parameters and their 1
standard deviations in K�p scattering. The FESR with �N1 ¼
5 GeV is used, and �P0 is obtained from the other parameters by
using this FESR. Our predicted lines in Fig. 8 are depicted by
using these values.

c2ð10�4Þ c1 c0 FðþÞð0Þ �V �P0

175.7 �0:1388 1.207 1.660 0.5684 0.1840

þ49:5 �0:2042 1.439 0.640 0.5668 �0:1775
�49:5 �0:0733 0.974 2.680 0.5699 0.5455
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FIG. 7 (color online). Prediction of �Kp
tot without the FESR.

The data points are given with no error bars. The big blue points
(line) are data (best-fitted curve) for K�p. The black points and
lines are for Kþp. The horizontal arrow represents the energy
region of the fitted data. The shaded region represents the
uncertainty of the prediction, where c2 ¼ ð266� 95Þ 	 10�4.
The c2 has a very large uncertainty since it is not determined
well by directly fitting to the high-energy experimental data.
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FIG. 8 (color online). Prediction of �Kp
tot with the FESR in the

case of �N1 ¼ 5 GeV as a constraint: The big blue points (line)
are data (best-fitted curve) for K�p. The black points and lines
are for Kþp. The single horizontal arrow represents the energy
region of the fitted data, while the double horizontal arrow
represents the energy region of the FESR integral, k ¼ �N1

through �N2 ( ¼ 20 GeV). The data points are given with no
error bars. The uncertainty of the prediction by the best fit,
shown by the shaded region, is improved from that without the
FESR, represented by the dot-dashed line. The best-fitted c2 is
c2 ¼ ð176� 49Þ 	 10�4. The inclusion of the information of
low-energy data by the FESR is essential to improve the esti-
mation of c2.
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Ecm
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FIG. 9 (color online). Result of the fit and the prediction of
�K�p with the use of the FESR in the case of �N1 ¼ 5 GeV as a
constraint. The big blue points (line) are data (best-fitted curve)
for K�p. The black points and lines are for Kþp. A horizontal
arrow represents the energy region of the fitting.
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Eq. (18) becomes about half of Eq. (19). Correspondingly,
the predicted spectra with the FESR given in Fig. 8 are
greatly improved from Fig. 7 without the FESR. The
inclusion of the information in the low-energy region is
essential to determine the value of c2 reliably in Kp

scattering. The fitting result and prediction of �K�p;Kþp

using FESR are given in Fig. 9.
Figure 2 shows the data in the low-energy region. The

low-energy extensions of our best-fitted curves in the case
of �N1 ¼ 5 GeV are also depicted in this figure. They

reproduce surprisingly well the experimental �K�p
tot and

�Kþp
tot , although the energy region of the FESR integral

and the energy region of the fitting are above the energy
region shown in this figure. This shows that our best-fitted
curves satisfy the FESR duality.

D. Analysis of �pp, pp scatterings

Similarly to theKp scatterings, in the analysis of �pp, pp
scatterings we fix �N2 ¼ 20 GeV, while we take various
values of �N1 as �N1 ¼ 10, 7, 5, 4, 3 GeV. For each value of
�N1, the FESR (11) is written in an explicit form, where the

integral of �ðþÞ
tot [ ¼ ð� �pp

tot þ �pp
tot Þ=2] is given in Table III.

In the case of �N1 ¼ 5 GeV, for example, the FESR is given
by

ðppÞ 3:140 58�P0 þ 10:8947c0 þ 27:5046c1

þ 71:0017c2 ¼ 90:38� 0:20; (20)

which is regarded as a constraint between parameters c2;1;0
and �P0 , and leads to the relation �P0 ¼ �P0 ðc2; c1; c0Þ.

The � �pp
tot data are obtained up to Ecm ¼ 63 GeV by the

Intersecting Storage Ring Accelerator (ISR) experiment,
up to Ecm ¼ 0:9 TeV by the SPS experiment, and up to

Ecm ¼ 1:8 TeV by the Tevatron experiment. There are two
conflicting measurements in the Tevatron experiment,
which are from D0 [27,28] and CDF [29]. The very high-
energy data with large uncertainties are obtained by cosmic
ray experiments.

The experimental � �pp;pp
tot in k � 20 GeV and � �pp;pp in

k � 5 GeV, up to Tevatron energy, are fitted simulta-
neously. The fittings are performed with five parameters,

c2;1;0, �V , and FðþÞð0Þ, by using the FESR as a constraint

[30]. The best-fitted values of c2 and total �2 for the
respective values of �N1 are given in Table VIII. The result
is compared with the six-parameter fit of the analysis
without using the FESR, denoted as ‘‘No SR’’ in the
same table. By considering this result, we choose �N1 ¼
5 GeV as a representative of our analyses. The best-fitted
c2 is given by

c2 ¼ ð504� 26Þ 	 10�4: (21)

The values of the other parameters are given in Table IX.
The improvement from the result c2 ¼ ð491� 34Þ 	

10�4 obtained by the fit without using the FESR is not
large, since the high-energy data from the SPS and
Tevatron experiments, which directly affect the estimation
of the c2 value, are included in both fits.

Our predicted spectra of � �pp;pp
tot in the case of �N1 ¼

5 GeV are given in Fig. 10. The fitting result and prediction
of � �pp;pp are given in Fig. 11.

E. Test of the universality of B

Using the values of the parameters given in the previous
subsections, we can test the universality of the B parame-
ters from the experimental data of ��p, K�p and �pðpÞp
scatterings.
In Ref. [6] the asymptotic formula of the total cross

section is represented in terms of squared center-of-mass
energy s in the form

�ðþÞ
tot ’ Zap þ Blog2

s

s0
; (22)

which is already given in Eq. (3). In Ref. [6] B and s0 are
assumed to be universal in the relevant processes while Zap

are taken to be process dependent [33].
We use the asymptotic formula of the crossing-even

amplitude (6), which gives

TABLE VIII. Values of c2 and the total �
2 in the best fit to �pp, pp scatterings, using the FESR

as a constraint. The data up to the Tevatron energy, Ecm ¼ 1:8 TeV, are fitted simultaneously.
The number of data points is 234, fitted by five parameters when using the FESR as a constraint.
The result of the six-parameter fit without using the FESR is also shown in the last column as
‘‘No SR.’’

�N1 10 7 5 4 3 No SR

c2ð10�4Þ 505(28) 506(27) 504(26) 500(26) 493(25) 491(34)

�2
tot 214.52 214.53 214.32 214.14 213.99 213.98

TABLE IX. Values of the best-fitted parameters and their 1
standard deviations in �pp, pp scattering. The FESR with �N1 ¼
5 GeV is used, and �P0 is obtained from the other parameters by
using this FESR. Our predicted lines in Figs. 10 and 11 are
depicted by using these values.

c2ð10�4Þ c1 c0 FðþÞð0Þ �V �P0

503.6 �0:2432 6.647 10.51 3.721 6.713

þ26:1 �0:2810 6.788 10.24 3.728 6.495

�26:1 �0:2054 6.505 10.77 3.714 6.931
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�ðþÞ
tot ’ 4�

m2

�
c0 þ c1 log

�

m
þ c2log

2 �

m

�
: (23)

It is the same equation as Eq. (2). Here we omit the P0 term
proportional to �P0 and use the approximation �=k ’ 1 at
high energies.

Using the relation s ’ 2M� at high energies from
Eq. (1), we obtain the relation between the parameters,

B ¼ 4�

m2
c2; (24)

Zap ¼ 4�

m2

�
c0 � c1

2

4c2

�
; (25)

s0 ¼ 2Mm exp

�
� c1

2c2

�
þM2 þm2: (26)

The parameters c2;1;0 are treated as process dependent in

our analyses. Substituting the best-fitted values of c2;1;0

into these equations, we can estimate the values of B, Zap,ffiffiffiffiffi
s0

p
individually for �p, Kp and �pp, pp scatterings with-

out using the universality hypothesis. The results are given
in Table X.
The results with the FESR are given in the LHS, and

those without the FESR are given in the RHS.
As shown in this table, in the case using the FESR, the

values of B for �p, Kp and �pðpÞp scatterings, denoted,
respectively, as B�p, BKp and Bpp, are mutually consistent

within 1 standard deviation.
In contrast, if we do not use the FESR as constraints,

B�p and BKp have large uncertainties, and we cannot

obtain any definite conclusion.
It is very interesting that by including rich information

of low-energy scattering data through the FESR, the cen-
tral values of B become mutually closer, and consistent
with each other. The FESR duality suggests the universal-
ity of B.
Another interesting feature is the value of Zap. If we

neglect relatively small contributions from the �P0 and �V

terms, the Zap are equal to the �tot at energy
ffiffiffiffiffi
s0

p
, which is

5 10 20 100 GeV 1 TeV 5 10 20 TeV
Ecm

-0.4
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-0.2

-0.1
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FIG. 11 (color online). Result of the fit and the prediction of
� �pp;pp with the use of the FESR in the case of �N1 ¼ 5 GeV as a
constraint. The big blue points (line) are data (best-fitted curve)
for �pp. The black points and lines are for pp. The horizontal
arrow represents the energy region of the fitting. The �pp data
from Ref. [31] [six (red) points around �pp ’ 0:0] and from
Ref. [32] [three (orange) points around �pp ’ �0:3] are re-
moved from our best fit.

TABLE X. Values of B, Zap, and
ffiffiffiffiffi
s0

p
obtained from our best fits with the FESR (LHS) and without the FESR (RHS). The B, Zap,

and
ffiffiffiffiffi
s0

p
are estimated individually for the processes of �p, Kp, and �pðpÞp scatterings.

B (mb) Zap (mb)
ffiffiffiffiffi
s0

p
(GeV) B (mb) Zap (mb)

ffiffiffiffiffi
s0

p
(GeV)

�p 0.304(34) 21.45(32) 5.92(90) 0.411(73) 22.99 9.71

Kp 0.354(99) 18.7(1.1) 7.1(2.6) 0.535(190) 20.67 12.14

�pðpÞp 0.280(15) 35.31(36) 4.63(53) 0.273(19) 34.98 4.28

2 5 10 20 50 200 GeV 1 TeV 5 10 20 50 TeV
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FIG. 10 (color online). Prediction of � �pp;pp
tot with the FESR:

The data up to the Tevatron energy are fitted simultaneously. The
single horizontal arrow represents the energy region of the
fitting. The big blue points (line) are data (best-fitted curve)
for �pp. The black points and lines are for pp. The data points are
given with no error bars. The double horizontal arrow represents
the energy region of the FESR integral, k ¼ �N1 ( ¼ 5 GeV in
this case) through �N2 ( ¼ 20 GeV). The shaded region corre-
sponds to the uncertainty of our prediction in the best fit, where
c2 ¼ ð504� 26Þ 	 10�4.
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the lowest point of the parabola (23) of log�
m . The values of

Zap for �p, Kp and �pðpÞp approximately satisfy the
relation of the quark model, Z�p:ZKp:Zpp ’ 2:2:3. Zap

and the parameters �P0 and �V appearing in the Regge
theory are controlled by nonperturbative soft physics of
QCD, while the term Blog2s=s0 describing the rise of �tot

is plausibly universal for hadron-hadron scatterings.
It is to be noted that this picture is inferred in an earlier

work [9] where it is stated that ‘‘the first, constant term
[corresponding to Zap in Eq. (22) in the present article] . . .
corresponds to a process-dependent (valence quark scat-
tering) contribution, whereas the second, logarithmically
rising one is universal (gluon scattering). We conclude that
it is the Fermi National Accelerator Laboratory (-ISR)
energy interval where �MB=�BB (the ratio of the �tot for
meson-baryon scattering to the baryon-baryon scattering)
comes closest to 2=3. With the further increase of energy
the ratio will approach unity.’’

In the arguments of the color glass condensate (CGC) of
QCD, the gluon component of the target particle drastically
increases in high-energy scattering. This is based on the
calculation of perturbative QCD. The radius R of the
‘‘black’’ region, where strong absorption of incident parti-
cles occurs, increases plausibly by a logs term with a
universal coefficient. The �tot may be given by 2�R2,
and the factor B is expected to be universal for �p, Kp
and �pp, pp.

In Ref. [6] the s0 as well as B are taken to be universal in
the fittings. The

ffiffiffiffiffi
s0

p
is not suggested to be process inde-

pendent in either Ref. [9] or in the framework of CGC. In
Table X the values of

ffiffiffiffiffi
s0

p
for the relevant three processes

seem to be closer to each other in the case with the FESR,
compared to the case without the FESR. This possibility
will be investigated in the next subsection.

F. Analysis with the common value of B

Our analyses in the previous subsections suggest the
universality of B in �p, Kp and �pðpÞp scatterings. Now
let us try to fit all the data by taking the same value of B
from the beginning. The �tot above k � 20 GeV and �
above k � 5 GeV for ��p, K�p, �pðpÞp scatterings are

fitted simultaneously. There are three sets of parameters,

c2, c1, c0, F
ðþÞð0Þ, �P0 , �V . The three FESRs (14), (17),

and (20) are used as constraints. Now the three c2 are not
independent. They are represented by one universal B
parameter through Eq. (24). So the number of fitting pa-
rameters is 13. Successful fits are obtained with the total
�2 ¼ 429:55 ¼ 150:83ð��pÞ þ 64:28ðK�pÞ þ
214:44ð �pðpÞpÞ with ðND � NPÞ ¼ ð508� 13Þ. It is com-
pared with the best-fitted �2 for respective data sets with no
universality constraints, which are given in Tables IV, VI,
and VIII: �2=ðND � NPÞ ¼ 150:51=ð162� 5Þ for ��p,
63:80=ð111� 5Þ for K�p, 214:32=ð235� 5Þ for �pðpÞp.
Their sum is 428.62. The increase of the total �2 is, thus,
only 0.93. The constraint of the universal B is consistent
with the present experimental data.
The value of B in this universality fit is given by

B ¼ 0:285� 0:013 mb: (27)

The values of
ffiffiffiffiffi
s0

p
and Zap are also given in the upper half

of Table XI.
By taking the value of B to be universal, the best-

fitted values of
ffiffiffiffiffi
s0

p
become closer to each other.

Successful fits are obtained in Ref. [6] by taking both B
and s0 to be universal. We also try to fit the data by
taking both B and s0 as common in the relevant three
processes. The resulting �2 ¼ 435:24 ¼ 152:19ð��pÞ þ
64:06ðK�pÞ þ 219:00ð �pðpÞpÞ with 11 parameters, and the
fit is successful. The total increase of �2 is 6.62 from the
best fits to the respective processes with no constraints
from B and s0.
The values of the parameters are given in the lower half

of Table XI. B and
ffiffiffiffiffi
s0

p
are given by B ¼ 0:304�

0:010 mb and
ffiffiffiffiffi
s0

p ¼ 5:75� 0:34 GeV. These values are

consistent with the results given by PDG [6], B ¼
0:308ð10Þ mb and

ffiffiffiffiffi
s0

p ¼ 5:38ð50Þ GeV, which are ob-

tained by assuming the universality of B and s0. Another
interesting feature is the ratio of Zap. It satisfies approxi-
mately the quark model prediction, Z�p:ZKp:Zpp ¼ 2:2:3.

TABLE XI. Values of the best-fit parameters assuming universality of B and of B and s0, which are taken to be common in fitting the
data of relevant processes. The B, Zap, and

ffiffiffiffiffi
s0

p
are related with c2, c0, and c1 by Eqs. (24)–(26). The �P0 are obtained from values of

the other parameters through the FESR.

B (mb)
ffiffiffiffiffi
s0

p
(GeV) Zap (mb) FðþÞð0Þ �V �P0

�p 0.285(13) 5.40(37) 21.24(16) 0.13(61) 0.040 12(95) 0.1527(62)

Kp 0.285(13) 5.17(38) 17.91(19) 2.33(1.01) 0.5618(82) 0.4296(481)

�pðpÞp 0.285(13) 4.82(49) 35.44(32) 10.41(60) 3.723(36) 6.637(198)

�p 0.304(10) 5.75(34) 21.36(15) �0:10ð61Þ 0.040 43(93) 0.1472(61)

Kp 0.304(10) 5.75(34) 18.19(16) 2.11(1.01) 0.5613(81) 0.3535(461)

�pðpÞp 0.304(10) 5.75(34) 36.04(17) 9.88(53) 3.745(35) 6.232(122)
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V. CONCLUDING REMARKS

In order to test the universal rise of the total cross section

�ðþÞ
tot by log2s=s0 in all the hadron-hadron scatterings, we

analyze ��p, K�p and �pðpÞp scatterings independently.
Rich information of low-energy scattering data constrain,
through the FESR, the parameters in the high-energy
asymptotic formula to fit the experimental �tot and �
ratios. The values of the B parameters, the coefficients of

the log2s=s0 term in �ðþÞ
tot , are obtained individually for

three processes by these analyses. The results are given in
the LHS of Table X, which is explicitly shown in Fig. 12.
We obtain

B�p ’ BKp ’ Bpp: (28)

The results are consistent with the universality of B within
1 standard deviation. The universality of B is suggested in
our analyses.
There are several remarks about our results.
(i) In order to obtain the above conclusion, it is essential

to use the FESR as constraints between fitting pa-
rameters. As shown in the RHS of Fig. 12, if we do
not use the FESR, B�p and BKp cannot be estimated

with sufficient accuracy, and we could not obtain any
definite conclusion.

(ii) The absolute magnitude of B in the best fit is de-
pendent largely upon the energy region of the fitting
in the present �pp scattering data. In the fit to all the
data up to Tevatron energy

ffiffiffi
s

p ¼ 1:8 TeV, the Bpp

is estimated as Bpp ¼ 0:280� 0:015 mb, which

predicts the �pp
tot ¼ 108:0� 1:9 mb at the LHC en-

ergy
ffiffiffi
s

p ¼ 14 TeV. While if only the data up to the
ISR energy

ffiffiffi
s

p ¼ 63 GeV are taken into account,
we obtain Bpp ¼ 0:317� 0:034 mb, which predicts

�pp
tot ¼ 113:2� 4:6 mb at the LHC energy. This

value is consistent with the above prediction, but
its central value is somewhat larger than our pre-
vious result [3,17]. The precise measurement of�pp

tot

at the LHC [13,14] will help to fix the uncertainty of
the absolute magnitude of B.

(iii) Our approach can be checked by the measurement
of�pp

tot at the LHC. Our predicted values of�
pp
tot and

�pp at
ffiffiffi
s

p ¼ 14 TeV at the LHC, as well as the
other predictions [34], are given in Table XII for
comparison. The predictions in various models
cover a wide range of values. The LHC will select
among these approaches.

(iv) The best-fitted values of B�p and BKp are almost

the same. This result is important since it suggests
that the value of B is independent of quark flavors.

TABLE XII. Predictions of �pp
tot and �pp at the LHC energy

ffiffiffi
s

p ¼ 14 TeV in various models.

Reference �pp
tot (mb) �pp

II [this work] 108:0� 1:9 0:1312� 0:0024
II [3] 106:3� 5:1syst � 2:4stat 0:126� 0:007syst � 0:004stat
BH [4] 107:3� 1:2 0:132� 0:001
BSW [35] 103.6 0.122

GLMM [36,37] 92.1, 110.5

RMK [38] 91.7

COMPETE [39] 111:5� 1:2syst
þ4:1
�2:1stat

0:1361� 0:0015syst
þ0:0058
�0:0025stat

MN [40] 106.4 0.127

GKS [41] 128 0.19

CS [42] 152 0.26

PP [43] 106:73þ7:56
�8:50 0:1378þ0:0042

�0:0612

ILP [44] 110 0.12

Landshoff [45] 125� 25

FESR used No FESR

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
B mb

FIG. 12 (color online). Values of the B parameters in Table X:
Results without the FESR are on the RHS and ones with the
FESR are on the LHS. Triangles, squares, and circles represent
B�p, BKp, and Bpp, respectively. Errors represent 1 standard

(1�) deviations. B�p ¼ BKp ¼ Bpp is satisfied within 1� in the

case with the FESR, while we do not obtain any definite con-
clusion in the case without the FESR.
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B�p is also consistent with Bpp. Thus, we expect

the universality of �meson-baryon ’ �baryon-baryon,

independently of quark flavors at super high
energies, as was suggested in Refs. [9–11]. In
order to establish the universality of B for all the
hadronic scatterings, it is also important to analyze
the other processes, such as ��p and �p
scatterings.

(v) If the universality of B is established both theoreti-
cally and experimentally, the total cross sections of
all the hadronic scatterings can be described simply

by Eq. (3), �tot ’ Blog2s=s0 þ Zap, for
ffiffiffi
s

p
>

� ffiffiffiffiffi
s0

p ’ 5 GeV, where the effects from the Regge

poles of P0 and of the vector trajectory become
negligible. B is a universal constant. There is an
interesting possibility that

ffiffiffiffiffi
s0

p
is universal. There

is no way of predicting values of Zap, which are
highly nonperturbative objects. The difference be-
tween Z�p and ZKp is not large, about 3 mb, and
Z�p, ZKp, and Zpp approximately satisfy the ratio
2:2:3, predicted by the quark model.
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